Состав и характеристика сетевого оборудования

Состав локальной вычислительной сети, ее основные элементы и их назначение. Роль кабелей в построении локальных связей вычислительных сетей, преимущества их использования. Разновидности и конфигурации кабелей, их конструктивные особенности и применение.

Рубрика Коммуникации, связь, цифровые приборы и радиоэлектроника
Вид дипломная работа
Язык русский
Дата добавления 08.06.2009
Размер файла 723,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Областью применения кабелей S/UTP является построение горизонтальной подсистемы СКС при значительном уровне внешних наводок (производственные цеха и другие помещения с источниками сильных электромагнитных полей) или при повышенных требованиях к безопасности кабельной системы (защита от несанкционированного доступа).

S/STP_кабели обладают в сравнении с STP улучшенными характеристиками по защите от внешних помех и по уровню ЭМИ, однако основным их преимуществом перед другими конструктивными решениями являются значительно более высокое (на 10… 15 дБ и более при условии правильного монтажа) значение NEXT.

На сегодняшний день считается, что обеспечить передачу линейных сигналов с тактовой частотой свыше 250-300 МГц на требуемое стандартами расстояние 90 м можно только с использованием конструкции S/STP.

STP- и S-STP_кабели следует применять во всех случаях, перечисленных для S/UTP_кабелей, в тех ситуациях, когда:

? требуется получение кабельных сегментов, превышающих по длине 90 м;

? при построении систем передачи данных, для которых электрические характеристики кабелей категории 5 являются недостаточными;

? должны выполняться повышенные требования по защите от несанкционированного доступа к передаваемой информации.

Хотя параметры кабелей с индивидуальной экранировкой каждой пары могут существенно превосходить требования категории 5 (особенно по параметру NEXT и соответственно по параметру ACR), следует иметь в виду, что пока не существует стандартов ни на увеличенные длины сегментов, ни на сети, для работы которых электрические характеристики неэкранированных витых пар категории 5 являются недостаточными.

UTP_кабели в сравнении с экранированными обладают следующими преимуществами:

? меньшая стоимость;

? меньшая трудоемкость монтажа и эксплуатации;

? отсутствие повышенных требований к внутреннему заземляющему контуру здания;

? лучшие массогабаритные показатели;

? меньший радиус изгиба.

Основными преимуществами экранированных конструкций являются потенциально лучшая защита от внешних электромагнитных наводок, повышенная механическая прочность в случаях применения оплеточных экранов и более эффективная защита от несанкционированного доступа к передаваемой информации.

Высокая теплопроводность экранов обеспечивает эффективный отвод тепла, которое возникает в проводниках в процессе передачи информации из-за протекания электрического тока.

На основании этого некоторые производители гарантируют для производимых ими экранированных конструкций меньшее затухание по сравнению с неэкранированными.

Сравнительная характеристика некоторых механических и эксплуатационных параметров основных вариантов конструкции четырехпарных горизонтальных кабелей приведена в таблице.

Таблица 2.

Тип кабеля

UTP

STP

S-UTP

S-UTP

S-STP

Кат. 5

Кат. 6

Пленочный экран

Комбинированный экран

Масса, кг/км

30-33

34-37

42

49

65-85

82-88

Внешний диаметр, мм

4.9

5.2

5.4

6.2

7.6

8.0

Рабочий диапазон температур, С

-20 - +60, +70

Радиус изгиба, мм

30-35

35-40

40-45

Кабель на катушках имеет стандартное значение длины 500 и 1000 м.

В принципе возможны и большие длины, однако масса 1000-метровой катушки достигает 50 кг и более, что делает ее неудобной при работе на объекте.

Основным преимуществом катушечной поставки является несколько меньшее количество отходов.

Меньшая популярность этой упаковки объясняется неудобством транспортировки и складского хранения, а также желательностью применения для размотки специальных приспособлений.

Катушки изготавливаются из пластмассы, дерева или фанеры

2.1.2 Магистральный кабель, конструктивные особенности

Магистральный кабель предназначен для использования в магистральных подсистемах СКС для связи между собой помещений кроссовых.

В подсистеме внешних магистралей обычно большая часть маршрута прокладывается горизонтально, в подсистеме внутренних магистралей - вертикально.

С целью снижения коэффициента затухания проводники изготавливаются из монолитной медной проволоки.

В отличие от горизонтального кабеля магистральные конструкции содержат более четырех витых пар и поэтому часто называются многопарными.

Аналогично горизонтальным кабелям они различаются по категориям от 3 до 5, причем магистральные кабели категории 4 встречаются на практике очень редко.

Конструкция кабеля зависит от его емкости.

Таблица 3.

Категории кабеля

Количество пар

3

25,50,75,100,200,300,600,900,1800

5

25,50,100

При числе пар до 25 они помещаются в общую оболочку.

