Подключение по технологии ADSL
Высокоскоростная передача данных на абонентской телефонной линии, использование технологий АDSL; характеристики оборудования компании "Алкатель". Разработка схемы сети доступа, расчет себестоимости программного продукта. Экология и техника безопасности.
Рубрика | Коммуникации, связь, цифровые приборы и радиоэлектроника |
Вид | дипломная работа |
Язык | русский |
Дата добавления | 26.03.2011 |
Размер файла | 661,3 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
- LAN предприятия в случае, когда обеспечен доступ к корпоративной сети.
Сетевая архитектура. Для обеспечения внутри сетевой архитектуры сквозных соединений применяются различные технологии:
- стандартная технология LAN между персональным компьютером и ANT (Ethernet II или IEEE 802.3);
- технологии ATM и ADSL между ANT или PC-NIC (Network Interface Card плата сетевого интерфейса) и ADSL-оборудованием на стороне CO;
- стандартное транспортное оборудование между ASAM и опорной сетью WAN (территориальная сеть) с использованием SDH/SONET или PDH;
- BB коммутаторы/кросс-соединители в ядре опорной сети WAN;
- обладающее высокой производительностью и в то же время стандартное LAN - оборудование в инфраструктуре ISP и корпоративной LAN.
В состав сетевой архитектуры входят: провайдер услуг сети Интернет, опорный маршрутизатор, Интернет, серверы, оборудование доступа, помещение абонента, абонент, сеть доступа, небольшая LAN, телевизионная приставка, разветвитель, инфраструктура корпоративной LAN, маршрутизатор подразделения, опорная сеть, отдельный персональный компьютер.
Сеть в абонентских помещениях. Она может представлять собой либо отдельный персональный компьютер, либо небольшую LAN, содержащую до 16 оконечных систем. Взаимные соединения между ANT и оконечными системами осуществляются с помощью LAN-оборудования, отвечающего требованиям интерфейса Ethernet II или IEEE 802.3.
Поскольку блок ANT оснащен и интерфейсом ATMF на 25,6 Мбит/с, то можно также подключать оборудование класса ATM (STB и т.п.), при этом оба интерфейса, то есть Ethernet и ATMF, могут быть задействованы одновременно.
WAN и опорная сеть. Через мультиплексоры ASAM опорная сеть и WAN соединяют абонентов с провайдерами ISP и корпоративными LAN.
К основным функциям этих объектов относятся:
- транспортирование информации в пределах WAN;
- перекрестное соединение информационных потоков между отдельными пользователями и провайдерами ISP и корпоративными LAN.
Провайдеры ISP и корпоративные LAN. Принципиальных различий между локальной сетью LAN провайдера ISP и локальной сетью LAN крупной корпорации практически не существует. В общем и целом структура LAN, подключенной к сети связи общего пользования, включает в себя:
- коммуникационные серверы доступа (иногда называемые VC-мостами (Virtual Connection - виртуальное соединение));
- опорные IP-маршрутизаторы;
- высокоскоростные сети LAN, например, с волоконно-оптическими соединениями (ATM-интерфейс FDDI (Fiber Distributed Digital Interface - цифровой интерфейс волоконно-оптической передачи));
- информационные серверы;
- коммуникационные серверы WAN-магистралей.
Важным аспектом этого оборудования является то, что оно должно оканчиваться наборами протоколов, в точности повторяющими имеющиеся в абонентских помещениях.
Подсистема ADSL-доступа. Она предназначена для реализации современного способа сигнальной обработки или модуляции, необходимого для обеспечения соединения по абонентской витой паре с модемной транспортной технологии (ADSL-модемов). В основу этой модемной технологии положена DMT-модуляция Discrete Multi-Tone - дискретная многотоновая модуляция, которая интегрирована в ASAM на стороне CO и в ANT или PC-NIC на абонентской стороне.
Модемные интерфейсы мультиплексоров ASAM оснащены так называемыми PS, которые представляют собой устройства уплотнения и разуплотнения частотных доменов для сигналов ADSL и POTS. Частично внешнее устройство PS используется также как часть находящейся в абонентском помещении аппаратуры.
Управление элементами сети доступа осуществляется через (удаленный) объект централизованного управления, который называется AWS (ASAM WorkStation - рабочая станция), и в котором используется протокол SNMP (Simple Network Management Protocol - простой протокол управления сетью). Обмен информацией между AWS и элементами сети доступа осуществляется по выделенным соединениям, предназначенным для администрирования.
Подсистема ADSL-доступа может работать как с CO, так и с выносными блоками. Выносное ASAM-оборудование может быть либо непосредственно подключено к опорной ATM-сети, либо каскадировано от находящегося на CO мультиплексора ASAM через PDH-интерфейс.
Системная архитектура. Основными строительными блоками глобальной ADSL-архитектуры являются (См. Рисунок 5):
- ASAM для ADSL на стороне CO;
- блок ACU (блок контроля аварий) (AACU-[ADSL-ситуаций]);
- расширитель ADSE-A (ADSL Serial Extender - последовательный ADSL - расширитель);
- ANT или PC-NIC и PS на абонентской стороне;
- выносной мультиплексор R-ASAM (удаленный, выносной), находящийся в глубине сети;
- менеджер сетевых элементов AWS.
Внутри каждый интерфейсный модуль SDH/SONET соединен, с помощью обеспечивающей двустороннюю передачу среды, с рядом ассоциированных модулей ADSL-LT (Line Termination - линейное окончание), при этом шина IQ Quality of Service Interface - интерфейс качества обслуживания, обеспечивает управляющий интерфейс для данных, передаваемых по прямому и обратному каналам. Для стыковки с выносным мультиплексным оборудованием (типа R-ASAM) можно также предусмотреть линейные окончания PDH-LT (DS3/E3) или SDH-LT (STM1 или OC3c).
Рисунок 5 - Глобальная ADSL-архитектура
Глобальная ADSL-архитектура: узкополосная АТС (например, PSTN-сети), ADSL - абонент, шина IQ, здание АТС, витая пара, абонентские помещения, ATM-сеть.
ASAM. С помощью ряда интерфейсов (SDH STM1 или SONET OC3с) мультиплексор ASAM размещен на стороне CO и соединен со станцией, в которой реализована технология BB-ISDN ATM. Модемные интерфейсы мультиплексора ASAM также оснащены так называемыми PS, которые представляют собой устройства уплотнения и разуплотнения частотных доменов для сигналов ADSL и POTS.
Блок ACU обеспечивает визуальное отображение аварийных ситуаций и стыковку с соответствующей системой, находящейся в здании АТС. На каждый статив приходится один блок ACU (до 4 блоков ACU в полностью укомплектованном мультиплексоре ASAM).
Расширитель. Он позволяет подключать к расширительной линии дополнительные подстативы и, в целях защиты оборудования, дублируется.
