Исследование принципа работы постоянных запоминающих устройств
Виды постоянных запоминающих устройств (ПЗУ), их характеристики, принцип работы и строение. Исследование принципа работы ПЗУ с помощью программы Eltctronics WorkBench. Описание микросхемы К155РЕ3. Структурная схема стенда для изучения принципа работы ПЗУ.
Рубрика | Коммуникации, связь, цифровые приборы и радиоэлектроника |
Вид | дипломная работа |
Язык | русский |
Дата добавления | 29.12.2014 |
Размер файла | 8,5 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
1.1.4 Применение ПЗУ
Микросхемы ПЗУ в основном применяются в компьютерной технике.
В момент включения компьютера в его оперативной памяти нет ничего - ни данных, ни программ, поскольку оперативная память не может ничего хранить без подзарядки ячеек более сотых долей секунды, но процессору нужны команды, в том числе и в первый момент после включения.
Поэтому сразу после включения на адресной шине процессора выставляется стартовый адрес.
Это происходит аппаратно, без участия программ (всегда одинаково).
Процессор обращается по выставленному адресу за своей первой командой и далее начинает работать по программам.
Этот исходный адрес не может указывать на оперативную память, в которой пока ничего нет.
Он указывает на другой тип памяти - постоянное запоминающее устройство (ПЗУ).
Микросхема ПЗУ способна длительное время хранить информацию, даже когда компьютер выключен.
Программы, находящиеся в ПЗУ, называют «зашитыми» - их записывают туда на этапе изготовления микросхемы.
Комплект программ, находящихся в ПЗУ, образует базовую систему ввода-вывода (BIOS - Basic Input Output System).
Основное назначение программ этого пакета состоит в том, чтобы проверить состав и работоспособность компьютерной системы и обеспечить взаимодействие с клавиатурой, монитором, жестким диском и дисководом гибких дисков.
Программы, входящие в BIOS, позволяют нам наблюдать на экране диагностические сообщения, сопровождающие запуск компьютера, а также вмешиваться в ход запуска с помощью клавиатуры.
2 Практическая часть
2.1 Исследование принципа работы ПЗУ с помощью программы Eltctronics WorkBench
Постоянные запоминающие устройства (ПЗУ) делятся на четыре типа [4, 5]:
масочные, программируемые на заводе-изготовителе с применением
специальных масок;
однократно программируемые потребителем путем пережигания
нихромовых или поликремневых перемычек;
многократно программируемые потребителем со стиранием записанной
информации ультрафиолетовым излучением;
многократно программируемые потребителем с электрическим стиранием
информации.
Рассмотрим ПЗУ второго типа, которое состоит из дешифратора пх2п и подключенных к его выходам схем ИЛИ с плавкими перемычками (рис. 25). ПЗУ содержит дешифратор 2x4 в виде подсхемы pzti_dcd (А, В -- кодовые входы, Е -- вход разрешения, активный сигнал высокого уровня), к выходам которых можно подключить четыре элемента 4ИЛИ с дополнительными устройствами. На рис. 25 показаны два таких элемента, выполненных в виде отдельных подсхем pzu_un1 и pzu_un2. Хотя эти элементы одинаковы, наращивание их на схеме путем копирования исключено из-за наличия пережигаемых перемычек -- при наличии одноименных подсхем пережигание перемычки в одной подсхеме автоматически приведет к пережиганию такой же перемычки в другой. Поскольку программа не позволяет копировать подсхемы с их переименованием, все их приходится выполнять полностью. На схеме DO, D1 -- выходы младшего и первого разрядов.
Схема дешифратора pzu_dcd показана на рис. 26. Дешифратор выполнен на трех элементах НЕ и четырех элементах ЗИЛИ-НЕ на транзисторах (рис. 27).
Рис.25 Схема двухразрядного ПЗУ
Рис 26. Внутренняя структура подсхемы дешифратора
Необходимость выполнения элементов дешифратора на транзисторах объясняется тем, что используемые в программе EWB математические модели цифровых ИМС не всегда позволяют подключать к ним обычные транзисторные схемы и, в частности, применяемые в рассматриваемом ПЗУ ячейки памяти в виде подсхемы pzu_uni. Ее внутренняя структура аналогична структуре ячейки памяти, используемой в ПЗУ К155РЕЗ (рис. 28) [5]. В отличие от ИМС К155РЕЗ, в которой в качестве элемента ИЛИ используется многоэмиттерныи транзистор, на рис. 28 приведены отдельные транзисторы Т1...Т4, эмиттеры которых через пережигаемые перемычки S1...S4 (имитируются предохранителями на 10 мА) соединены с формирователем на транзисторах Т5, Т6 и стабилитроне D. Транзистор Т5 и стабилитрон D используются только в режиме программирования и в рабочем режиме не оказывают влияния на работу выходного каскада на транзисторе Т6 (каскад с открытым коллектором), поскольку транзистор Т5 закрыт низким потенциалом на его базе (напряжение пробоя стабилитрона D выбирается несколько больше напряжения питания транзистора Т6, подаваемого во второй подсхеме в точку DO или D1 через резистор нагрузки).
Рис. 27. Схемы элементов НЕ (а) и ИЛИ-НЕ (б)
Ячейка ПЗУ работает следующим образом. В исходном состоянии транзисторы Т1...Т4 и Т6 закрыты, и при подключенной кТ6 нагрузке на его выходе DO формируется сигнал логической единицы (около +5 В). При подаче на входы А, В дешифратора заданной кодовой комбинации, а на вход разрешения Е -- сигнала логической единицы, один из транзисторов Т1...Т4 откроется и на выходе DO сформируется сигнал логического нуля. Так, например, при А=В=1 откроется транзистор Т4 и сигнал логической единицы с его эмиттера через перемычку S4 поступит на делитель на резисторах R2, R3, транзистор Т6 откроется, и на его выходе сформируется сигнал логического нуля. Очевидно, что и при любой другой двоичной комбинации будет происходить то же самое до тех пор, пока не будет разрушена соответствующая перемычка.
Рис. 28. Внутренняя структура ячейки памяти двухразрядного ПЗУ
Пережигание перемычек составляет суть программирования и осуществляется отдельно для каждого разряда (каждой ячейки) следующим образом:
на входы А, В (см. рис. 9.25) подается двоичная комбинация,
соответствующая адресу пережигаемой перемычки в программируемом
разряде (в ячейке pzu_unx, где х -- номер ячейки);
кЪыходу ячейки Dx через резистор нагрузки (его сопротивление для
конкретных ИМС указывается в документации, для К155РЕЗ составляет
около 300 Ом) подключается источник напряжения 12,5 В, в результате чего стабилитрон D пробивается и транзистор Т5 открывается;
на вход разрешения Е на короткое время подается сигнал логической
единицы, при этом через один из открытых транзисторов Т1...Т2 и Т5
протекает ток, достаточный для пережигания соответствующей перемычки
(длительность разрешающего сигнала на входе Е в промышленных
программаторах может автоматически увеличиваться после нескольких
неудачных попыток программирования одной и той же ячейки);
источник 12,5 В отключается, и после раскрытия соответствующей подсхемы можно убедиться, что перемычка действительно разрушена (в
промышленных программаторах этот процесс сводится к проверке записи
программируемой ячейки, и при отрицательном результате производится
повторное программирование при большей длительности разрешающего
сигнала).