В случае емкости свыше 25 пар они разбиваются на пучки по 25 пар в каждом, совокупность которых образует кабельный сердечник

Рис. 10. Многопарные магистральные кабели:

а) 25-парный кабель категории 5

б) 300-парный кабель категории 3

В некоторых конструкциях в качестве основы сердечника использован центральный стеклопластиковый стержень.

Провода одного пучка скрепляются полиэтиленовыми ленточками.

Снаружи сердечник защищается общей диэлектрической оболочкой.

Кроме неэкранированных магистральных кабелей в ограниченном количестве производятся S/UTP-конструкции, у которых под внешней диэлектрической оболочкой находится экран, закрывающий кабельный сердечник.

Аналогично горизонтальным кабелям на их оболочку наносится маркировка, включающая в себя тип, данные по диаметру проводников и их количеству, наименование тестирующей лаборатории, а также футовые или метровые метки длины.

Погонная масса 25-парного кабеля категории 5 равна обычно ISO-190 кг/км, рабочий диапазон температур составляет от -20 до +60 °С.

Они отличаются тем, что кабельный сердечник образуют не отдельные витые пары, а двух- или четырехпарные элементы, аналогичные по конструкции горизонтальному кабелю и снабженные индивидуальной защитной оболочкой.

Для увеличения прочности и устойчивости к различным механическим воздействиям в качестве основы сердечника многоэлементного кабеля может применяться центральный стеклопластиковый пруток.

Магистральные кабели подразделяются на кабели внутренней и внешней прокладки.

Основным отличием кабеля внешней прокладки от внутриобъектного является применение специальных мер и конструктивных решений по защите кабельного сердечника от попадания в него влаги.

Наиболее часто эта проблема решается использованием внешней полиэтиленовой оболочки.

Дополнительная защита кабельного сердечника от попадания влаги и механических воздействий выполняется броней из алюминиевой или стальной гофрированной ленты.

Горизонтальные кабели с граничной частотой свыше 100 МГЦ

В настоящее время на рынке компонентов СКС предлагается ряд типов серийных горизонтальных кабелей, характеристики которых существенно превышают требования стандартов категории 5.

Общими чертами неэкранированных конструкций рассматриваемой группы является следующее:

? все они обеспечивают получение величины параметра ACR порядка 10 дБ на частотах примерно 150-200 МГц, то есть соответствуют характеристикам кабеля перспективной категории 6;

? увеличение параметра ACR достигнуто главным образом за счет улучшения параметра NEXT, хотя определенная доля может быть обеспечена уменьшением погонного затухания;

? характеристики кабелей нормируются до частот порядка 350-550 МГц из соображений использования их для передачи сигналов однонаправленных приложений, под которыми на практике в подавляющем большинстве случаев понимается многоканальное эфирное и кабельное телевидение.

При этом достаточно четко прослеживается деление рассматриваемых конструкций на два подкласса с граничными частотами, соответственно 350 и 550 МГц.

Модели «младшего» подкласса часто отличаются от обычных кабелей категории 5 только несколько лучшими значениями параметра NEXT и PS-NEXT, тогда как высокочастотные изделия имеют наряду с улучшенными характеристиками переходного затухания также меньшее затухание.

Дальнейшее увеличение рабочих частот горизонтальных кабелей обычных СКС без индивидуальной подборки параметров отдельных пар с возможностью их использования для сетей передачи данных (то есть по критерию ACR=10 дБ) по мнению многих специалистов при современном уровне техники возможно только на экранированных конструкциях.

Отметим, что многие кабельные заводы выпускают экранированные кабели из витых пар, характеристики которых нормируются на частотах вплоть до 1 ГГц.

Основной областью их применения считаются системы SOHO и передача сигналов приложений класса F.

Для уменьшения затухания применяется увеличение диаметра медной жилы проводника до 0,55 мм против типовых для витой пары категории 5 значений 0,51-0,53 мм и использования изоляционных покрытий с уменьшенными диэлектрическими потерями, в частности, из вспененных материалов.
Этим, кстати, объясняется несколько большая погонная масса и внешний диаметр по сравнению с кабелями категории 5.

Работы по увеличению параметра NEXT ведутся в двух направлениях.

Первое из них основано на сохранении структуры сердечника в процессе прокладки и эксплуатации и базируется на введении в состав кабельного сердечника дополнительного элемента, выполняющего функции его силовой основы.

В качестве такого элемента может быть использован центральный пластиковый пруток или полиэтиленовый профилированный элемент типа С (Central Crosstalk Cancellation) в форме четырехлучевой звезды в поперечном сечении.

Рис. 11. Конструкция горизонтального кабеля

Последний дополнительно за счет укладки каждой пары в индивидуальный паз разносит их друг от друга, что сопровождается заметным увеличением параметра NEXT.

2.2 Технические характеристики Оптоволоконных кабелей

2.2.1 Кабель бокового свечения:

Кабель бокового свечения решает многие проблемы освещения архитектурных зданий и сооружений. Особенно это касается современной архитектуры, а также мостов, шпилей, радио-телевизионных башен бассейнов и фонтанов. Экономичность, простота обслуживания и монтажа, возможность цветодинамики - неоспоримые преймущества перед традиционными видами подсветки. Может служить заменой неоновых трубок в рекламе, используется в дизайне интерьера.