Транспортная система. Ключевой частью подсистемы ADSL-доступа является "ADSL-модем". Для осуществления соединений мультимедийного характера на базе ATM и по протоколу Ethernet используется витая пара между абонентским оборудованием (ANT) и оборудованием, находящимся в CO (ASAM).
Стержнем ADSL-системы являются два ADSL-модема, один из которых находится на стороне CO, а другой в абонентском помещении. В сочетании эти подсистемы обеспечивают расширение полосы пропускания витой пары, которая является соединяющей из средой.
ANT. Аппаратура ANT размещается в абонентских помещениях. Она обеспечивает стыковку малой абонентской LAN, отдельного персонального компьютера и/или STB (для мультимедийных целей) с находящимися на другой стороне LAN и/или ATM-оборудованием. Все услуги по части стыковки оказываются с помощью ADSL-сигнала.
PC-NIC. Он представляет собой вставную плату стандарта PCI (интерфейс периферийного устройства), которая находится в абонентском помещении. По своим функциям он не отличается от ANT, однако позволяет избавиться от необходимости иметь дополнительную плату интерфейса Ethernet или ATMF.
R-ASAM. Выносной мультиплексор ASAM выполняет существенно те же функции, что и обычный, однако, удовлетворяет более жестким требованиям в части конструктивного оформления, питания и климатических условий эксплуатации. R- ASAM может быть либо автономным, либо каскадированным от ASAM, находящегося в CO. R-ASAM можно разместить либо в уличном корпусе, либо в CEV (Controlled Environment Vault - камера с контролируемыми климатическими параметрами).
Максимальная емкость автономного сетевого мультиплексора ASAM составляет 576 линий. В случае каскадирования от CO максимальная емкость (CO плюс удаленные абоненты) остается неизменной - те же 576 линий.
Менеджер сетевых элементов. Для управления подсистемой ADSL-доступа предусмотрен менеджер AWS, который работает по протоколу SNMP в находящемся внутри полосы пропускания ATM-канале.
В AWS имеется интерфейс TL1, предназначенный для системы OSS (Operation Support System - система эксплуатационной поддержки) более высокого уровня. Применительно к подсистеме ADSL-доступа AWS обеспечивает управление активными элементами, находящимися в ASAM, R-ASAM, блоках ANT или интерфейсных платах PC-NIC.
2.2 Мультиплексор ASAM - функциональное описание
Архитектура ASAM. В подсистеме ADSL-доступа ASAM располагается на стороне CO. По витой паре и через аппаратуру каждый абонент подключается к широкополосной (BB) сети и узкополосной (NB Narrow Band - узкополосный) телефонной станции.
В общем случае мультиплексор ASAM преобразует данные, поступающие от различных абонентов, в ATM-формат. Полученные в результате такой адаптации ATM-ячейки уплотняются в один информационный поток и направляются в транспортную систему подключенной сети BB-ATM. ATM-ячейки, поступившие из сети BB-ATM, разуплотняются в соответствии с идентификатором VPI/VCI (Virtual Path Identifier - идентификатор виртуальных путей, Virtual Channel Identifier - идентификатор виртуальных каналов) и на внешнем служебном интерфейсе транслируются в свой исходный формат.
Кроме того, ASAM выполняет также функции OAM, что обеспечивает его правильную работу. К основным функциям ASAM относятся:
- функции общего назначения;
- уплотнение/разуплотнение;
- управление (OAM);
- NT-функции;
- TA (терминальная адаптация) - функции;
- функции разветвления (PS);
- функции электропитания.
Сетевое окончание. Сетевое окончание SANT (Synchronous ATM Network Termination-синхронное сетевое ATM-окончание) версии D (SANT-D) подключает сетевую транспортную систему к системе A1000 ADSL и выполняет функции, связанные с физическим и ATM-уровнями. Сетевая цифровая транспортная система характеризуется скоростью 155,52 Мбит/с (SDH STM1 / SONET OC3c). В мультиплексоре ASAM SANT-D является сетевым окончанием для информационного потока SDH/SONET - 155,52 Мбит/с. Он производит адаптацию ATM-ячеек, переносимых по цифровой системе передачи к шине IQ и обратно. Кроме того, в сетевом окончании SANT-D предусмотрены функции, необходимые для эксплуатации и технического обслуживания ASAM. Наконец, сетевое окончание SANT-D обеспечивает расширение шины IQ, для чего также предусмотрен соответствующий интерфейс. При наличии 1 сетевого окончания SANT-D и 11 расширителей ADSE версии А (ADSE-A) можно управлять двенадцатью субстативами (12 субстативов x 12 LT x 4 линии = 576 линий). Физически сетевое окончание SANT-D выполнено на вставной (двойной европейской) печатной плате, которая вставляется в статив мультиплексора ASAM со стороны размещения шины IQ.
Шина IQ. Она обеспечивает управление и обмен данными между NT и линейными интерфейсами, то есть является устройством, которое уплотняет и разуплотняет битовые потоки между ними. IQ является шинной структурой между SANT-D или ADSE-A и ADLT (ADSL Line Termination - линейное ADSL-окончание).
В шине IQ имеется путь для направления данных по прямому и обратному каналам, синхронизатор и управляющие сигналы. Скорость передачи интерфейса составляет 155 Мбит/с. Транспортирование в прямом и обратном направлениях осуществляется с помощью ATM-ячеек, которые посылаются фреймами, состоящими из 54 байтов. Посылка в прямом и обратном направлениях осуществляется по раздельным шинам, которые переносят 8 - битовых данных.
Физически IQ выполнена в виде шины на BPA (Backpanel Printed board Assembly - печатная плата задней панели) и стационарно закреплена в ADSL - стативах в виде системной платы. Платы SANT-D или ADSE-A, ADLT и AACU вставляются в соответствующие разъемы BPA. Соответственно по шине IQ осуществляются их взаимные соединения.
Терминальная адаптация. ADLT производит преобразование ATM-ячеек, полученных от SANT-D и предназначенных для абонента, в DMT-модулированные сигналы и наоборот и, следовательно, работает с физическим и ATM-уровнями. Физически ADLT-функция реализуется на одной печатной плате, в которой имеется 4 ADLT-порта (4 абонентских соединения). Эта плата вставляется в системную (реализующую шину IQ) плату ADSL - статива. Также на ADLT-плате реализованы управляющие (OAM) функции для четырех ADLT-портов.
Разветвитель PS. На абонентской линии (витой паре, идущей от местной АТС) аналоговые POTS- и ADSL-сигналы накладываются друг на друга, при этом оба сигнала являются частотно мультиплексированными. В ASAM, ADSL- и POTS-сигналы разделяются при прохождении в обратном направлении и объединяются при прохождении в прямом с помощью специальных фильтров:
- LPF который является прозрачным для POTS - сигналов и ослабляет ADSL-сигналы;
- HPF который на пути ADSL - сигналов предотвращает все возмущения от типовых POTS - сигналов (например, импульсов набора номера, постоянного напряжения и вызывной частоты).
Эти специальные фильтры могут быть реализованы с применением как пассивных, так и активных фильтрующих элементов.