Заключительным этапом программирования серийных микросхем ПЗУ в промышленных условиях является электротермотренировка, которая проводится чаще всего в течение 168 часов при повышенной температуре, после чего производится дополнительный контроль записанной информации. Если при этом обнаруживается ошибка, допускается повторное программирование. Если ошибка снова повторяется, микросхема бракуется.
Для моделирования процесса программирования к программируемой схеме необходимо подключить дополнительные элементы. Моделирование целесообразно начинать с одноразрядного ПЗУ (рис.29).
Следует отметить, что рассматриваемая модель ПЗУ (как на рис. 26, так и на рис. 29) достаточно капризна и при некоторых комбинациях входных сигналов моделирование не выполняется. Признаком невозможности моделирования является отсутствие слева от включателя питания (в верхнем правом углу экрана) окошка с индикацией временных интервалов отсчета.
Рис 29. Модель с дополнительными элементами
По истечении некоторого времени может быть выдана рекомендация изменить установку погрешности моделирования (по умолчанию она равна 1%). Целесообразно установить ее максимально возможной (10%) в меню Circuit (команда Analysis Options, параметр Tolerance). Целесообразно также поварьировать сопротивлениями входных резисторов и резисторов нагрузки элементов НЕ и ИЛИ-НЕ (рис. 9.50), а также попробовать изменить параметры транзисторов. В крайнем случае можно ограничиться простейшим случаем -- обойтись без дешифратора и использовать только одну ячейку памяти на рис. 28, подключив к выходу и к одному из ее входов дополнительные элементы, как показано на рис. 29.
ПЗУ с пережигаемыми перемычками используются чаще всего в качестве специализированных дешифраторов, например для селекции У ВВ.
ПЗУ с ультрафиолетовым стиранием используются в микропроцессорных системах для хранения управляющих программ, в частности, для размещения BIOS (Basic Input/Output System -- основная система ввода/вывода, записанная в ПЗУ, отсюда ее полное название ROM BIOS). BIOS представляет собой набор программ проверки и обслуживания аппаратуры компьютера и выполняет роль посредника между операционной системой (ОС) и аппаратурой. BIOS получает управление при включении системной платы, тестирует саму плату и основные блоки компьютера -- видеоадаптер, клавиатуру, контроллеры дисков и портов ввода/вывода, настраивает чипсет платы и загружает внешнюю ОС. При работе под управлением DOS/Windows З.х/95/98 BIOS управляет основными устройствами, при работе под OS/2, Unix, Windows NT BIOS практически не используется, выполняя лишь начальную проверку и настройку.
Обычно на системной плате установлено только ПЗУ с системным (Main System) BIOS, отвечающим за саму плату и контроллеры FDD (флоппи-дисков), HDD (жестких дисков), портов и клавиатуры; в системный BIOS практически всегда входит System Setup -- программа настройки системы. Видеоадаптеры и контроллеры HDD с интерфейсом ST-506 (MFM) и SCSI имеют собственные BIOS в отдельных ПЗУ;
их также могут иметь и другие платы -- интеллектуальные контроллеры дисков и портов, сетевые карты и т.п.
ОбычнсГВЮЗ для современных системных плат разрабатывается одной из специализированных фирм: Award Software, American Megatrends (AMI), реже:
Phoenix Technology, Microid Research; в данное время наиболее популяры BIOS фирмы Award. Некоторые производители плат (например, IBM, Intel и Acer) сами разрабатывают BIOS для них. Иногда для одной и той же платы имеются версии BIOS разных производителей, в этом случае допускается копировать прошивки или заменять микросхемы ПЗУ; в общем же случае каждая версия BIOS привязана к конкретной модели платы.
Раньше BIOS помещался в однократно программируемые ПЗУ либо ПЗУ с ультрафиолетовым стиранием; сейчас в основном выпускаются платы с электрически перепрограммируемыми ПЗУ (Flash ROM), которые допускают перепрограммирование BIOS средствами самой платы. Это позволяет исправлять заводские ошибки в BIOS, изменять заводские установки по умолчанию, программировать собственные экранные заставки и т.п.
Тип микросхемы ПЗУ обычно можно определить по маркировке: 27хххх -- обычное ПЗУ, 28хххх или 29хххх -- перепрограммируемые. Если на корпусе микросхемы 27хххх есть прозрачное окно -- это ПЗУ с ультрафиолетовым стиранием;
если его нет -- это однократно программируемое ПЗУ, которое можно лишь заменить на другое.
Видео-ПЗУ (Video ROM) -- постоянное запоминающее устройство, в которое записаны видео-BIOS, экранные шрифты, служебные таблицы и т.п. ПЗУ не используется видеоконтроллером напрямую, к нему обращается только центральный процессор, в результате выполнения программ, записанных в ПЗУ, происходят обращения к видеоконтроллеру и видеопамяти. На многих современных видеокартах устанавливаются электрически перепрограммируемые ПЗУ (EEPROM, Flash ROM), допускающие перезапись пользователем под управлением специальной программы из комплекта карты.
ПЗУ необходимо только для первоначального запуска видеоадаптера и работы в режиме DOS, Novell Netware и других ОС, функционирующих преимущественно в текстовом режиме; ОС Windows, OS/2 и им подобные, работающие через собственные видеодрайверы, не используют ПЗУ для управления адаптером либо используют его только при выполнении программ для DOS.
При создании видео-BIOS все разработчики придерживаются рекомендаций VESA и VBE. VESA (Video Electronics Standards Association -- ассоциация стандартизации видеоэлектроники) -- организация, выпускающая различные стандарты в области электронных видеосистем и их программного обеспечения. VBE (VESA BIOS Extension -- расширение BIOS в стандарте VESA) -- дополнительные функции видео-BIOS по отношению к стандартному видео-BIOS для VGA, позволяющие запрашивать у адаптера список поддерживаемых видеорежимов и их параметров (разрешение, цветность, способы адресации, развертка и т.п.) и изменять эти параметры для согласования адаптера с конкретным монитором. По сути, VBE является унифицированным стандартом программного интерфейса с VESA-совместимыми картами, при работе через видео-BIOS он позволяет обойтись без специализированного драйвера видеокарты.