Таблица 4.

Кабель бокового свечения Multisint

Толщина кабеля

Количество волокон d=0,75 мм

4,8 мм

14

6,35 мм

23

7,9 мм

32

9,5 мм

42

12,7 мм

84

15,9 мм

126

Таблица 5.

Кабель бокового свечения Multisint Ultra

Толщина кабеля

Количество волокон d=1 мм

12,7 мм

42

15,9 мм

84

Таблица 6

Интенсивность бокового свечения в зависимости от длины кабеля бокового свечения Multisint.

Длина, м

1

2

3

4

5

6

7

8

9

10

Люкс%

93

90

87

84

80

76

72

68

65

62

Кабель бокового свечения Solidcore

Кабель из полимерного материала, цельнолитой, обладает повышеной яркостью бокового свечения. Кабель бокового свечения Solidcore «UV protect» имеет дополнительную защиту от механических повреждений и воздействия прямого солнечного света, рекомендуется для использования в наружной подсветке.

Таблица 7.

Тип кабеля

Внутренний диаметр

Внешний диаметр

Кабель бокового свечения 6 мм Solidcore

6

7

Кабель бокового свечения 10 мм Solidcore

10

12

Кабель бокового свечения 14 мм Solidcore

14

15

Кабель бокового свечения 6 мм Solidcore «UV protect» 6 9

6

9

Кабель бокового свечения 10 мм Solidcore «UV protect» 10 14

10

14

Кабель бокового свечения 14 мм Solidcore «UV protect» 14 18

14

18

Таблица 8

Интенсивность бокового свечения в зависимости от длины кабеля бокового свечения Solidcore

Длина, м

1

2

3

4

5

6

7

8

9

10

Люкс%

99

98

97

95

93

92

90

89

88

87

Варианты подключения

Solidcore

Multisint

В источник подключен один конец

25 м

15 м

В источник подключены оба конца

25 м_50 м

15 м_30 м

Отрезки кабеля последовательно подключенные к нескольким источникам света

25 м_50 м

15 м_30 м

2.2.2 Кабель торцевого свечения

Световолокно обладает способностью проводить большие световые потоки при минимальном диаметре кабеля или нитей - это позволяет подсвечивать места, которые до этого подсвечивать было весьма сложно и с большими затратами.

Источник света находится на расстоянии от места свечения, т.е. смена лампы, обслуживание в месте свечения не производятся. В архитектуре используется торцевая подсветка (замена стандартных светильников, - особенно, там где традиционные системы освещения своей громоздкостью могут испортить внешний вид исторического здания. Световолокно не проводит ультрафиолетовые лучи, которые разрушительно влияют на большинство материалов.

Система освещения «Fiber Optic» является идеальным решением для подсветки музейных ценностей - особенно картин, документов, одежды, в том числе в герметично закрытых витринах с определенными влажностным и температурным режимами хранения, т. к. не проводит инфракрасные лучи, т.е. в месте свечения отсутствует нагрев - свечение, каким бы оно ярким не было - холодное. Отсутствие электричества позволяет использовать кабель в воде, пожаро- и взрывоопасных местах, на шахтах, мельничных комбинатах, бензохранилищах и т.д., а так же легко позволяет монтировать световые рассеиватели в материалах, до этого не пригодных или представлявших большие проблемы при монтаже.

Таблица 9

Кабель торцевого свечения Multisint Толщина кабеля

Количество волокон d=0,75 мм

3,2 мм

4

4,8 мм

8

5,5 мм

12

6,35 мм

25

7,9 мм

50

9,5 мм

75

14,3 мм

150

15,9 мм

225

17,5 мм

300

Таблица 10

Сила светового потока в зависимости от длины кабеля торцевого свечения Multisint.

Длина

3 м

6 м

9 м

12 м

18 м

24 м

Люкс%

98%

85%

76%

67%

55%

42%

Таблица 11

Кабель торцевого свечения Solidcore

Диаметр световода Solidcore

Внешний диаметр кабеля

1 мм

2,5 мм

1,5 мм

3,5 мм

2 мм

4 мм

2,5 мм

4,5 мм

3 мм

5 мм

3,5 мм

5,5 мм

6 мм

8,8 мм

10 мм

13 мм

11 мм

14 мм

14 мм

17,3 мм

Таблица 12

Сила светового потока в зависимости от длины кабеля торцевого свечения Solidcore.

Длина

1

3

6

9

18

24

Люкс%

100

98

95

92

84

79

Таблица 13

Стекловолоконный кабель торцевого свечения.