IQ-интерфейс. Он соединяет SANT-D и ADSE-A с задней панелью ASAM и состоит из двух шин:
- шины IQD, предназначенной для высокоскоростной передачи (ATM-ячеек) в прямом направлении;
- шины IQU, предназначенной для высокоскоростной передачи (ATM-ячеек) в обратном направлении;
- шины IQA (access), предназначенной для контроля доступа к шине IQU.
Шины IQD и IQU обеспечивают транспортировку ATM-ячеек, каждая из которых имеет 5-октетный заголовок и 48-октетное информационное поле. Кроме того, перед каждой ячейкой есть один "холостой" октет. SANT-D производит инкапсуляцию ATM-ячеек в 54-октетные слоты и обеспечивает доступ к шине IQ. Адаптация скорости 155,52 Мбит/с к скорости 152,64 Мбит/с (= 53/54 от 155,52 Мбит/с) осуществляется путем стирания незаполненных ячеек. Это может быть сделано потому, что максимальная скорость действительных ATM-ячеек, содержащихся в VC-4, ограничена величиной 149,76 Мбит/с (= 26/27 от 155,52 Мбит/с).
Шина IQA предназначена для контроля доступа к интерфейсу с обратным каналом. Она позволяет избежать "разборок" на шине обратного канала и одновременно дает возможность ввести приоритеты различных уровней для доступа различных LT-объектов.
Системная плата BPA. BPA (узел системной платы) представляет собой печатную плату, стационарно закрепленную с обратной стороны статива ADSL-оборудования.
Основными функциями системной платы являются:
- формирование шины IQ, которая обеспечивает соединение SANT-D или ADSE-A с ADLT-портами и ACU;
- обеспечение внешних интерфейсных соединений для ACU;
- подключение всех активных блоков к станционной шине питания на -48 В.
Внешние интерфейсы. Внутри мультиплексора ASAM существует один вид транспортирования: плата SANT-D подключена к оптическому волокну и передает данные на главный и внешние субстативы. В тех случаях, когда необходимо повысить качество обслуживания, эксплуатационную готовность и надежность, плата SANT-D и входящее оптическое волокно дублируются. В каждый момент времени активной является только одна плата SANT-D.
В расширительных субстативах в качестве буфера для различных сигналов используется одна плата расширителя. В каждом субстативе расширители дублированы.
Таким образом, под контролем платы SANT-D находится несколько ASAM-шин:
- в главном субстативе;
- шина IQ;
- специальные линии;
- последовательный ACU-интерфейс в расширительных субстативах (через расширительный интерфейс).
Оптический транспортный интерфейс (STM1/STS3c). SANT-D является терминалом одного SDH-канала STM1/OC3c на 155 Мбит/с. Передача на этих соединениях осуществляется с помощью мономодового (называемого также одномодовым) оптического волокна, которое оканчивается в OTM (Optical Transceiver Module - модуль оптического приемопередатчика).
Абонентский линейный интерфейс. Интерфейс представляет собой соединение от ADLT до блока ANT, находящегося в абонентских помещениях. Абонентский линейный интерфейс обеспечивает прохождение сигналов обычной телефонии, которые частотно мультиплексированы с идущими в прямом и обратном направлениях сигналами ADSL/ATM. Этот интерфейс соединяет ADLT с ANT через сеть доступа на витых парах. Для соединения используется обычный телефонный провод.
Последовательный расширительный интерфейс. Сигналы шины IQ с первой главной полки, в которой находится плата SANT-D, могут быть распространены на 11 подчиненных полок, в каждой из которых имеется последовательный расширитель ADSE-A. Последовательный расширительный интерфейс является соединительным звеном между платой SANT-D и платами ADSE-A. Плата SANT-D имеет один выходной разъем для последовательного расширения, а плата ADSE-A - два. Все разъемы расположены в передней части статива.
Служебный интерфейс. Он предусмотрен на плате SANT-D. Доступ к этому интерфейсу осуществляется через разъем, находящийся в передней части ACU.
Внутренние интерфейсы
IQ-интерфейс. Стыковка платы ADLT с платой SANT-D или ADSE-A осуществляется через шину IQ. Если плата SANT-D имеет только один интерфейс SDH STM1, тогда для подсоединения плат ADLT, количество которых может доходить до 144, и 11 плат ADSE-A существует только одна шина IQ. Всем платам ADSE-A приходится совместно использовать имеющуюся полосу пропускания (155 Мбит/с) шины IQ. На плате SANT-D имеется два положения шины IQ, так как на этой плате в любое время можно обеспечить переход на 2 STM1-соединения.
MBC-интерфейс. В плате SANT-D предусмотрена возможность выборочного включения/выключения питания каждого из терминалов ADLT, соединенного с шиной IQ.
Физическое местоположение BPA и PBA. Каждой системной плате BPA и каждому размещенному на ней узлу PBA (Printed Board Assembly - узел печатной платы) внутри CO присвоен уникальный номер физического местоположения. Этот номер имеет 32 бита и представлен в виде ID0…ID31. Эти биты имеют следующее назначение. 5-битовый номер определяет положение каждого узла PBA на системной плате. Этот номер представлен в виде ID0…ID4 и характеризует номер слота (1…13) PBA на системной плате. Этот номер жестко "вмонтирован" в системную плату и может быть считан платой ADLT / SANT-D / ADSE-A через штыри на ее разъеме системной платы.
Питание мультиплексора. Питание мультиплексора ASAM осуществляется от станционного источника на -48 или -60 В.
2.3 Транспортная система
Услуги и скорости передачи. Транспортная ADSL - система обеспечивает двустороннюю связь по одинарной витой паре без каких-либо повторителей. В ADSL-системе объединены DMT-технология и ATM-режим передачи. Следствием такого объединения, в частности, являются:
- возможность обеспечения эффективного сочетания различных услуг, характеризующихся различными полосами пропускания и характеристиками трафика, и
доведения до максимума физической скорости, которую можно получить от DMT-модема;
- автоматическое определение максимальной физической скорости в процессе инициализации модема (с учетом заданного предельного уровня шумов и в пределах ограничений, накладываемых на спектральную плотность мощности передачи). В этом случае система управления обслуживанием задает, в зависимости от профиля обслуживания заказчика, правильную величину линейной скорости, тем самым, выходя на оптимальный уровень шумов и/или сводя до минимума мощность передачи. Все это дает возможность дифференцировать качество обслуживания, например, предлагая максимальные скорости по более высокой цене или обеспечивая гарантированную скорость;
- скорость передачи можно выбирать по линейному закону с доведением до физически максимально возможных, а также задавать их для каждого отдельного пользователя;
- комбинированное использование технологий DMT и ATM позволяет системе инициализироваться и работать на очень низких скоростях в тех, например, случаях, когда линии работают неустойчиво или когда возникает много ошибок в кабельных линейных сооружениях. По причине присущей ей надежности система будет инициализироваться даже в крайне неблагоприятных условиях, информируя об этом систему управления сетью. В этом случае оператор может скачать ADSL-параметры и принять необходимые меры;
- развязка скоростей ATM-ячеек (путем вставления или извлечения незаполненных или неопределенных ячеек) дает возможность осуществлять передачу на любой скорости вплоть до максимально достижимой на ADSL соединении.