2.2 Выбор схемы для исследования ПЗУ
Для изготовления стенда мной была выбрана следующая схема построенная на базе микросхемы К155РЕ3:
2.3 Описание микросхемы К155РЕ3
Микросхема представляет собой электрически программируемое посредством пережигания плавких перемычек постоянное запоминающее устройство (ППЗУ) емкостью 256 бит (32x8). В исходном состоянии по всем адресам и разрядам записан логический ноль. Корпус К155РЕ3 типа 238.16-2, масса не более 2 г.
Корпус ИМС К155РЕ3
Условное графическое обозначение
1 - выход B1;
2 - выход B2;
3 - выход B3;
4 - выход B4;
5 - выход B5;
6 - выход B6;
7 - выход B7;
8 - общий;
9 - выход B8;
10 - вход адресный A0;
11 - вход адресный A1;
12 - вход адресный A2;
13 - вход адресный A3;
14 - вход адресный A4;
15 - вход разрешения выборки PB;
16 - напряжение питания;
Электрические параметры
1 |
Номинальное напряжение питания |
5 В 5 % |
|
2 |
Выходное напряжение низкого уровня |
не более 0,5 В |
|
3 |
Напряжение на антизвонном диоде |
не менее -1,5 В |
|
4 |
Входной ток низкого уровня |
не более -1 мА |
|
5 |
Входной ток высокого уровня по выводам 10-14 по выводу 15 |
не более 0,04 мА не более 0,08 мА |
|
6 |
Выходной ток высокого уровня |
не более 0,1 мА |
|
7 |
Ток утечки на входе |
не более 1 мА |
|
8 |
Ток потребления |
не более 110 мА |
|
9 |
Потребляемая статическая мощность |
не более 550 мВт |
|
10 |
Время выборки разрешения при включении |
не более 50 нс |
|
11 |
Время выборки разрешения при выключении |
не более 50 нс |
|
12 |
Время выборки адреса при включении |
не более 65 нс |
|
12 |
Время выборки адреса при выключении |
не более 65 нс |
2.4 Структурная схема стенда для изучения принципа работы ПЗУ
Стенд выполнен на печатной плате и помещён в корпус.
Далее фото1 и фото 2
2.5 Изготовление стенда
Технология изготовления печатных плат
Собственно, весь процесс изготовления печатной платы можно условно разделить на пять основных этапов:
· предварительная подготовка заготовки (очистка поверхности, обезжиривание);
· нанесение тем или иным способом защитного покрытия;
· удаление лишней меди с поверхности платы (травление);
· очистка заготовки от защитного покрытия;
· сверловка отверстий, покрытие платы флюсом, лужение.
Мы рассматриваем только наиболее распространенную «классическую» технологию, при которой лишние участки меди с поверхности платы удаляются путем химического травления. Помимо этого, возможно, например, удаление меди путем фрезерования или с использованием электроискровой установки. Однако эти способы не получили широкого распространения ни в радиолюбительской среде, ни в промышленности (хотя изготовление плат фрезерованием иногда применяется в тех случаях, когда необходимо очень быстро изготовить несложные печатные платы в единичных количествах).
Особенно хотелось бы отметить, что при изготовлении печатных плат в домашних условиях следует стремиться при разработке схемы использовать как можно больше компонентов для поверхностного монтажа, что в некоторых случаях позволяет развести практически всю схему на одной стороне платы. Связано это с тем, что до сих пор не изобретено никакой реально осуществимой в домашних условиях технологии металлизации переходных отверстий. Поэтому в случае, если разводку платы не удается выполнить на одной стороне, следует выполнять разводку на второй стороне с использованием в качестве межслойных переходов выводов различных компонентов, установленных на плате, которые в этом случае придется пропаивать с двух сторон платы. Конечно, существуют различные способы замены металлизации отверстий (использование тонкого проводника, вставленного в отверстие и припаянного к дорожкам с обеих сторон платы; использование специальных пистонов), однако все они имеют существенные недостатки и неудобны в использовании. В идеальном случае плата должна разводиться только на одной стороне с использованием минимального количества перемычек.
Остановимся теперь подробнее на каждом из этапов изготовления печатной платы.
Предварительная подготовка заготовки
Данный этап является начальным и заключается в подготовке поверхности будущей печатной платы к нанесению на нее защитного покрытия. В целом за продолжительный промежуток времени технология очистки поверхности не претерпела сколько-нибудь значительных изменений. Весь процесс сводится к удалению окислов и загрязнений с поверхности платы с использованием различных абразивных средств и последующему обезжириванию.
Для удаления сильных загрязнений можно использовать мелкозернистую наждачную бумагу («нулевку»), мелкодисперсный абразивный порошок или любое другое средство, не оставляющее на поверхности платы глубоких царапин. Иногда можно просто вымыть поверхность печатной платы жесткой мочалкой для мытья посуды с моющим средством или порошком (для этих целей удобно использовать абразивную мочалку для мытья посуды, которая похожа на войлок с мелкими вкраплениями какого-то вещества; часто такая мочалка бывает наклеена на кусок поролона). Кроме того, при достаточно чистой поверхности печатной платы можно вообще пропустить этап абразивной обработки и сразу перейти к обезжириванию.
В случае наличия на печатной плате только толстой оксидной пленки ее можно легко удалить путем обработки печатной платы в течение 3-5 секунд раствором хлорного железа с последующим промыванием в холодной проточной воде. Следует, однако, отметить, что желательно либо производить данную операцию непосредственно перед нанесением защитного покрытия, либо после ее проведения хранить заготовку в темном месте, поскольку на свету медь быстро окисляется.
Заключительный этап подготовки поверхности заключается в обезжиривании. Для этого можно использовать кусочек мягкой ткани, не оставляющей волокон, смоченный спиртом, бензином или ацетоном. Здесь следует обратить внимание на чистоту поверхности платы после обезжиривания, поскольку в последнее время стали попадаться ацетон и спирт со значительным количеством примесей, которые оставляют на плате после высыхания беловатые разводы. Если это так, то стоит поискать другой обезжиривающий состав. После обезжиривания плату следует промыть в проточной холодной воде. Качество очистки можно контролировать, наблюдая за степенью смачивания водой поверхности меди. Полностью смоченная водой поверхность, без образования на ней капель и разрывов пленки воды, является показателем нормального уровня очистки. Нарушения в этой пленке воды указывают, что поверхность очищена недостаточно.
Нанесение защитного покрытия
Нанесение защитного покрытия является самым важным этапом в процессе изготовления печатных плат, и именно им на 90 % определяется качество изготовленной платы. В настоящее время в радиолюбительской среде наиболее популярными являются три способа нанесения защитного покрытия. Мы их рассмотрим в порядке возрастания качества получаемых при их использовании плат.