Тип, размер кабеля

Внутренний диаметр

Внешний диаметр

Стекловолокно р. 1

1,3

2,2

Стекловолокно р. 4

2,6

3,7

Стекловолокно р. 7

3,3

4,8

Стекловолокно р. 12

4,3

6,5

Стекловолокно р. 24

6

10

Таблица 14

Сила светового потока в зависимости от длины кабеля торцевого свечения.

Длина

1

2

3

4

5

6

7

8

9

10

Люкс%

99

96

92

89

86

82

79

75

71

68

2.3 Технические характеристики коаксиальной кабели

Коаксиальные экранированные кабели состоят из центральной многопроволочной медной изолированной токопроводящей жилы, вокруг которой по спирали навиты тонкие медные проволоки или ленты, выполняющие роль обратного проводника. Коаксиальные кабели вытесняют традиционные одножильные кабели вследствие более высокой скорости передачи данных, особенно при больших длинах кабеля и работе с телевизионной аппаратурой.

Общим элементом в конструкции кабелей этой группы является также грузонесущий элемент в виде двухповивной стальной брони.

Типовая конструкции коаксиальных кабелей приведены на рис. 12.1 и 12.2, где 1 - коаксиальная пара; 2 - дополнительные силовые проводники; 3 - двухповивная броня.

Рис. 12.1

Рис. 12.2

Основные характеристики коаксиальных кабелей приведены в таблицах 12.1 и 12.2.

Механические характеристики грузонесущих бронированных коаксиальных кабелей

Таблица 15.

Марка кабеля

Разрывное усилие не менее

Конструкция брони внутр / внешн

Относитель-ное удлинение

Макс. рабочая температура

Наружный диаметр кабеля

Вес в воздухе

Вес в пресной воде

кН

nхd(мм) / nхd(мм)

м/км/кН

град. С

мм

кг/км

кг/км

КГ1Кх0,75-30-150

30

12х0,89/18х0,89

0,52

90

6,3

175

140

КГ 1Кх1,5-55-150

55

22х0,95/24х1,25

0,18

90

9,8

348,7

286,1

КГ 1Кх2-70-150

70

22х1,1/24х1,3

0,18

90

11,4

426,4

349,7

КГП 1-150

120

24х1,35/24х1,75

0,1

90

16,2

950

691

КГП 1-190

190

26х1,55/28х1,75

0,1

90

19,0

1200

877

КГП 1-196

280

22х2,4/36х1,8

0,1

90

24,4

2035

1610

КГ (1К2,0+12х1,0) - 240**

240

36х1,5/36х1,75

0,1

90

23,7

1598

1183

Электрические характеристики грузонесущих бронированных коаксиальных кабелей

Таблица 16

Марка кабеля

Сечение центрального проводника

Сечение экрана

Cопр. центрального роводника

Сопр.экрана

Эл. сопр. изоляции

Волновое сопр. не менее

К_т затухания не более*

Емкость

мм2

мм2

Ом/км

Ом/км

МОм*км

Ом

дБ

pF/m

КГ1Кх0,75-30-150

0,75

1,0

25,0

25,0

-

40

29,5

133

КГ 1Кх1,5-55-150

1,50

2,0

14,0

9,0

10 000

40

19,8

126

КГ 1Кх2-70-150

2,00

2,2

9,8

7,8

14 000

40

19,2

134

КГП 1-150

2,0

3,0

9,4

6,5

20 000

50

13,7

100

КГП 1-190

3,7

6

4,8

3,2

15 000

50

10,8

100

КГП 1-196

10

19

2,45

0,98

15 000

45

8,5

115

КГ (1К2,0+12х1,0) - 240**

2,0

3,0

9,4

6,5

20 000

50

13,7

100

* Значение коэффициента затухания приводится для частоты 5 МГц.

** Кабель имеет дополнительно 12 изолированных проводников по 1мм2, аналогично (рис. 12.1)

Некоторые особенности коаксиальных кабелей:

1. Кабели имеют продольную герметизацию по экрану.

2. Кабели различаются вариантами исполнения экранирующего проводника (рис. 13):

- экран, накладываемый путем навивки тонких медных проволок на изолированный сердечник,

- экран из плоских медных лент,

- экран, выполняемый посредством оплетки с чередованием медных проволок и полиэфирной нити.

3. Для кабелей морского исполнения броня кабеля пропитывается под давлением специальными антикоррозионными составами, предназначенными для защиты металла в условиях морского тумана и контакта с морской водой.

Рис. 13. Варианты исполнения экрана.

- Медных лент

- Оплетка медной проволокой с нитью

- Медные проволоки в повиве в кабеле КГ (1К2,0+12х1,0) - 240

В настоящее время основные области применения коаксиальных кабелей - морской траловый флот и глубоководные геофизические и геологические исследования, в том числе буксировка подводных аппаратов и буровых станков, видеосъемка, отбор донных проб.

2.4 Fast Ethernet

Ethernet, не смотря на весь его успех, никогда не был элегантным. Сетевые платы имеют только рудиментарные понятие об интеллекте. Они действительно сначала посылают пакет, а только затем смотрят, передавал ли данные кто-либо еще одновременно с ними. Кто-то сравнил Ethernet с обществом, в котором люди могут общаться друг с другом, только когда все кричат одновременно.