Цифровая передающая способность ADSL - системы является асимметричной в том смысле, что скорости в прямом и обратном направлениях отличаются друг от друга:
- скорость в прямом направлении может варьироваться от 0,25 до 8,0 Мбит/с, при этом параметр ступенчатости равен 32 Кбит/с;
- скорость в обратном направлении может варьироваться от 35 Кбит/с до 1 Мбит/с, при этом она зависит от поддерживаемых двусторонних услуг и характеристик шлейфа.
2.4 Функциональное описание ANT
Общие сведения. ANT-оборудование размещается в абонентских помещениях и обеспечивает стыковку абонентского TE с входящей абонентской линией (витой парой,
по которой передается ADSL-сигнал).
В прямом направлении блок ANT является окончанием для сигнала (DMT- модулированных ATM-ячеек) в ADSL-канале, поступившего от CO на входящую витую пару. Он демодулирует сигнал и преобразует содержащиеся в нем ATM - ячейки в цифровой битовый поток, который может быть направлен на абонентское TE.
В обратном направлении блок ANT вставляет полученные от абонентского TE ATM-ячейки в их поток и формирует сигнал (DMT-модулированные ATM-ячейки) ADSL-канала, который по входящей абонентской витой паре направляется в CO.
Существует 3 вида DSL модемов семейства Speed Touch:
- Speed Touch PC-NIC - встроенный модем (плата), ориентирован в основном на
частных пользователей. Соединение типа Point to Point (PPP);
- Speed Touch Home - внешний модем, ориентирован как на частных пользователей, так и на пользователей LAN малой емкости (small office, home office).В нем имеется встроенный порт Ethernet, а также выполняется функция “прозрачного моста” (Bridge);
- Speed Touch Pro - внешний модем, ориентирован на пользователей больших LAN. Функции похожи на ST Home, а также он может выполнять функции маршрутизатора.
3. Расчет оборудования ADSL
3.1 Разработка схемы проектируемой сети доступа
При расчете сети доступа на базе оборудования ADSL воспользуемся контрактным предложением поступившем от компании N на организацию высокоскоростного доступа в Интернет для 164 абонентов.
Вопрос выбора оборудования, особенно на начальном этапе, представляет собой одну из самых мучительных проблем для тех, чьи решения определяют судьбу проекта в долгосрочной перспективе.
Для реализации данного проекта было принято решение использовать аппаратные и программные средства компании Alcatel, занимающей ведущие позиции на рынке устройств ADSL. Для эффективного решения задач, которые ставят перед нами заказчики, и последующего сопровождения проектов компания Alcatel разработала концепцию All-in-One, реализуемую сегодня на российском рынке. Ее суть заключается в том, что заказчику предоставляется комплексный пакет услуг, начиная от консультаций по разработке бизнес-плана и заканчивая сопровождением оборудования и управлением системой в процессе эксплуатации. Такой подход компании основывается на глубоком понимании бизнеса заказчиков.
В рамках All-in-One заказчик взаимодействует с одной интегрированной глобальной компанией. Служба поддержки предлагает сервис одинакового уровня по всему миру, причем в каждой стране для доступа к ней существует единый телефонный номер. Полный пакет услуг All-in-One включает планирование и разработку, развитие, эксплуатацию и поддержку систем. Для каждого из этих направлений в Alcatel созданы соответствующие службы. Служба планирования и разработки проводит экспертную оценку действующей коммуникационной системы и определяет тип разрабатываемого проекта, при внедрении которого будет максимально оптимизирована эффективность и прибыльность коммуникационных систем и сетей заказчика. Служба развития охватывает все стадии внедрения, необходимые для установки и запуска коммуникационных систем и сетей в соответствии с ожиданиями заказчика. Она также предусматривает обучение его персонала и квалифицированную помощь в сопровождении высокотехнологичной системы непосредственно на месте ее установки. Служба эксплуатации работает в режиме немедленного реагирования и помогает персоналу заказчика решать текущие технические задачи в процессе обслуживания систем и сетей. Служба поддержки предлагает экспертную помощь в случае возникновения проблем технического характера. На основе оперативной диагностики эксперты принимают решение о замене, например, отказавшего компонента или всей коммуникационной системы, если инфраструктура пострадала от стихийного бедствия - пожара, наводнения и т. п.
Существенное значение при построении ADSL-сети имеет правильное сочетание аппаратных и программных средств. Alcatel наряду с полнофункциональным комплектом оборудования предлагает платформу управления ресурсами. Эта платформа включает в себя набор инструментальных средств, позволяющих решать технологические задачи управления сетью, и средства управления сервисом, который, собственно говоря, и определяет все многообразие возможностей, предоставляемых оператору для решения задач его бизнеса.
Система ADSL состоит из двух частей, первая из которых (на стороне CO) называется ASAM, (ATM Subscriber Access Multiplexer - ATM -мультиплексор абонентского доступа), а вторая (на стороне абонента) - CPE (Customer Premises Equipment - оборудование в помещении заказчика). CPE, в свою очередь, включает в себя PS (POTS Splitter - разветвитель) и ANT (ADSL Network Termination (unit) - (блок) сетевого ADSL-окончания).
В качестве узлового оборудования оператора связи на проектируемой сети доступа используются 6 ADSL мультиплексоров А7300 ASAM, которые устанавливаются в кроссах АТС (СО). Конфигурация мультиплексоров ASAM. 1 и 3 ASAM:
- стойка ETSI UT-9, которая представляет из себя корпус мультиплексора;
- плата SANT-D, которая обеспечивает оптический доступ к цифровой SDH-системе передачи на скорости 155,52 Мбит/с и осуществляет адаптацию к этой системе ATM-ячеек, переносимых по шине IQ в обоих направлениях. Кроме того, в этой плате предусмотрены функции, необходимые для эксплуатации и технического обслуживания мультиплексора ASAM;
- плата ACU обеспечивает визуальное отображение аварийных ситуаций и стыковку с соответствующей системой, находящейся в здании АТС;
- платы ADLT по 7 шт., к каждой из которых подключается по 4 ADSL модема, т.е. в общем случае 28 шт., 14 из которых - модемы семейства ST PC NIC; 13 - модемы семейства ST Home; 1 - модем семейства ST PRO;
- сплиттеры по 7 шт., где осуществляется разделение ADSL и POTS
- сплиттеры внешние, находятся в абонентском помещении и соединен с витой парой, идущей от провайдера ADSL - услуг.