1. Ручное нанесение защитного покрытия. При этом способе чертеж печатной платы переносится на стеклотекстолит вручную при помощи какого-либо пишущего приспособления. В последнее время в продаже появилось множество маркеров, краситель которых не смывается водой и дает достаточно прочный защитный слой. Кроме того, для ручного рисования можно использовать рейсфедер или какое-либо другое приспособление, заправленное красителем. Так, например, удобно использовать для рисования шприц с тонкой иглой (лучше всего для этих целей подходят инсулиновые шприцы с диаметром иглы 0,3-0,6 мм), обрезанной до длины 5-8 мм. При этом шток в шприц вставлять не следует -- краситель должен поступать свободно под действием капиллярного эффекта. Также вместо шприца можно использовать тонкую стеклянную или пластмассовую трубку, вытянутую над огнем для достижения нужного диаметра. Особое внимание следует обратить на качество обработки края трубки или иглы: при рисовании они не должны царапать плату, в противном случае можно повредить уже закрашенные участки. В качестве красителя при работе с такими приспособлениями можно использовать разбавленный растворителем битумный или какой-либо другой лак, цапонлак или даже раствор канифоли в спирте. При этом необходимо подобрать консистенцию красителя таким образом, чтобы он свободно поступал при рисовании, но в то же время не вытекал и не образовывал капель на конце иглы или трубки. Стоит отметить, что ручной процесс нанесения защитного покрытия достаточно трудоемок и годится только в тех случаях, когда необходимо очень быстро изготовить небольшую плату. Минимальная ширина дорожки, которой можно добиться при рисовании вручную, составляет порядка 0,5 мм.
2. Использование «технологии лазерного принтера и утюга». Данная технология появилась сравнительно недавно, однако сразу получила широчайшее распространение в силу своей простоты и высокого качества получаемых плат. Основу технологии составляет перенос тонера (порошка, используемого при печати в лазерных принтерах) с какой-либо подложки на печатную плату. При этом возможны два варианта: либо используемая подложка отделяется от платы перед травлением, либо, если в качестве подложки используется алюминиевая фольга, она стравливается вместе с медью. Первый этап использования данной технологии заключается в печати зеркального изображения рисунка печатной платы на подложке. Параметры печати принтера при этом должны быть установлены на максимальное качество печати (поскольку в этом случае происходит нанесение слоя тонера наибольшей толщины). В качестве подложки можно использовать тонкую мелованную бумагу (обложки от различных журналов), бумагу для факсов, алюминиевую фольгу, пленку для лазерных принтеров, основу от самоклеящейся пленки Oracal или какие-нибудь другие материалы. При использовании слишком тонкой бумаги или фольги может потребоваться приклеить их по периметру на лист плотной бумаги. В идеальном случае принтер должен иметь тракт для прохождения бумаги без перегибов, что предотвращает смятие подобного бутерброда внутри принтера. Большое значение это имеет и при печати на фольге или основе от пленки Oracal, поскольку тонер на них держится очень слабо, и в случае перегиба бумаги внутри принтера существует большая вероятность, что придется потратить несколько неприятных минут на очистку печки принтера от налипших остатков тонера. Лучше всего, если принтер может пропускать бумагу через себя горизонтально, печатая при этом на верхней стороне (как, например, HP LJ2100 -- один из лучших принтеров для применения при изготовлении печатных плат). Хочется сразу предупредить владельцев принтеров типа HP LJ 5L, 6L, 1100, чтобы они не пытались печатать на фольге или основе от Oracal -- обычно подобные эксперименты заканчиваются плачевно. Также помимо принтера можно использовать и копировальный аппарат, применение которого иногда дает даже лучшие по сравнению с принтерами результаты за счет нанесения толстого слоя тонера. Основное требование, которое предъявляется к подложке, -- легкость ее отделения от тонера. Кроме того, в случае использования бумаги она не должна оставлять в тонере ворсинок. При этом возможны два варианта: либо подложка после перенесения тонера на плату просто снимается (в случае пленки для лазерных принтеров или основы от Oracal), либо предварительно размачивается в воде и потом постепенно отделяется (мелованная бумага). Перенос тонера на плату заключается в прикладывании подложки с тонером к предварительно очищенной плате с последующим нагревом до температуры, немного превышающей температуру плавления тонера. Возможно огромное количество вариантов как это сделать, однако наиболее простым является прижим подложки к плате горячим утюгом. При этом для равномерного распределения давления утюга на подложку рекомендуется проложить между ними несколько слоев плотной бумаги. Очень важным вопросом является температура утюга и время выдержки. Эти параметры варьируются в каждом конкретном случае, поэтому, возможно, придется поставить не один эксперимент, прежде чем вы получите качественные результаты. Критерий тут один: тонер должен успеть достаточно расплавиться, чтобы прилипнуть к поверхности платы, и в то же время должен не успеть дойти до полужидкого состояния, чтобы края дорожек не расплющились. После «приварки» тонера к плате необходимо отделить подложку (кроме случая использования в качестве подложки алюминиевой фольги: ее отделять не следует, поскольку она растворяется практически во всех травильных растворах). Пленка для лазерных принтеров и основа от Oracal просто аккуратно снимаются, в то время как обычная бумага требует предварительного размачивания в горячей воде. Стоит отметить, что в силу особенностей печати лазерных принтеров слой тонера в середине больших сплошных полигонов достаточно мал, поэтому следует по мере возможности избегать использования таких областей на плате, либо после снятия подложки придется подретушировать плату вручную. В целом использование данной технологии после некоторой тренировки позволяет добиться ширины дорожек и зазоров между ними вплоть до 0,3 мм.
3. Применение фоторезистов. Фоторезистом называется чувствительное к свету вещество, которое под воздействием освещения изменяет свои свойства. В последнее время на российском рынке появилось несколько видов импортных фоторезистов в аэрозольной упаковке, которые особенно удобны для использования в домашних условиях. Сущность применения фоторезиста заключается в следующем: на плату с нанесенным на нее слоем фоторезиста накладывается фотошаблон и производится ее засветка, после чего засвеченные (или незасвеченные) участки фоторезиста смываются специальным растворителем, в качестве которого обычно выступает едкий натр (NaOH). Все фоторезисты делятся на две категории: позитивные и негативные. Для позитивных фоторезистов дорожке на плате соответствует черный участок на фотошаблоне, а для негативных, соответственно, прозрачный. Наибольшее распространение получили позитивные фоторезисты как наиболее удобные в применении. Остановимся более подробно на использовании позитивных фоторезистов в аэрозольной упаковке.