Как и его предшественник, Fast Ethernet использует метод передачи данных CSMACD (Carrier Sense Multiple Access with Collision Detection - Множественныый доступ к среде с контролем несущей и обнаружением коллизий). За этим длинным и непонятным акронимом скрывается очень простая технология. Когда плата Ethernet должна послать сообщение, то сначала она ждет наступления тишины, затем отправляет пакет и одновременно слушает, не послал ли кто-нибудь сообщение одновременно с ним. Если это произошло, то оба пакета не доходят до адресата. Если коллизии не было, а плата должна продолжать передавать данные, она все равно ждет несколько микросекунд, прежде чем снова попытается послать новую порцию. Это сделано для того, чтобы другие платы также могли работать и никто не смог захватить канал монопольно. В случае коллизии, оба устройства замолкают на небольшой промежуток времени, сгенерированный случайным образом, а затем предпринимают новую попытку передать данные.

Из-за коллизий ни Ethernet, ни Fast Ethernet никогда не смогут достичь своей максимальной производительности 10 или 100 Мбит/с. Как только начинает увеличиваться трафик сети, временные задержки между посылками отдельных пакетов сокращаются, а количество коллизий увеличивается. Реальная производительность Ethernet не может превышать 70% его потенциальной пропускной способности, и может еще ниже, если линия серьезно перегружена.

Ethernet использует размер пакета 1516 байт, который прекрасно подходил, когда он только создавался. Сегодня это считается недостатком, когда Ethernet используется для взаимодействия серверов, поскольку серверы и линии связи имеют обыкновение обмениваться большим количеством маленьких пакетов, что перегружает сеть. Кроме того, Fast Ethernet налагает ограничение на расстояние между подключаемыми устройствами - не более 100 метров и это заставляет проявлять дополнительную осторожность при проектировании таких сетей.

Сначала Ethernet был спроектирован на основе шинной топологии, когда все устройства подключались к общему кабелю, тонкому или толстому. Применение витой пары лишь частично изменило протокол. При использовании коаксиального кабеля коллизия определялась сразу всеми станциями. В случае с витой парой используется «jam» сигнал, как только станция определяет коллизию, то она посылает сигнал концентратору, последний в свою очередь рассылает «jam» всем подключенным к нему устройствам.

Для того чтобы снизить перегрузку, сети стандарта Ethernet разбиваются на сегменты, которые объединяются с помощью мостов и маршрутизаторов. Это позволяет передавать между сегментами лишь необходимый трафик. Сообщение, передаваемое между двумя станциями в одном сегменте, не будет передано в другой и не сможет вызвать в нем перегрузки.

Сегодня при построении центральной магистрали, объединяющей серверы используют коммутируемый Ethernet. Ethernet_коммутаторы можно рассматривать как высокоскоростные многопортовые мосты, которые в состоянии самостоятельно определить, в какой из его портов адресован пакет. Коммутатор просматривает заголовки пакетов и таким образом составляет таблицу, определяющую, где находится тот или иной абонент с таким физическим адресом. Это позволяет ограничить область распространения пакета и снизить вероятность переполнения, посылая его только в нужный порт. Только широковещательные пакеты рассылаются по всем портам.

2.4.1 100BaseT - старший брат 10BaseT

Идея технологии Fast Ethernet родилась в 1992 году. В августе следующего года группа производителей объединилась в Союз Fast Ethernet (Fast Ethernet Alliance, FEA). Целью FEA было как можно скорее получить формальное одобрение Fast Ethernet от комитета 802.3 Института инженеров по электротехнике и радиоэлектронике (Institute of Electrical and Electronic Engineers, IEEE), так как именно этот комитет занимается стандартами для Ethernet. Удача сопутствовала новой технологии и поддерживающему ее альянсу: в июне 1995 года все формальные процедуры были завершены, и технологии Fast Ethernet присвоили наименование 802.3u.

С легкой руки IEEE Fast Ethernet именуется 100BaseT. Объясняется это просто: 100BaseT является расширением стандарта 10BaseT с пропускной способностью от 10 М бит/с до 100 Мбит/с. Стандарт 100BaseT включает в себя протокол обработки множественного доступа с опознаванием несущей и обнаружением конфликтов CSMA/CD (Carrier Sense Multiple Access with Collision Detection), который используется и в 10BaseT. Кроме того, Fast Ethernet может работать на кабелях нескольких типов, в том числе и на витой паре. Оба эти свойства нового стандарта весьма важны для потенциальных покупателей, и именно благодаря им 100BaseT оказывается удачным путем миграции сетей на базе 10BaseT.