2,4,5 ASAM мультиплексоры по составу аппаратной части идентичны 1-му и 3-му мультиплексорам. 6 ASAM мультиплексор отличается наличием 6-ти плат ADLT и 6-ти плат сплиттеров, а также к нему подключаются по 12 ADSL модемов семейства ST PC NIC и семейства ST Home. Ко 2-му и 4-му ASAM мультиплексору подключается 13 из которых - модемы семейства ST PC NIC; 14 - модемы семейства ST Home; 1 - модем семейства ST PRO. К 5-му мультиплексору подключаются по 14 ADSL модемов семейства ST PC NIC и семейства ST Home.
Компания “Alcatel” предложила заказчику использовать в качестве клиентского оборудования ADSL модемы 3-х видов, предназначенных для подключении индивидуальных пользователей, локальных сетей, а также для абонентов SOHO (Small Office / Home Office, т.е. представителей малого бизнеса и домашних пользователей).
Индивидуальным пользователям устанавливаются внутренние модемы семейства Speed Touch PC (PC NIC).
Для абонентов SOHO доступ в сеть Интернет организуется с использованием ADSL модемов семейства Speed Touch Home.
Локальные сети подключаются с помощью ADSL модемов семейства Speed Touch Pro.
Управление элементами сети доступа осуществляется через удаленный объект централизованного управления, которое называется AWS (ADSL Work Station), и в котором используется протокол SNMP.
ASAM оборудование подключается к существующей транспортной сети SDH через уже установленный АТМ - коммутатор заказчика по каналам STM-1. Мультиплексор доступа принимает потоки ячеек от отдельных абонентских устройств и мультиплексирует их для дальнейшей транспортировки в "восходящем" направлении. Затем АТМ-коммутаторы направляют каждый поток к месту его назначения. Восстановление пакетов в том виде, в каком они были сгенерированы станцией-отправителем, осуществляет магистральный маршрутизатор или сервер удаленного доступа, установленный на входе в сеть Internet-провайдера или в корпоративную сеть. Указанные устройства терминируют тот инкапсуляционный уровень в используемом стеке протоколов, который был активирован пользовательским оборудованием, а затем направляет восстановленные пакеты адресатам. Кроме того, в их обязанности нередко входят идентификация пользователей, присвоение IP-адресов и изменение степени использования сетевых ресурсов.
Выход в глобальную сеть Интернет осуществляется через сервер доступа Х.1000 (A7410), который подключается к АТМ - коммутатору через поток STM-1.
Для реализации проекта требуется установить 6 ASAM мультиплексоров, к которым подключаются 164 модема:
- 80 модемов PC NIC;
- 80 модемов HOME;
- 4 модема PRO, а также 160 сплитеров (сплиттеры при подключении локальных сетей не используются).
Таким образом, общая сводка оборудования, которое будет установлено на сети доступа, представлена в таблице 2.
Таблица 2
Установленное оборудование
Описание |
Количество |
|
базовая конфигурация оборудования оператора |
||
Стойка ETSI UT-9 2200mm 48VDC |
6 |
|
платы |
||
SANT-D, STM-1 |
6 |
|
Alarm Control Unit (AACU) |
6 |
|
ADLT |
41 |
|
Passive POTS splitter 600 ohm |
41 |
|
базовая конфигурация оборудования клиента |
||
Модем Speed Touch PC (PC NIC) |
80 |
|
Модем Speed Touch Home |
80 |
|
Модем Speed Touch Pro |
4 |
|
Сплиттеры (на стороне абонента) |
||
Passive POTS splitter 600 ohm |
160 |
|
базовая конфигурация кабели |
||
Кабель MDF-ASAM 24 pair 25 meter |
6 |
|
Оптический кабель |
6 |
|
Система управления сетью ADSL |
||
(AWS) Сервер Oracle V7.3.2.2.0 RTU (8 conc. Users) |
1 |
|
ПО NM Expert 1390 Management SW |
1 |
|
Лицензия AWS License fee per user (including MIB fee) |
164 |
|
Системные блоки и платы |
||
X1000 shelf (includes fan, clock and alarm modules) |
1 |
|
Power Supply 500 Watts DC |
2 |
|
System Control Module, Model 120 |
1 |
|
3 WAN + 1 Ethernet |
2 |
|
ATM Line Interface with single OC-3 Single mode IH |
1 |
|
DC Fuse Panel (Hendry) |
1 |
|
Switch Software, Release 2.2 |
1 |
3.2 Расчет пропускной способности для проектируемой сети доступа
В зависимости от класса обслуживания, подключаемым абонентам может предоставляться либо гарантированная полоса пропускания (CBR), либо негарантированная (UBR).
Классы сервиса содержат ряд параметров, которые определяют гарантии качества сервиса. Предусмотрено несколько классов сервиса - CBR, VBR, UBR и ABR (появился совсем недавно). Гарантии качества сервиса могут определять минимальный уровень доступной пропускной способности и предельные значения задержки ячейки и вероятности потери ячейки приведены в таблице 2.1.
Таблица 3.1
Сравнение двух классов сервиса
Класс сервиса |
Гарантии пропускной способности |
Гарантии изменениязадержки |
Обратная связь при переполнении |
|
CBR |
+ |
+ |
- |
|
UBR |
- |
- |
- |
Сервис CBR (constant bit rate, сервис с постоянной битовой скоростью) представляет собой наиболее простой класс сервиса. Когда сетевое приложение устанавливает соединение CBR, оно заказывает пиковую скорость трафика ячеек (peak cell rate, PCR), которая является максимальной скоростью, которое может поддерживать соединение без риска потерять ячейку. Затем данные передаются по этому соединению с запрошенной скоростью - не более и, в большинстве случаев, не менее.
Любой трафик, передаваемый станцией с большей скоростью, может сетью просто отбрасываться, а передача трафика сетью со скоростью, ниже заказанной, не будет удовлетворять приложению. CBR-соединения должны гарантировать пропускную способность с минимальной вероятностью потери ячейки и низкими изменениями задержки передачи ячейки. Когда приложение заказывает CBR сервис, то оно требует соблюдения предела изменения задержки передачи ячейки. Сервис CBR предназначен специально для передачи голоса и видео в реальном масштабе времени. Для соединений CBR нет определенных ограничений на скорость передачи данных, и каждое виртуальное соединение может запросить различные постоянные скорости передачи данных. Сеть должна резервировать полную полосу пропускания, запрашиваемую конкретным соединением.
В отличие от CBR, сервис UBR (unspecified bit rate, неопределенная битовая скорость) не определяет ни битовую скорость, ни параметры трафика, ни качество сервиса. Сервис UBR предлагает только доставку "по возможности", без гарантий по утере ячеек, задержке ячеек или границам изменения задержки. Разработанный специально для возможности превышения полосы пропускания, сервис UBR представляет собой адекватное решение для тех непредсказуемых "взрывных" приложений, которые не готовы согласиться с фиксацией параметров трафика. Вместе с тем, UBR позволяет обеспечить максимальную пропускную способность в том, случае, когда происходит сложение нескольких потоков данных, имеющих разнесенные во времени пики нагрузки.