Первым этапом является подготовка фотошаблона. В домашних условиях его можно получить, напечатав рисунок платы на лазерном принтере на пленке. При этом необходимо особое внимание уделить плотности черного цвета на фотошаблоне, для чего необходимо отключить в настройках принтера все режимы экономии тонера и улучшения качества печати. Кроме того, некоторые фирмы предлагают вывод фотошаблона на фотоплоттере -- при этом вам гарантирован качественный результат.
На втором этапе на предварительно подготовленную и очищенную поверхность платы наносится тонкая пленка фоторезиста. Делается это путем распыления его с расстояния порядка 20 см. При этом следует стремиться к максимальной равномерности получаемого покрытия. Кроме того, очень важно обеспечить отсутствие пыли в процессе распыления -- каждая попавшая в фоторезист пылинка неминуемо оставит свой след на плате.
После нанесения слоя фоторезиста необходимо высушить получившуюся пленку. Делать это рекомендуется при температуре 70 oC-80 oC, причем сначала нужно подсушить поверхность при небольшой температуре и лишь затем постепенно довести температуру до нужного значения. Время сушки при указанной температуре составляет порядка 20-30 мин. В крайнем случае допускается сушка платы при комнатной температуре в течение 24 часов. Платы с нанесенным фоторезистом должны храниться в темном прохладном месте.
Следующим после нанесения фоторезиста этапом является экспонирование. При этом на плату накладывается фотошаблон (желательно стороной печати к плате: это способствует увеличению четкости при экспонировании), который прижимается тонким стеклом или куском плексигласа. При достаточно небольших размерах плат для прижима можно использовать крышку от коробки компакт-диска либо отмытую от эмульсии фотопластинку. Поскольку область максимума спектральной чувствительности большинства современных фоторезистов приходится на ультрафиолетовый диапазон, для засветки желательно использовать лампу с большой долей УФ-излучения в спектре (ДРШ, ДРТ и др.). В крайнем случае, можно использовать мощную ксеноновую лампу. Время экспонирования зависит от многих причин (тип и мощность лампы, расстояние от лампы до платы, толщина слоя фоторезиста, материал прижимного покрытия и др.) и подбирается экспериментально. Однако в целом время экспонирования составляет обычно не более 10 минут даже при экспонировании под прямыми солнечными лучами.
Проявление большинства фоторезистов осуществляется раствором едкого натра (NaOH) -- 7 граммов на литр воды. Лучше всего использовать свежеприготовленный раствор, имеющий температуру 20°C-25°C. Время проявления зависит от толщины пленки фоторезиста и находится в пределах от 30 секунд до 2 минут. После проявления плату можно подвергать травлению в обычных растворах, поскольку фоторезист устойчив к воздействию кислот. При использовании качественных фотошаблонов применение фоторезиста позволяет получить дорожки шириной вплоть до 0,15-0,2мм.
Травление
Известно много составов для химического стравливания меди. Все они отличаются скоростью протекания реакции, составом выделяющихся в результате реакции веществ, а также доступностью необходимых для приготовления раствора химических реактивов. Ниже приведена информация о наиболее популярных растворах для травления.
1. Хлорное железо (FeCl3) -- пожалуй, самый известный и популярный реактив. Сухое хлорное железо растворяется в воде до тех пор, пока не будет получен насыщенный раствор золотисто-желтого цвета (для этого потребуется порядка двух столовых ложек на стакан воды). Процесс травления в этом растворе может занять от 10 до 60 минут. Время зависит от концентрации раствора, температуры и перемешивания. Перемешивание значительно ускоряет протекание реакции. В этих целях удобно использовать компрессор для аквариумов, который обеспечивает перемешивание раствора пузырьками воздуха. Также реакция ускоряется при подогревании раствора. По окончании травления плату необходимо промыть большим количеством воды, желательно с мылом (для нейтрализации остатков кислоты). К недостаткам данного раствора следует отнести образование в процессе реакции отходов, которые оседают на плате и препятствуют нормальному протеканию процесса травления, а также сравнительно низкую скорость реакции.
2. Персульфат аммония ((NH4)2S2O8) -- светлое кристаллическое вещество, растворяется в воде исходя из соотношения 35 г вещества на 65 г воды. Процесс травления в этом растворе занимает порядка 10 минут и зависит от площади медного покрытия, подвергающегося травлению. Для обеспечения оптимальных условий протекания реакции раствор должен иметь температуру порядка 40 oC и постоянно перемешиваться. По окончании травления плату необходимо промыть в проточной воде. К недостаткам этого раствора относится необходимость поддержания требуемого температурного режима и перемешивания.
3. Раствор соляной кислоты (HCl) и перекиси водорода (H2O2). Для приготовления этого раствора необходимо к 770 мл воды добавить 200 мл 35 % соляной кислоты и 30 мл 30 % перекиси водорода. Готовый раствор должен храниться в темной бутылке, не закрытой герметически, так как при разложении перекиси водорода выделяется газ. Внимание: при использовании данного раствора необходимо соблюдать все меры предосторожности при работе с едкими химическими веществами. Все работы необходимо производить только на свежем воздухе или под вытяжкой. При попадании раствора на кожу ее необходимо немедленно промыть большим количеством воды. Время травления сильно зависит от перемешивания и температуры раствора и составляет порядка 5-10 минут для хорошо перемешиваемого свежего раствора при комнатной температуре. Не следует нагревать раствор выше 50 oC. После травления плату необходимо промыть проточной водой. Данный раствор после травления можно восстанавливать добавлением H2O2. Оценка требуемого количества перекиси водорода осуществляется визуально: погруженная в раствор медная плата должна перекрашиваться из красного в темно-коричневый цвет. Образование пузырей в растворе свидетельствует об избытке перекиси водорода, что ведет к замедлению реакции травления. Недостатком данного раствора является необходимость строгого соблюдения при работе с ним всех мер предосторожности.
Очистка заготовки, сверловка, нанесение флюса, лужение
После завершения травления и промывки платы необходимо очистить ее поверхность от защитного покрытия. Сделать это можно каким-либо органическим растворителем, например, ацетоном.
Далее необходимо просверлить все отверстия. Делать это нужно остро заточенным сверлом при максимальных оборотах электродвигателя. В случае, если при нанесении защитного покрытия в центрах контактных площадок не было оставлено пустого места, необходимо предварительно наметить отверстия (сделать это можно, например, шилом). Прижимное усилие в процессе сверления не должно быть слишком большим, чтобы на обратной стороне платы не образовывались бугорки вокруг отверстий. Обычные электродрели практически не подходят для сверления плат, поскольку, во-первых, имеют низкие обороты, а во-вторых, обладают достаточно большой массой, что затрудняет регулирование прижимного усилия. Удобнее всего для сверления плат использовать электродвигатели типа ДПМ-35Н и им подобные с насаженным на их вал небольшим цанговым патроном. После сверловки нужно обработать отверстия: удалить все зазубрины и заусенцы. Сделать это можно наждачной бумагой.