Главным коммерческим аргументом в пользу 100BaseT является то, что Fast Ethernet базируется на наследуемой технологии. Так как в Fast Ethernet используется тот же протокол передачи сообщений, что и в старых версиях Ethernet, а кабельные системы этих стандартов совместимы, для перехода к 100BaseT от 10BaseT требуются меньшие капитальные вложения, чем для установки других видов высокоскоростных сетей. Кроме того, поскольку 100BaseT представляет собой продолжение старого стандарта Ethernet, все инструментальные средства и процедуры анализа работы сети, а также все программное обеспечение, работающее на старых сетях Ethernet должны в данном стандарте сохранить работоспособность. Следовательно, среда 100BaseT будет знакома администраторам сетей, имеющим опыт работы с Ethernet. А значит, обучение персонала займет меньше времени и обойдется существенно дешевле.

2.4.2 Три вида Fast Ethernet

Наряду с сохранением протокола CSMA/CD, другим важным решением было спроектировать 100BaseT таким образом, чтобы в нем можно было применять кабели разных типов - как те, что используются в старых версиях Ethernet, так и более новые модели. Стандарт определяет три модификации для обеспечения работы с разными видами кабелей Fast Ethernet: 100BaseTX, 100BaseT4 и 100BaseFX. Модификации 100BaseTX и 100BaseT4 рассчитаны на витую пару, а 100BaseFX был разработан для оптического кабеля.

Стандарт 100BaseTX требует применения двух пар UTP или STP. Одна пара служит для передачи, другая - для приема. Этим требованиям отвечают два основных кабельных стандарта: EIA/TIA_568 UTP Категории 5 и STP Типа 1 компании IBM. В 100BaseTX привлекательно обеспечение полнодуплексного режима при работе с сетевыми серверами, а также использование всего двух из четырех пар восьмижильного кабеля - две другие пары остаются свободными и могут быть использованы в дальнейшем для расширения возможностей сети.

Впрочем, если вы собираетесь работать с 100BaseTX, используя для этого проводку Категории 5, то вам следует знать и об его недостатках. Этот кабель дороже других восьмижильных кабелей (например Категории 3). Кроме того, для работы с ним требуется использование пробойных блоков (punchdown blocks), разъемов и коммутационных панелей, удовлетворяющих требованиям Категории 5. Нужно добавить, что для поддержки полнодуплексного режима следует установить полнодуплексные коммутаторы.

Стандарт 100BaseT4 отличается более мягкими требованиями к используемому кабелю. Причиной тому то обстоятельство, что в 100BaseT4 используются все четыре пары восьмижильного кабеля: одна для передачи, другая для приема, а оставшиеся две работают как на передачу, так и на прием. Таким образом, в 100BaseT4 и прием, и передача данных могут осуществляться по трем парам. Раскладывая 100 Мбит/с на три пары, 100BaseT4 уменьшает частоту сигнала, поэтому для его передачи довольно и менее высококачественного кабеля. Для реализации сетей 100BaseT4 подойдут кабели UTP Категорий 3 и 5, равно как и UTP Категории 5 и STP Типа 1.

Преимущество 100BaseT4 заключается в менее жестких требованиях к проводке. Кабели Категорий 3 и 4 более распространены, и, кроме того, они существенно дешевле, нежели кабели Категории 5, о чем не следует забывать до начала монтажных работ. Недостатки же состоят в том, что для 100BaseT4 нужны все четыре пары и что полнодуплексный режим этим протоколом не поддерживается.

Fast Ethernet включает также стандарт для работы с многомодовым оптоволокном с 62.5_микронным ядром и 125_микронной оболочкой. Стандарт 100BaseFX ориентирован в основном на магистрали - на соединение повторителей Fast Ethernet в пределах одного здания. Традиционные преимущества оптического кабеля присущи и стандарту 100BaseFX: устойчивость к электромагнитным шумам, улучшенная защита данных и большие расстояния между сетевыми устройствами.

2.4.3 Бегун на короткие дистанции

Хотя Fast Ethernet и является продолжением стандарта Ethernet, переход от сети 10BaseT к 100BaseT нельзя рассматривать как механическую замену оборудования - для этого могут потребоваться изменения в топологии сети.

Теоретический предел диаметра сегмента сети Fast Ethernet составляет 250 метров; это всего лишь 10 процентов теоретического предела размера сети Ethernet (2500 метров). Данное ограничение проистекает из характера протокола CSMA/CD и скорости передачи 100Мбит/с.

Как уже отмечалось ранее, передающая данные рабочая станция должна прослушивать сеть в течение времени, позволяющего убедиться в том, что данные достигли станции назначения. В сети Ethernet с пропускной способностью 10 Мбит/с (например 10Base5) промежуток времени, необходимый рабочей станции для прослушивания сети на предмет конфликта, определяется расстоянием, которое 512_битный кадр (размер кадра задан в стандарте Ethernet) пройдет за время обработки этого кадра на рабочей станции. Для сети Ethernet с пропускной способностью 10 Мбит/с это расстояние равно 2500 метров (см. Рис. 1).