Главными недостатками подхода UBR являются отсутствие управления потоком данных и неспособность принимать во внимание другие типы трафика. Когда сеть становится перегруженной, UBR-соединения продолжают передавать данные. Коммутаторы сети могут буферизовать некоторые ячейки поступающего трафика, но в некоторый момент буфера переполняются и ячейки теряются. А так как UBR-соединения не заключали никакого соглашения с сетью об управлении трафиком, то их ячейки отбрасываются в первую очередь. Потери ячеек UBR могут быть так велики, что "выход годных" ячеек может упасть ниже 50%, что совсем неприемлемо. Для устранения этого недостатка в мультиплексорах ASAM компании Алкатель допускается использование режима UBR+, который предоставляет возможность абоненту устанавливать минимально гарантированную скорость передачи - MCR. Обычно трафиковые характеристики задаются в виде типовых профилей абонентов. Допустим, что для самых крупных пользователей, имеющих собственную ЛВС, будет использоваться профиль 1, который будет обеспечивать класс сервиса CBR и скорость передачи в сеть не ниже 1 Мбит/с, а прием информации от сети - 8 Мбит/с.
Для пользователей, имеющих небольшие ЛВС, будет устанавливаться профиль 2, который будет обеспечивать класс сервиса UBR+ и гарантированную скорость передачи в сеть не ниже 256 Кбит/с, а гарантированную скорость приема из сети не ниже 512 Кбит/с, соответственно, максимальные скорости передачи 512 Кбит/с и приема 1024 Кбит/с. Индивидуальным пользователям будет устанавливаться профиль 3, который будет обеспечивать класс сервиса UBR+ и гарантированную скорость передачи в сеть не ниже 128 Кбит/с, а гарантированную скорость приема из сети не ниже 256 Кбит/с, соответственно, максимальные скорости передачи 256 Кбит/с и приема 512 Кбит/с. Тип пользователя определяет тип модема ADSL, который будет устанавливаться. В соответствии с запросом заказчика, на сети будет устанавливаться 80 модемов PC-NIC (индивидуальные пользователи), 80 модемов Home (малые ЛВС) и 4 модема PRO (крупные ЛВС). Следовательно, для абонентов с модемами PRO будет устанавливаться профиль 1, для абонентов с модемами Home будет устанавливаться профиль 2, для абонентов с модемами PC-NIC будет устанавливаться профиль 3.
На первом этапе внедрения рассматриваемой сети доступа будет использоваться режим постоянных (некоммутируемых) виртуальных соединений, т.е. за каждым пользователем будет закрепляться фиксированный VP/VC. Определение соответствия между суммарными абонентскими скоростями и имеющейся пропускной способностью производится исходя из следующих условий: 1. Максимальная суммарная скорость всех абонентов класса CBR вместе с суммой минимальных гарантированных скоростей всех абонентов класса UBR + не должна превышать эффективной пропускной способности используемой среды передачи (в нашем случае STM-1), где STM-1 - суммарная полезная нагрузка действительной АТМ ячейки в STM1 С-4 составляет 155,52 * 26 : 27 = 149,76 Мбит/с.) 2. Сумма максимальных (негарантированных) скоростей передачи всех абонентов класса сервиса UBR+ не должна превышать имеющейся полосы пропускания системы передачи, умноженной на коэффициент перегрузки (MCR - минимальная пропускная способность, гарантированная каждому PVC или SVC. Эта скорость (в битах в секунду) выбирается абонентом в соответствии с объемом данных, которые он собирается передавать по сети, и гарантируется она оператором. Если пакетные посылки не превосходят скорость порта подключения абонента и пропускная способность сети в данный момент свободна, то абонент может превысить согласованное значение MCR. Скорость, с которой абонент посылает данные при наличии достаточной пропускной способности, называется oversubscription rate. Значение коэффициента oversubscription может от 2 до 6.
UBR max<= Kubr * B, (3)
где Kubr - коэффициент перегрузки имеющейся пропускной способности (Kubr = 400%);
B - пропускная способность.
Произведем расчет пропускной способности для 1-го мультиплексора ASAM. В соответствии со схемой в него включены 14 модемов PC-NIC (профиль 3), 13 - модемов ST Home (профиль 2) и 1 модем ST Pro (профиль 1). Таким образом, суммарная гарантированная скорость на NT - интерфейсе этого мультиплексора в нисходящем потоке составляет:
- для одного модема ST Pro - 8 Мбит/с;
- для 13 модемов ST Home - 13 х 512=6,656 Мбит/с;
- для 14 модемов ST PC-NIC - 14x 256 = 3,584 Мбит/с;
- общая гарантированная скорость 18,240 Мбит/с.
Таким образом, суммарная гарантированная скорость значительно меньше имеющейся пропускной способности среды передачи: 18,240< 149,76х 0,95 = 142,272 Мбит/с.
Произведем расчет суммы максимальных негарантированных скоростей для абонентов с классом обслуживания UBR+:
- для 13 модемов ST Home - 13x1,024 = 13,312 Мбит/с;
- для 14 модемов ST PC-NIC - 14x512 = 7,168 Мбит/с;
- суммарная максимальная скорость - 20,480 Мбит/с.
Проверим выполнение условия 2 для нашего случая, для этого определим пропускную способность, оставшуюся на негарантированную передачу:
142,272 - 18,240 = 124,032 Мбит/с.
Как видно из приведенных вычислений оставшаяся полоса пропускания больше требуемой суммарной максимальной скорости для негарантированного трафика UBR+.
Таким образом, для рассмотренного мультиплексора полностью выполняются условия 1 и 2. Поскольку число и типы абонентов, подключенных к остальным мультиплексорам не превышают число абонентов в 1-ом мультиплексоре, то пропускной способности подключенных к ним трактов STM-1 вполне достаточно, для обеспечения всех абонентов необходимым качеством передачи данных.
Поскольку все абоненты, указанные на схеме, требуют выхода в сеть Интернет и на первом этапе используется режим полупостоянных соединений, тем самым узким местом в сети доступа является поток STM 1, связывающий АТМ - коммутатор с сервером доступа в Интернет.
Проведем аналогичные расчеты для этого интерфейса с учетом условий 1 и 2. Таким образом, суммарная гарантированная скорость на этом интерфейсе в нисходящем потоке составляет:
- для 4-х модемов ST Pro - 8х4 =32 Мбит/с;
- для 80 модемов ST Home - 80 х 512=40,960 Мбит/с;
- для 80 модемов ST PC-NIC - 80x 256 = 20,480 Мбит/с;
- общая гарантированная скорость - 93,440 Мбит/с.
Таким образом, суммарная гарантированная скорость меньше имеющейся пропускной способности среды передачи: 93,440 < 149,76 х 0,95 = 142,272 Мбит/с.