Следующим этапом является покрытие платы флюсом с последующим лужением. Можно использовать специальные флюсы промышленного изготовления (лучше всего смываемые водой или вообще не требующие смывания) либо просто покрыть плату слабым раствором канифоли в спирте. Лужение можно производить двумя способами: погружением в расплав припоя либо при помощи паяльника и металлической оплетки, пропитанной припоем. В первом случае необходимо изготовить железную ванночку и заполнить ее небольшим количеством сплава Розе или Вуда. Расплав должен быть полностью покрыт сверху слоем глицерина во избежание окисления припоя. Для нагревания ванночки можно использовать перевернутый утюг или электроплитку. Плата погружается в расплав, а затем вынимается с одновременным удалением излишков припоя ракелем из твердой резины.
Правила пайки радиоэлектронных изделий.
Соединение деталей пайкой, благодаря доступной и недорогой технологии, известно очень давно и по сей день широко применяется, несмотря на появление синтетических клеев и шпатлевок. В этом обзоре речь пойдет о пайке так называемыми мягкими припоями на основе олова, позволяющими ограничить нагрев деталей температурой около +250°С. Итак, что же нужно для пайки? Начнем с припоев. По поводу температуры: для припоя 63/37 с температурой плавления 183°С рекомендуемый режим пайки 230°С. Припой нужно не только расплавить, но и обеспечить растекаемость и смачиваемость, отсюда небольшое превышение температуры плавления. Кстати, не надо путать температуру припоя с температурой жала паяльника, для которого рекомендуется в среднем 315°С. Дело в том, что тепло в соединение передается не мгновенно, поэтому для поддержания 230°С в течение нужного времени в точке пайки необходим контакт с паяльником, нагретым до 315°С длительностью 1-1.5 сек. Уменьшение температуры и времени может привести к неполной смачиваемости паяемой поверхности, увеличение - способствует процессу диффузии меди в припой и образования интерметаллического слоя CuPbSn. Это уже новое вещество с низкой проводимостью и механически хрупкое. По всем стандартам этот слой не должен превышать 0.5 мкм, иначе соединение считается не прочным. Дозировка припоя, конечно, необходима для образования соединения правильной формы, что обеспечивает с одной стороны прочность, с другой - возможность визуального контроля. Общее правило можно сформулировать примерно так: все мениски должны иметь вогнутый, но максимально приближенный к прямому контур. Если мениск выпуклый невозможно будет визуально отличить надежное соединение от не пропаянного, на котором припой принял выпуклую форму за счет поверхностного натяжения. Однако сам процесс дозировки проблемой не является. Для монтажа различных компонентов существую несколько приемов оптимизации количества подаваемого припоя. Вот несколько характерных примеров.
1. Монтаж DIP корпусов и всех компонентов, устанавливаемых в отверстия. Клиновидный наконечник паяльника, слегка обложенный (только для того чтобы обеспечить надежный тепловой контакт) устанавливается на контактактную площадку печатной платы, одновременно контактируя с выводом компонента. Другой рукой подается флюсосодержащий проволочный припой, который плавится о нагретую контактную площадку. Расплавленный флюс и припой стекает в металлизированное отверстие, заполняя его. Подача прекращается сразу после образования мениска
между торчащим из платы выводом и контактной площадкой. Высота мениска должна быть равна половине диаметра контактной площадки.
2. Пайка поверхностных микросхем. В этом случае применяется так называемая "мини волна". Это наконечник паяльника, срезанный под углом. Срез имеет углубление для увеличение сил поверхностного натяжения. Компонент устанавливают на плату, флюсуют, заполняют "мини волну" каплей припоя и проводят ей сразу по всем выводам. При движении наконечника каждый контакт "погружается" в волну примерно на 1 секунду, забирая из нее оптимальное количество припоя. Лишний припой втягивается в наконечник за счет поверхностного натяжения. Т.е. дозировка припоя происходит автоматически. Таким приемом можно выполнять монтаж любых поверхностных компонентов кроме керамических CHIP конденсаторов ну и, конечно, BGA.
3. Монтаж CHIP компонентов горячим воздухом (термофеном) на паяльную пасту. При этой операции требования к дозировке самые высокие. Можно, конечно, наносить пасту с помощью шприца, но это требует действительно "искусство оператора", так как после нанесения каждой капли паста продолжает выделяться за счет остаточного в шприце давления. Профессиональный метод - это применение пневмодозатора с вакуумной отсечкой.
Несколько секретов производственных технологий.
О блестящей поверхности.
Такая поверхность достигается достаточным количеством флюса, минимальным перегревом места пайки, свежим припоем эвтектического состава 63/37, как и было сказано выше. Минимизируя время прогрева, можно избежать заметного растворения меди в припое и образования кристаллов интерметаллида SnPbCu, при наличии которых, естественно, не получить блеска. Как добиться этого? Нужно достаточно массивное медное, в идеале - серебряное (обуславливает значительную теплоемкость), с многослойным NiCrFe покрытием (гарантирует от растворения материала жала в припое), жало, достаточно мощный нагреватель (легко компенсирует потери тепловой энергии на расплавление припоя и нагрев места пайки) и система термостатирования (стабилизирует температуру жала). Нужен чистый трубчатый припой и хорошо подготовленные поверхности. Нагрев должен осуществляться минимально необходимое время. Любые отступления от этих условий ведут к необходимости длительных тренировок. При ручной пайке качество "достигается упражнением".
Холодная спайка.
Некоторые предметы, как известно, нельзя спаять при высокой температуре, не подвергнув порче. Для таких предметов рекомендуется следующий состав. Осажденная в порошкообразном состоянии медь перемешивается в фарфоровой ступке с концентрированной серной кислотой до получения некрутой тестообразной массы, к общему весовому количеству которой добавляют постепенно, при постоянном размешивании, 70 частей ртути. Когда таким образом получится однородная амальгама, ее хорошо промывают в горячей воде для удаления кислоты и затем дают ей остыть. Спустя 10-12часов амальгама становится настолько твердой, что режет олово. В таком виде состав уже вполне готов к употреблению, для чего его нагревают до консистенции размягченного воска и спаивают предметы; остыв, эта амальгама очень крепко держит спаянные части.
Простой способ лужения.