С другой стороны, тот же самый 512_битный кадр (стандарт 802.3u задает кадр того же размера, что и 802.3, то есть в 512 бит), передаваемый рабочей станцией в сети Fast Ethernet, пройдет всего 250 м, прежде чем рабочая станция завершит его обработку (см. Рис. 2). Если бы принимающая станция была удалена от передающей станции на расстояние свыше 250 м, то кадр мог бы вступить в конфликт с другим кадром на линии где-нибудь дальше, а передающая станция, завершив передачу, уже не восприняла бы этот конфликт. Поэтому максимальный диаметр сети 100BaseT составляет 250 метров (см. Рис. 3).

Чтобы использовать допустимую дистанцию, потребуется два повторителя для соединения всех узлов. Согласно стандарту, максимальное расстояние между узлом и повторителем составляет 100 метров; в Fast Ethernet, как и в 10BaseT, расстояние между концентратором и рабочей станцией не должно превышать 100 метров. Поскольку соединительные устройства (повторители) вносят дополнительные задержки, реальное рабочее расстояние между узлами может оказаться еще меньше. Поэтому представляется разумным брать все расстояния с некоторым запасом.

Для работы на больших расстояниях придется приобрести оптический кабель. Например, оборудование 100BaseFX в полудуплексном режиме позволяет соединить коммутатор с другим коммутатором или конечной станцией, находящимися на расстоянии до 450 метров друг от друга. Установив полнодуплексный 100BaseFX, можно соединить два сетевых устройства на расстоянии до двух километров.

2.4.4 Как установить 100BaseT

Кроме кабелей, которые мы уже обсудили, для установки Fast Ethernet потребуются сетевые адаптеры для рабочих станций и серверов, концентраторы 100BaseT и, возможно, некоторое количество коммутаторов 100BaseT.

Адаптеры, необходимые для организации сети 100BaseT, носят название адаптеров Ethernet 10/100 Мбит/с. Данные адаптеры способны (это требование стандарта 100BaseT) самостоятельно отличать 10 Мбит/с от 100 Мбит/с. Чтобы обслуживать группу серверов и рабочих станций, переведенных на 100BaseT, потребуется также концентратор 100BaseT.

При включении сервера или персонального компьютера с адаптером 10/100 последний выдает сигнал, оповещающий о том, что он может обеспечить пропускную способность 100Мбит/с. Если принимающая станция (скорее всего, это будет концентратор) тоже рассчитана на работу с 100BaseT, она в ответ выдаст сигнал, по которому и концентратор, и ПК или сервер автоматически переходят в режим 100BaseT. Если концентратор работает только с 10BaseT, он не подает ответный сигнал, и ПК или сервер автоматически перейдут в режим 10BaseT.

В случае мелкомасштабных конфигураций 100BaseT можно применить мост или коммутатор 10/100, которые обеспечат связь части сети, работающей с 100BaseT, с уже существующей сетью 10BaseT.

2.4.5 Обманчивая быстрота

Подытоживая все вышесказанное, заметим, что, как нам кажется, Fast Ethernet наиболее хорош для решения проблем высоких пиковых нагрузок. Например, если кто-то из пользователей работает с САПР или программами обработки изображений и нуждается в повышении пропускной способности, то Fast Ethernet может оказаться хорошим выходом из положения. Однако если проблемы вызваны избыточным числом пользователей в сети, то 100BaseT начинает тормозить обмен информацией при примерно 50_процентной загрузке сети- иными словами, на том же уровне, что и 10BaseT. Но в конце концов, это ведь не более чем расширение 10BaseT.

Заключение

В этой дипломной работе я проанализировал состав и характеристику используемых сетей Министерством Обороны Республики Казахстан.

Эта работа повлияет для дальнейшего развития ЛВС данной организации.

Как вывод всей работы можно сказать, что локальная сеть - это не просто механическая сумма персональных компьютеров, она значительно расширяет возможности пользователей. Компьютерные сети на качественно новом уровне позволяют обеспечить основные характеристики:

· максимальную функциональность, т.е. пригодность для самых разных видов операций,

· интегрированность, заключающуюся в сосредоточении всей информации в едином центре,

· оперативность информации и управления, определяемые возможностью круглосуточной работы в реальном масштабе времени,

· функциональную гибкость, т.е. возможность быстрого изменения параметров системы,

· развитую инфраструктуру, т.е. оперативный сбор, обработку и представление в единый центр всей информации со всех подразделений,

· минимизированные риски посредством комплексного обеспечения безопасности информации, которая подвергается воздействию случайных и преднамеренных угроз.

Последний пункт очень важен, поскольку в сете могут содержаться данные, которые могут быть использованы в ходе конкурентной борьбы, но, в целом, если безопасность находится на должном уровне, локальные сети становятся просто необходимыми в современных условиях экономики и управления.