Произведем расчет суммы максимальных негарантированных скоростей для абонентов с классом обслуживания UBR+:
- для 80 модемов ST Home - 80x1,024 = 81,92 Мбит/с;
- для 80 модемов ST PC-NIC - 80x512 = 40,960 Мбит/с;
- суммарная максимальная скорость - 122,880 Мбит/с.
Проверим выполнение условия 2 для нашего случая, для этого определим пропускную способность, оставшуюся на негарантированную передачу:
142,272 -93,440 = 48,832 Мбит/с.
С учетом коэффициента допустимой перегрузки Kubr = 400% получим:
48,832 * 4 = 195,328 Мбит/с > 122,880 Мбит/с.
Таким образом, сумма максимальных скоростей для всех абонентов класса UBR+ не превышает расчетное значение имеющейся пропускной способности с учетом расчетного значения коэффициента перегрузки, т.е. условие 2 также выполняется для рассматриваемого интерфейса.
Проведенные расчеты показывают, что выбранный вариант построения сети доступа полностью удовлетворяет требованиям по пропусканию нагрузки проектируемой сети.
4. Обоснование целесообразности проектного решения
В последние годы рост объемов передачи информации привел к тому, что наблюдается дефицит пропускной способности каналов доступа к существующим сетям. Если на корпоративных уровнях эта проблема частично решается (арендой высокоскоростных каналов передачи), то в квартирном секторе и в секторе малого бизнеса эти проблемы существуют.
На сегодняшний день основным способом взаимодействия оконечных пользователей с частными сетями и сетями общего пользования является доступ с использованием телефонной линии и модемов, устройств, обеспечивающих передачу цифровой информации по абонентским аналоговым телефонным линиям. Скорость такой связи невелика, максимальная скорость может достигать 56 Кбит/с. Этого пока хватает для доступа в Интернет, однако насыщение страниц графикой и видео, большие объемы электронной почты и документов в ближайшее время снова поставит вопрос о путях дальнейшего увеличения пропускной способности.
Наиболее перспективной в настоящее время является технология ADSL (Asymmetric Digital Subscriber Line). Это новая модемная технология, превращающая стандартные абонентские телефонные аналоговые линии в линии высокоскоростного доступа Технология ADSL позволяет передавать информацию к абоненту со скоростью до 8 Мбит/с. В обратном направлении используется скорость до 1 Мбит/с. Это связанно с тем, что весь современный спектр сетевых услуг предполагает весьма незначительную скорость передачи от абонента. Например, для получения видеофильмов в формате MPEG-1 необходима полоса пропускания 1,5 Мбит/с. Для служебной информации передаваемой от абонента, вполне достаточно 64 -128 Кбит/с.
Бурный рост числа пользователей Internet, наблюдаемый в последнее время, как во всем мире, так и в России, дает повод весьма оптимистично взглянуть на перспективы российского рынка ADSL. Этот оптимизм разделяют провайдеры, начинающие развертывать сети ADSL-доступа.
Сегодня число российских пользователей Internet оценивается в 1,95 млн. человек (по данным Dataquest). Однако из-за отсутствия четкого определения понятия «пользователь Internet» эту и другие подобные оценки следует воспринимать с некоторой долей скепсиса.
Часто фигурирующую цифру 1,5 - 2 млн. нельзя рассматривать как абсолютную, так как она может породить искаженное представление. Например, по данным Института маркетинговых и социальных исследований GfK MR, изучающего российскую часть Internet на базе репрезентативных опросов населения России в возрасте старше 16 лет, в июле 2000 г. «...возможность доступа во Всемирную сеть имели около 6 млн. россиян (5,5%), однако из них только 24% (примерно 1,5 млн.) пользовались этим доступом более или менее регулярно (по крайней мере, один раз в месяц)» («Телеком-форум» от 29.10.00). Что такое один раз в месяц с точки зрения прибыли? Если продолжительность работы в сети в среднем составляет 4-5 часов, то при расценках на коммутируемый доступ 1 долл. в час получается 50--60 долл. в год. Безусловно, реальный интерес для провайдера (по этому показателю) представляют те клиенты, которые обеспечивают доход на порядок выше.
Число «эффективных» пользователей в России в 2000 г. (считаем, что эффективный абонент проводит в Сети не менее 20 часов в месяц) оценивается на уровне 350--450 тыс. Такая консервативная оценка позволяет спрогнозировать, что быстрые темпы роста абонентской базы в среднесрочной перспективе, несмотря на невысокий уровень компьютеризации и низкие доходы населения, сохранятся. На московском рынке коммутируемого доступа в 2000 г. наблюдался рост среднемесячной загрузки модемного пула на уровне 5--6 % в месяц, что подтверждает это предположение (оценка Alcatel на основе данных компании «Русский экспресс»). Это позволяет ожидать роста количества эффективных пользователей Internet, в том числе абонентов широкополосного доступа.
Таким образом, можно утверждать, что в России, как и во всем мире (хотя и с поправкой на российскую специфику), в области предоставления Internet-услуг происходит сдвиг в сторону широкополосных систем.
Одной из главных проблем при организации высокоскоростного доступа в Internet на базе технологии асимметричной цифровой абонентской линии (ADSL) является вопрос выбора оборудования, который, особенно на начальном этапе, представляет собой одну из самых мучительных проблем для тех, чьи решения определяют судьбу проекта в долгосрочной перспективе.
Для реализации проекта построения сети ADSL для доступа в глобальную сеть Internet было принято решение проанализировать возможность использования аппаратных и программных средств фирмы Alcatel или оборудования компании Cisco Systems. Анализ проводится на основе метода анализа иерархий (МАИ).
Метод анализа иерархий - это математический аппарат, который разработан для решения задач многокритериальной оптимизации, который в отличие от традиционных методов позволяет принять компромиссное решение.
МАИ является систематической процедурой для иерархического представления элементов, определяющих суть любой проблемы. Метод состоит в декомпозиции проблемы на все более простые составляющие части и дальнейшей обработке последовательности суждений лица, принимающего решение, по парным сравнениям. В результате может быть выражена относительная степень (интенсивность) взаимодействия элементов в иерархии. Эти суждения затем выражаются численно. МАИ включает процедуры синтеза множественных суждений, получения приоритетности критериев и нахождения альтернативных решений. Полученные таким образом значения являются оценками в шкале отношений и соответствуют так называемым жестким оценкам.
Сравнительный анализ оборудования ADSL. Для выбора на рынке средств связи оборудования ADSL, наиболее подходящего для реализации данного проекта, произведем сравнение двух возможных вариантов аппаратных и программных средств, которые могут быть использованы для проектирования данной широкополосной сети доступа: ADSL оборудование фирмы Alcatel и компании Cisco Systems.
Возможные варианты:
1 вариант - ADSL мультиплексоры ASAM 1000 и абонентское оборудование фирмы Alcatel;
2 вариант - мультиплексоры серии Cisco 61хх / 62xx и ADSL модемы компании Cisco Systems.