Берут 10 весовых частей поваренной соли, распускают в 20 частях азотной кислоты, после чего к этому раствору добавляют 10 частей хлористого олова (оловянной соли) и 2,5 части хлористого аммония (нашатыря). К полученной смеси добавляют еще 40 весовых частей соляной кислоты и затем разбавляют ее небольшим количеством воды. Приготовленная таким образом смесь вполне готова к употреблению. Подлежащий лужению предмет должен быть предварительно очищен самым тщательным образом, затем все части его, которые не должны быть покрыты полудой, старательно натираются салом, после чего предмет погружают в приготовленную вышеуказанным способом смесь, в которой и оставляют, пока слой полуды не достигнет надлежащей толщины. Тогда, вынув предмет, остается только тщательно вымыть его, чтобы он был вполне годен к употреблению. Помимо исправления или обновления полуды на посуде указанным способом можно покрывать оловом для предохранения от ржавчины разного рода мелкие металлические предметы: рыболовные крючки, капканы, проволоки и т.д.
Сообщение оловянному припою медного цвета.
Как известно, для припоя медных частей чаще всего употребляется олово, но такой припой отличается одним недостатком: в местах спайки олово некрасиво выделяется белым пятном или белой полосой на медном фоне спаянных частей. Для устранения такого недостатка рекомендуется следующий несложный прием: места припоя покрываются насыщенным раствором медного купороса, для чего 10 частей купороса растворяют в 35 частях воды и покрытые части припоя растирают, затем железной проволокой и этим способом омедняют спайку, после чего вторично покрывают спайку раствором из 1 части насыщенной купоросной меди и 2 частей насыщенного цинкового купороса и растирают такое покрытие цинковой палочкой. Обработанные таким образом места спайки могут быть отполированы и тогда выступающие части оловянного припоя совершенно сливаются с медным тоном спаянных частей.
Канифоль, флюс - чем они отличаются, когда и что применять?
Канифоль: неочищенная канифоль - есть материал кустаря времен Северной войны. Использовать его в современной электронике крайне нежелательно. Однако, это допустимо для пайки электротехнических изделий или плат с крупными проводниками, и где плотность монтаж стремиться к 0 компонентов на кв. м. платы. Проблемы в том, что она (то есть канифоль) содержит кучу натуральных примесей, которые после модификации под воздействием тепла и кислоты становятся опасными с точки зрения коррозии и электрической проводимости.
Раствор канифоли в спирте или бензине: ничего не меняет от вышеописанного случая. Вся та же гадость, + грязь привнесенная с бензином и спиртом. Такие платы надо мыть всем, что попадает под руку, поскольку не мы видим только меньшую часть примесей, и они смываются далеко не всем.
Одно замечание, мы говорим о разных канифолях. Есть канифоль, которая лежит у каждого дома на антресолях, есть канифоль, которой маэстро Растрапович канифолит смычок, есть канифоль, производимая гигантами типа Multicore или Alpha Metalls для нужд электронного капитала. Это три большие разницы. Даже в отечестве существовало разделение канифоли на марки: А, Б, может, и далее. Для монтажа РЭА допускалось применение канифоли марки А.
Как определить? - Визуально! Наилучшая имеет светло - желтый свет, прозрачна, без включений. Мы упомянули Multicore, их припой самый "крутой" потому, что он содержит не одну, а целых 5 или 6 жил флюса в проволочном припое. Полагаю, что наличие большого количества каналов с флюсом обеспечивает лучшее распределение флюса по поверхности расплавленного припоя, а это ведет к лучшей очистке поверхности от окислов меньшим количеством флюса, что, в свою очередь, минимизирует количество золы и шлама
Флюсы электронного класса: Основное их отличие заключается в степени кислотности. Чем старее паяемый вами контакт, чем больше на нём окислов, чем эти окислы устойчивее к кислоте, тем выше должна быть кислотность флюса. МЫТЬ ИЗДЕЛЕЕ ПОСЛЕ ПАЙКИ НУЖНО ВСЕГДА. Вы никогда не можете быть уверенным, что осталось на плате после вашего ковыряния её паяльником, и как это повлияет на дальнейшую работоспособность изделия. Количество флюса должно быть минимально, но достаточно для осуществления своих функций: удаления грязи, окислов, обеспечение растекания и формообразования припоя.
Маркировки припоев.
Всё что я буду писать, ниже переписано из ОСТа 4 ГО.033.200, то есть описание того, как это должно быть, если бы эти припои производились под контролем ГосТехНадзора на заводе указанном в ОСТе - "РязЦветМет". Как есть на самом деле не знаю. Все припои содержат 59-61% олова, остальное свинец. Буква "П" в конце означает, что припой повышенной чистоты. Буква "М" означаем, что в припое должна быть медь в диапазоне 1.2-2.0%. Температура плавления, Liquidus (окончание полного плавления):
ПОС61; ПОС61-П - 190 град.°С
ПОС61М - 192 град. С
Временное сопротивление разрыву при 20 град.°С
ПОС61; ПОС61-П - 42.18 Х 10^6 н/кв. м
ПОС61М - 44.18 Х 10^6 н/кв. м
Теплопроводность:
ПОС61; ПОС61-П - 50.24 Вт/(м*К)
ПОС61М - 48.98 Вт/(м*К)
Удельное электрическое сопротивление:
ПОС61; ПОС61-П - 0.139 х 10^-6 (Om*m)
ПОС61М - 0.143 х 10^-6 (Om*m)
ПОС61М не разрешен к лужению и пайке в тиглях и ваннах из-за повышенной склонности к зернистости сплава при затвердевании, и густоты расплава, что ухудшает его технологические свойства.
Паяльник
Керамический нагреватель напоминает печатную плату, но не на стеклотекстолите, а на керамике и все это скручено в трубу. Наконечник устанавливается либо снаружи либо внутри этой трубы. Достоинство такой конструкции (на мой взгляд, сомнительное) в малой тепловой инерционности, т.е. паяльник после включения может выйти на рабочую температуру за 10 сек. Однако при работе на многослойных платах или в иных условиях сильного тепло отвода начинает сказываться относительно низкая теплопроводность керамики (по сравнению с медью) и система не успевает компенсировать тепло потери и температура падает.
