Устройства функциональной электроники

Физико-химические основы гомогенного и гетерогенного зарождения и роста новой фазы, химический рост эпитаксиальных пленок. Термодинамика поверхностных процессов. Электрофизические характеристики соприкасающихся поверхностей и границ раздела слоев.

Рубрика Коммуникации, связь, цифровые приборы и радиоэлектроника
Вид курсовая работа
Язык русский
Дата добавления 30.01.2011
Размер файла 13,0 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Пропитка, как и любое другое покрытие поверхностей, осуществляется в несколько стадий. При этом образуется многослойная покрывающая структура, предохраняющая поверхность от воздействия различных внешних факторов за счет несовпадения рельефа трещин и пор в соприкасающихся слоях (рис. 4.11).

Хемоадгезия по аналогии с хемосорбцией повышает адгезию покрытия за счет образования химических связей, особенно сильно проявляющихся при наличии на поверхности и в покрытии гидроксильных или фенольных групп (рис. 4.12).

Часто для снижения вязкости пропитывающие термореактивные смолы разбавляют растворителями, которые затем удаляются при отверждении . Однако удаление растворителей при отверждении может привести к появлению новых пор и трещин. Кроме того, большинство растворителей являются химически активными веществами, способными растворять материалы конструктивных элементов изделия (эмали обмоточных проводов, пленки и т. п.). Поэтому с физико-химической и технологической точек зрения лучше подбирать такие составы для пропитки, которые можно использовать без растворителей, например на основе эпоксидных полиэфирных и полиуретановых смол.

Если требуется получить малую вязкость пропитывающего материала при низких температурах, следует использовать полиэфирные смолы. Достоинствами таких смол являются их доступность и низкая стоимость. Если необходима высокая эластичность пропитывающего материала после отверждения, то нужно применять полиуретановые смолы.

В пропитывающие составы обычно вводятся смесительные отвердители, ускоряющие процесс отверждения и упрочняющие эти составы. Кроме того, такие смеси могут использоваться для заливки изделий. В качестве отвердителей применяются полиангидриды типа полиазилена.

Смешивая пропитывающие вещества различных составов и смолы, можно получить имеющие широкий диапазон твердости материалы. Для пропитки деталей и узлов СВЧ-аппаратуры выпускаются специальные составы с малыми потерями и вязкостью от 0,01 до 20 Па•с.

Таким образом, основными параметрами, определяющими качественное протекание процессов пропитки и заливки, являются:

-- температура и давление процесса, степень чистоты и структура поверхности, обеспечивающие наилучшее взаимодействие поверхности с пропитывающим (заливочным) материалом;

-- температура, состав, вязкость, электрофизические и механические свойства пропитывающего (заливочного) материала;

-- скорость пропитки (заливки), т. е. скорость затвердевания (отверждения) пропитывающих составов и особенно деградация эксплуатационных характеристик этих материалов по границам раздела (взаимодействующим поверхностям) во времени.

Определение областей оптимальных значений этих параметров и эксплуатационных характеристик качества изделия является основной проблемой при физико-химических исследованиях и анализе ТП пропитки и заливки в производстве РЭА

5. Электрофизические характеристики соприкасающихся поверхностей и границ раздела слоев

Многолетний опыт производства РЭА на базе кремниевых ИМС показал, что для решения проблем стабильности качества изделий требуется изучение свойств поверхности используемых материалов, а также методов ее подготовки и защиты. Задача становится особенно актуальной в связи с тем, что наиболее перспективными типами РЭА признаны те, которые базируются на полевых приборах (МДП БИС и приборы с барьером Шоттки). Создание же качественных и стабильных приборов этого типа невозможно без знания, свойств поверхностей раздела слоев, образующих их структуры, и умения контролировать эти свойства.

За счет усовершенствования классических методов исследования поверхности (эллипсометрии, электронной микроскопии, оптоэлектронной микроскопии и др.) и использования их для контроля поверхностных свойств рабочих структур приборов и границ разделов слоев в последнее десятилетие получены новые данные о свойствах поверхностей и границ раздела. При этом влияние поверхностных свойств на параметры приборов для различных материалов различно.

По мере совершенствования конструкций ИМС создаются все более тонкие слои полупроводников, диэлектриков и металлов, что увеличивает влияние характеристик поверхности па свойства прибора; при субмикронных толщинах слоев это влияние становится доминирующим. Целью всякого ТП обработки поверхностей в таких важных элементах РЭА, как ИМС, является получение определенных (заданных) электрофизических свойств этих поверхностей с наименьшими затратами. К сожалению, взаимосвязь между электрофизическими параметрами состояния поверхности и технологическими факторами ее обработки ещё мало изучена. Рассмотрим те электрофизические характеристики поверхности и физико-химические факторы, которые влияют на параметры качества микроэлектронных устройств. Большинство рабочих характеристик таких устройств основано на свойствах соприкасающихся поверхностей и границ раздела слоев в системах металл -- полупроводник, полупроводник -- диэлектрик, металл -- диэлектрик -- полупроводник и т. п.