Сравнение этих систем будем осуществлять по следующим показателям:
1 стоимость;
2 надежность;
3 легкость в эксплуатации;
4 обеспечение безопасности передаваемых данных;
5 гибкость управления оборудованием;
6 реализация функций бриджинга / маршрутизации;
7 мультипротокольность; поддержка различных сетевых интерфейсов;
8 цифровая передающая способность ADSL системы;
9 адаптация данных ASAM / DSLAM; управление передачей данных;
10 рекламная политика компаний.
Решение поставленной задачи (выбора системы) с помощью МАИ осуществляется в несколько этапов. Представление задачи в иерархической форме. Выбор оборудования ADSL:
1 уровень (общая цель);
2 уровень (критерий): стоимость, надежность, легкость в эксплуатации, обеспечение безопасности передаваемых данных, гибкость управления оборудованием, реализация функций бриджинга маршрутизации, рекламная политика компаний, адаптация данных в
ASAM и DSLAM, цифровое управление передачей данных;
3 уровень (альтернатива);
Установление приоритетов критериев.
Для установления приоритетов критериев проводится попарное сравнение критериев по отношению к общей цели, результаты попарного сравнения заносятся в матрицу. В каждую клетку матрицы ставится та или иная оценка (от 1 до 9) относительной важности. Сравнивается относительная важность левых элементов матрицы с элементами наверху. Поэтому если элемент слева важнее, чем элемент наверху, то в клетку заносится целое число; в противном случае - обратное число. Относительная важность любого элемента, сравниваемого с самим собой, равна 1. В таблице 3 приведена шкала оценок интенсивности относительной важности.
Таблица 3
Шкала оценок интенсивности относительной важности
Интенсивностьотносительной важности |
Определение |
|
1 |
Значит равную важность элементов |
|
3 |
Умеренное превосходство одного над другим |
|
5 |
Существенное или сильное превосходство |
|
7 |
Значительное превосходство |
|
9 |
Очень сильное превосходство |
|
2,4,6,8 |
Промежуточные решения между соседними суждениями |
|
Обратные величины приведенных чисел |
Если при сравнении одного вида деятельности с другим получено одно из вышеуказанных чисел, то при сравнении второго вида деятельности с первым получим обратную величину |
Расчет векторов приоритетов производится в следующей последовательности. Сначала перемножаются элементы в каждой строке матрицы, и извлекается корень n- ой степени, где n-число элементов в строке. Полученные значения называются компонентами нормализованного вектора приоритетов, количество компонент равняется количеству строк.
Затем полученный таким образом столбец чисел нормализуется делением каждого числа на сумму всех чисел, что в итоге и является вектором приоритетов.
Индекс согласованности (ИС) в матрице может быть приближенно получен следующим образом:
- суммируется каждый столбец суждений, затем сумма первого столбца умножается на величину первого компонента нормализованного вектора приоритетов, сумма второго столбца - на второй компонент и т. д.;
- определяется индекс согласованности, где n-число сравниваемых элементов. Индекс согласованности дает информацию о степени нарушения численной и порядковой согласованности;
- определяется отношение согласованности (ОС) путем деления ИС на число, соответствующее случайной согласованной матрицы того же порядка (для матрицы 10-го порядка случайная согласованность равна 1,49). Величина ОС должна быть порядка 10% или менее, чтобы быть приемлемой. В нашем случае отношение согласованности много меньше 10% и не выходит за рамки допустимых. Это означает, что матрица согласована, и суждений пересматривать не стоит.
Определение локальных приоритетов.
Матрицы локальных приоритетов, подобные матрице приоритетов критериев по отношению к главной цели, составляются для попарного сравнения альтернатив по отношению к каждому из критериев.
Матрицы оценок предпочтительности ADSL оборудования по разным критериям приведены в таблицах 3.1 … 3.10:
Таблица 3.1
Матрица попарных сравнений для уровня 3 по параметру “Стоимость”
Alcatel |
1 |
5 |
2,236 |
0,833 |
|
Cisco Systems |
1/5 |
1 |
0,447 |
0,167 |
|
ИС=0 |
Таблица 3.2
Матрица попарных сравнений для уровня 3 по параметру “Надежность”
Подобные документы
Сущность и история развития модемной технологии ADSL. Принцип действия и параметры линии связи ADSL. Понятие и основные преимущества технологии доступа по GEPON. Линейка продуктов GEPON у ZyXEL. Оптические сплиттеры оптической распределительной сети ODN.
реферат [2,3 M], добавлен 04.03.2012Проектирование пассивной оптической сети. Варианты подключения сети абонентского доступа по технологиям DSL, PON, FTTx. Расчет длины абонентской линии по технологии PON (на примере затухания). Анализ и выбор моделей приёмо-передающего оборудования.
дипломная работа [4,6 M], добавлен 18.10.2013Характеристика существующей телефонной сети Бурлинского района. Количество монтированных и задействованных портов технологии АDSL на СТС. Выбор типа оборудования. Разработка перспективной схемы развития мультисервисной сети. Разработка нумерации сети.
дипломная работа [3,0 M], добавлен 22.06.2015Особенности построения цифровой сети ОАО РЖД с использованием волоконно-оптических линий связи. Выбор технологии широкополосного доступа. Алгоритм линейного кодирования в системах ADSL. Расчет пропускной способности для проектируемой сети доступа.
дипломная работа [5,9 M], добавлен 30.08.2010Перспективные технологии построения абонентской части сети с учетом защиты информации, выбор оборудования. Разработка и построение локальной сети на основе технологии беспроводного радиодоступа. Расчет экономических показателей защищенной локальной сети.
дипломная работа [4,0 M], добавлен 18.06.2009Предоставление качественного и высокоскоростного доступа к сети Интернет абонентам ОАО "Укртелеком". Типы автоматизированных систем и их основные характеристики. Выбор платформы и инструментов проектирования. Алгоритм работы клиентской части узла.
дипломная работа [848,7 K], добавлен 28.09.2010Разработка проекта объединения двух локальных сетей в корпоративную на основе цифровых технологий передачи данных. Характеристика производства и оборудования ADSL, HDSL и VDSL, их применение. Настройка сетевого соединения и безопасности ресурсов.
курсовая работа [930,3 K], добавлен 01.04.2011Расчет количества и стоимости оборудования и материалов для подключения к сети передачи данных по технологии xPON. Выбор активного и пассивного оборудования, магистрального волоконно-оптического кабеля. Технические характеристики широкополосной сети.
дипломная работа [2,7 M], добавлен 14.11.2017Разработка проекта здания с внедренной в него локальной телефонной сетью. Основные принципы построения телефонной линии связи на примере "Отделения почты России". Внедрение телефонной сети в компанию для более быстрого обмена нужной информацией.
курсовая работа [724,7 K], добавлен 06.09.2015Проектирование расширения коммутационной и абонентской станции для городской телефонной сети. Назначение и построение цифровой системы коммутации "Омега". Структура и принципы работы концентратора абонентской нагрузки, коммутатора цифровых сигналов.
дипломная работа [956,9 K], добавлен 21.11.2011