Нихромовый нагреватель интересен только, если он выполнен на медном сердечнике. Нагревается он относительно медленно, на 300 градусов за 1 минуту, зато никаких проблем с компенсацией теплопотерь. Т.е. нет необходимости делать запас в задание температуры. Различие в теплопроводности усиливается из-за разной системы крепления наконечника. У паяльников РАСЕ, например, наконечник прижимается боковым винтом по всей длине к медному сердечнику нагревателя. Площадь теплового контакта очень большая. В случае с керамикой сильный прижим использовать нельзя вследствие хрупкости материала, т.о. наконечник одевается или вставляется в нагреватель с воздушным зазором, препятствующим теплопередаче. И, наконец, надежность! Известно, что керамика, выдерживает высочайшие температуры, но при этом плохо переносит быстрый нагрев и охлаждение, образуя микротрещины. Современная технология ручной пайки предполагает, что на рабочем месте имеется влажная губка для снятия припоя и иных наслоений с рабочей поверхности жала. Набрав некоторое количество припоя с флюсом, оператор совокупляет спаиваемые детали, жало с припоем и, если надо, дополнительное количество припоя. Вся масса припоя переходит в жидкое состояние, припой растекается по месту пайки. Оператор ждет немного (неопределенное время - вот оно, искусство оператора!), затем удаляет жало, место пайки остывает, припой затвердевает. Что дальше? Дальше, скорее всего, оператор кладет паяльник на подставку. Некоторое количество материала спаиваемых деталей перешло в припой, который остался на жале. Паяльник лежит, интерметаллиды растут... Оператор снова берет паяльник, процесс повторяется. Как правило, жало начинают чистить, когда зола флюса начинает мешать работе. Очищайте жало перед предварительным набором припоя!!! Тогда припой в месте пайки будет свежим, без интерметаллидов и окислов припоя, - именно это я имел в виду. Многие юго-восточные производители стали применять для очистки жала вместо губки клубок металлической стружки. Очищает жало очень эффективно + более безвредно
2.6 Принцип работы стенда
Переключателями SA0-SA4 задается адрес требуемой ячейки памяти размером 8 бит. Логические элементы DD1.1, DD1.2, резистор R4, конденсатор C1 образуют одновибратор, формирующий импульс записи. Длительность импульса определяется сопротивлением резистора R4 и емкостью конденсатора C1. Кнопка SA5 находится в положении, соответствующем выбранной микросхеме. В этом случае светодиод HL1 отображает записанную в разряде D1 информацию. При нажатии на кнопку SA5 выходы программируемой микросхемы оказываются закрытыми, транзистор VT4 на короткое время закрывается, а транзисторы VT1-VT3 - открываются. На вывод 16 программируемой микросхемы подается повышенное напряжение. Кроме этого повышенное напряжение подается на один из выходов микросхемы, который подключается с помощью перемычки П1.
Список литературы
1. Новиков Ю.В. Основы цифровой схемотехники. Базовые элементы и схемы. Методы проектирования. М.: Мир, 2001. - 379 с.
2. Новиков Ю.В., Скоробогатов П.К. Основы микропроцессорной техники. Курс лекций. М.: ИНТУИТ. РУ, 2003. - 440 с.
3. Пухальский Г.И., Новосельцева Т.Я. Цифровые устройства: Учеб. пособие для ВТУЗов. СПб.: Политехника, 2006. - 885 с.
4. Преснухин Л.Н., Воробьев Н.В., Шишкевич А.А. Расчет элементов цифровых устройств. М.: Высш. шк., 2001. - 526 с.
5. Букреев И.Н., Горячев В.И., Мансуров Б.М. Микроэлектронные схемы цифровых устройств. М.: Радио и связь, 2000. - 416 с.
6. Соломатин Н.М. Логические элементы ЭВМ. М.: Высш. шк., 2000. - 160 с.
7. Титце У., Шенк К. Полупроводниковая схемотехника: Справочное руководство. Пер. с нем. -- М: Мир, 1982. -- 512 с.
8. Гнатек Ю. Р. Справочник по цифро-аналоговым и аналого-цифро-вым преобразователям: Пер. с англ. / Под ред. Ю. А. Рюжина. -- М.: Радио и связь, 1982. -- 420 с.: ил.
9. Горошков Б. И. Радиоэлектронные устройства: Справочник. -- М.: Радио и связь, 1984. -- 400 с.: ил.
10. Применение интегральных микросхем в электронной вычислительной технике: Справочник / Р. В. Данилов, С. А. Ельцова, Ю. П. Иванов и др.; Под ред. Б. Н. Файзулаева, Б. В. Тарабри-на. -- М.: Радио и связь, 1986. -- 384 с.: ил.
Подобные документы
Структурная схема и принцип работы информационного микротабло. Электрическая схема устройства. Программы и карты прошивки микросхем - постоянных запоминающих устройств. Конструкция микротабло, печатные платы, сборочный чертеж и особенности наладки.
курсовая работа [1,5 M], добавлен 15.10.2010Выпускаемые накопители информации. Основное описание внешних запоминающих устройств на гибких магнитных дисках. Физическое форматирование. Сущность накопителя на жестком магнитном диске. Описание работы стримера и оптических запоминающих устройств.
реферат [145,0 K], добавлен 26.11.2008Реализация булевых функций на мультиплексорах. Применение постоянных запоминающих устройств (ПЗУ). Структурная схема программируемых логических матриц (ПЛМ). Функциональная схема устройства на микросхемах малой и средней степени интеграции, ПЗУ и ПЛМ.
курсовая работа [524,1 K], добавлен 20.12.2013Структурная схема приемника прямого усиления. Применение, классификация, назначение, показатели устройств. Разработка структурной схемы. Исследование принципа работы приемника. Изготовление печатной платы устройства, порядок расположения деталей.
курсовая работа [3,9 M], добавлен 20.05.2013Рассмотрение конструкции реостатного измерительного преобразователя и принципа его работы. Изучение структурной схемы преобразования аналогового сигнала с измерительного регулятора в цифровую форму. Исследование принципа работы параллельного АЦП.
контрольная работа [557,0 K], добавлен 15.01.2012История развития устройств хранения данных на магнитных носителях. Доменная структура тонких магнитных пленок. Принцип действия запоминающих устройств на магнитных сердечниках. Исследование особенностей использования ЦМД-устройств при создании памяти.
курсовая работа [1,6 M], добавлен 23.12.2012Понятие и основные сведения о генераторах чисел, расчет функций возбуждения. Модель генератора на программе Altera. Временные диаграммы. Особенности и главные условия применения постоянных запоминающих устройств для реализации комбинационных устройств.
контрольная работа [442,5 K], добавлен 25.11.2013Рассмотрение особенностей современных электрических и радиотехнических устройств. Использование стабилизаторов для обеспечения постоянства напряжения. Исследование принципа работы импульсного стабилизатора, а также его моделирование в среде Micro-Cap.
лабораторная работа [3,0 M], добавлен 24.12.2014Зависимость работы некоторых устройств микроконтроллера от состояния дополнительных однобитовых запоминающих элементов — установочных битов (Fuse Bits). Исходные значения установочных битов. Конструкция и особенности работы генератора тактового сигнала.
реферат [381,3 K], добавлен 21.08.2010Понятие, виды, структура светодиодов, их свойства и характеристики, особенности принципа работы. Возможности, недостатки и эффективность светодиодных ламп. Применение органических светодиодов при создании устройств отображения информации (дисплеев).
реферат [587,6 K], добавлен 23.07.2010