Для изучения влияния свойств поверхностей на электрические характеристики указанных систем исследовались различные сочетания материалов слоев и способов обработки поверхностей. Было показано, что характер обработки поверхностей влияет на процессы генерации и рекомбинации носителей заряда, что выражается в изменении вида вольт-амперных, вольт-фарадных и других характеристик структур ИМС.

Характер взаимосвязи физико-технологических факторов обработки поверхности, электрических свойств границ между слоями является сложным. В последние годы методы исследования поверхности были усовершенствованы, с их помощью можно обнаружить моноатомные пленки и отдельные атомы примесных элементов, т. е. идентифицировать как структуру, так и состав поверхности с очень большой точностью. Тем не менее проблема установления количественных связей между электрофизическими свойствами поверхности (границ раздела) и технологическими факторами ее обработки остается нерешенной. Во время обработки поверхности происходят сложные взаимодействия физического и химического характера на атомном уровне газообразных, жидких и твердых частиц, что изменяет концентрацию поверхностных состояний, определяющих электрические свойства поверхностей раздела между слоями в структурах твердотельных радиоэлектронных устройств (ИМС, ПАВ, ПЗС и др.).

Поэтому вопросы получения в ТП заданного состояния поверхности чрезвычайно важны для всей технологии РЭА. В большинстве случаев в реальном производстве, основанном на использовании многократной обработки поверхности, непрерывно оценивают характер изменения поверхностных свойств изделий или полуфабрикатов в зависимости от изменений методов или режимов обработки. По электрофизическим критериям качества поверхности осуществляют поиск оптимальных способов и режимов обработки, оптимальных конструкций технологических установок. Особенно тщательно обрабатывают поверхности тех деталей, на которых будут формироваться рабочие структуры электронных устройств. Важное значение качество поверхности (ее электрофизические свойства) имеет в таких физико-химических технологических процессах как: осаждение диэлектрических и металлических слоев из паровой, газовой и жидких фаз, процессов окисления, эпитаксии, диффузии и др.


Подобные документы

  • Разработка и изготовление устройства магнетронного получения тонких пленок. Пробное нанесение металлических пленок на стеклянные подложки. Методы, применяемые при распылении и осаждении тонких пленок, а также эпитаксиальные методы получения пленок.

    курсовая работа [403,6 K], добавлен 18.07.2014

  • Последовательность этапов образования зародышей и роста пленки вплоть до образования непрерывной. Зарождение частиц новой фазы. Изменение формы островков в процессе их коалесценции. Образование каналов и их заполнение. Формирование сплошной пленки.

    реферат [840,7 K], добавлен 25.04.2011

  • Каталитические и некаталитические реакции, метод анодирования, метод электрохимического осаждения пленок для интегральной электроники. Сущность метода газофазного осаждения для получения покрытия из AlN. Физикохимия получения пленочных покрытий.

    курсовая работа [362,8 K], добавлен 29.04.2011

  • Исследование зарождения и этапов развития твердотельной электроники. Научные открытия Майкла Фарадея, Фердинанда Брауна (создание беспроволочной телеграфии). Кристаллический детектор Пикарда - "кошачий ус". Разработка детектора-генератора О.В. Лосевым.

    реферат [177,5 K], добавлен 09.12.2010

  • Принцип построения радиопередающего устройства, его технические характеристики. Разработка функциональной схемы передающего устройства, параметры транзисторов в генераторном режиме. Расчет усилителей, умножителей, модуляторов, кварцевых генераторов.

    курсовая работа [463,0 K], добавлен 07.01.2014

  • Основные понятия тонких пленок. Механизм конденсации атомов на подложке. Рост зародышей и формирование сплошных пленок. Расчет удельного сопротивления островка. Определение удельного сопротивления обусловленного рассеянием электронов на атомах примеси.

    курсовая работа [550,5 K], добавлен 31.03.2015

  • Понятие, области, основные разделы и направления развития электроники. Общая характеристика квантовой, твердотельной и вакуумной электроники, направления их развития и применения в современном обществе. Достоинства и недостатки плазменной электроники.

    реферат [344,7 K], добавлен 08.02.2013

  • Процесс приема сигналов на вход приемного устройства. Модели сигналов и помех. Вероятностные характеристики случайных процессов. Энергетические характеристики случайных процессов. Временные характеристики и особенности нестационарных случайных процессов.

    дипломная работа [3,3 M], добавлен 30.03.2011

  • Функциональная электроника. Переход от схемотехнической интеграции к функциональной. Приборы функциональной электроники. Классификация функциональных преобразований. Взаимосвязь информационных, функциональных и электрических преобразований сигналов.

    реферат [10,2 M], добавлен 09.01.2009

  • Изучение электрорадиоэлементов, которые включают соединители, резисторы, конденсаторы, индуктивности, и интегральных микросхем, включающих полупроводниковые и гибридные, устройства функциональной микроэлектроники. Оптическая запись и обработка информации.

    курс лекций [5,7 M], добавлен 23.07.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.