Список использованной литературы

1. Герасименко В.Г., Нестеровский И.П., Пентюхов В.В. и др. Вычислительные сети и средства их защиты: Учебное пособие/ Герасименко В.Г., Нестеровский И.П., Пентюхов В.В. и др. - Воронеж: ВГТУ, 1998. - 124 с.

2. Камалян А.К., Кулев С.А., Назаренко К.Н. и др. Компьютерные сети и средства защиты информации: Учебное пособие /Камалян А.К., Кулев С.А., Назаренко К.Н. и др. - Воронеж: ВГАУ, 2003.-119 с.

3. Курносов А.П. Практикум по информатике / Под ред. Курносова А.П. Воронеж: ВГАУ, 2001. - 173 с.

4. Макарова Н.В. Информатика /под ред. Проф. Н.В. Макаровой. - М.: Финансы и статистика, 1997. - 768 с.: ил.

5. Малышев Р.А. Локальные вычислительные сети: Учебное пособие/ РГАТА. - Рыбинск, 2005. - 83 с.

6. Олифер В.Г, Олифер Н.А. Сетевые операционные системы/ В.Г. Олифер, Н.А. Олифер. - СПб.: Питер, 2002. - 544 с.: ил.

7. Олифер В.Г., Олифер Н.А. Компьютерные сети. Принципы, технологии, протоколы /В.Г. Олифер, Н.А. Олифер. - СПб.: Питер, 2002. - 672 с.: ил.

8. Симонович С.В. Информатика. Базовый курс / Симонович С.В. и др. - СПб.: издательство «Питер», 2000. - 640 с.: ил.

9. http://www.ariu.berdyansk.net

10. http://www.dtmsost/com/ ru/proj

11. http://www.rootelecom.ru/oborud/katalog/kabel/vit_para/vit_para_harak.htm#02

12. http://ru.wikipedia.org/wiki/%D0% A1% D0% B2% D0% B5% D1% 82% D0% BE % D0% B2% D0% BE % D0% B4


Подобные документы

  • Основные возможности локальных вычислительных сетей. Потребности в интернете. Анализ существующих технологий ЛВС. Логическое проектирование ЛВС. Выбор оборудования и сетевого ПО. Расчёт затрат на создание сети. Работоспособность и безопасность сети.

    курсовая работа [979,9 K], добавлен 01.03.2011

  • Понятие компьютерных сетей, их виды и назначение. Разработка локальной вычислительной сети технологии Gigabit Ethernet, построение блок-схемы ее конфигурации. Выбор и обоснование типа кабельной системы и сетевого оборудования, описание протоколов обмена.

    курсовая работа [2,0 M], добавлен 15.07.2012

  • Телекоммуникация и сетевые технологии. Обоснование и выбор технического и программного обеспечения. Схема размещения и соединения сетевого оборудования. Топология локальных вычислительных сетей (ЛВС). Совместимость, расширяемость и масштабируемость ЛВС.

    курсовая работа [462,1 K], добавлен 30.11.2013

  • Назначение проектируемой локальной вычислительной сети (ЛВС). Количество абонентов проектируемой ЛВС в задействованных зданиях. Перечень оборудования, связанного с прокладкой кабелей. Длина соединительных линий и сегментов для подключения абонентов.

    реферат [158,4 K], добавлен 16.09.2010

  • Характеристика типовых топологий сетей. Состав линии связи и виды компьютерных сетей. Принцип и стандарты технологии Ethernet. Структура MAC-адреса и модель взаимодействия открытых систем (OSI). Состав сетевого оборудования и процесс маршрутизации.

    отчет по практике [322,5 K], добавлен 23.05.2015

  • Обзор существующих принципов построения локальных вычислительных сетей. Структурированные кабельные системы (СКС), коммутационное оборудование. Проект локальной вычислительной сети: технические требования, программное обеспечение, пропускная способность.

    дипломная работа [1,8 M], добавлен 25.02.2011

  • Построение информационной системы для автоматизации документооборота. Основные параметры будущей локальной вычислительной сети. Схема расположения рабочих станций при построении. Протокол сетевого уровня. Интеграция с глобальной вычислительной сетью.

    курсовая работа [330,8 K], добавлен 03.06.2013

  • Основные преимущества, получаемые при сетевом объединении персональных компьютеров в виде внутрипроизводственной вычислительной сети. Методы оценки эффективности локальных вычислительных сетей. Типы построения сетей по методам передачи информации.

    реферат [34,8 K], добавлен 19.10.2014

  • Аналитический обзор технологий локальных вычислительных сетей и их топологий. Описание кабельных подсистем для сетевых решений и их спецификаций. Расчет локальной вычислительной системы на соответствие требованиям стандарта для выбранной технологии.

    дипломная работа [652,8 K], добавлен 28.05.2013

  • Понятие локальной сети, ее сущность, виды, назначение, цели использования, определение ее размеров, структуры и стоимости. Основные принципы выбора сетевого оборудования и его программного обеспечения. Обеспечение информационной безопасности в сети.

    курсовая работа [115,4 K], добавлен 13.11.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.