Организация интеллектуальной сети в г. Кокшетау на базе платформы оборудования Alcatel S12

Анализ состояния существующей сети телекоммуникаций и обоснование необходимости создания интеллектуальной сети в г. Кокшетау. Разработка проекта интеллектуальной сети на базе платформы оборудования Alcatel S12. Эколого-экономическое обоснование проекта.

Рубрика Коммуникации, связь, цифровые приборы и радиоэлектроника
Вид дипломная работа
Язык русский
Дата добавления 30.08.2010
Размер файла 1,3 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Глобальная функциональная плоскость. Вторая плоскость модели - глобальная функциональная плоскость GFP согласно Q.1203 включает следующие основные элементы:

- базовый процесс обработки вызовов - ВСР;

- независимые от услуг конструктивные блоки - SIB;

- точки инициации - POI и точки завершения - FOR.

Блоки SIB обеспечивают выполнение стандартных многократно используемых сетевых функций. Базовый процесс обработки вызовов является специализированным SIB, который взаимодействует с другими блоками посредством точек инициации и завершения. Если в процессе обработки вызова встретится одна из точек инициации, то это приводит к определенной последовательности обращений к блокам SIB. По завершении этой последовательности обращений осуществляется воздействие на процесс обработки вызова, зависящее от точки завершения. В результате такого взаимодействия может быть обеспечена услуга или компонент услуги. Таким образом, ВСР описывает процесс обработки вызовов базовой сети связи, из которой осуществляется запрос на услуги ИС. Определенные на первом уровне INCM услуги декомпозируются на компоненты и на плоскости GFP объединяются в один или несколько SIB, которые при взаимодействии определяют глобальную логику услуги GSL (Global Service Logic). На рисунке 4.5 показан процесс взаимодействия GSL и ВСР, осуществляемый через точки POI и FOR [15].

Выполняемые блоками SIB операции и данные, необходимые для их выполнения, специфицированы в Q. 1213. Заметим, что ETSI требует наличия в ИС дополнительно еще семи блоков SIB.

Рисунок 4.5 - Взаимодействие GSL и ВСР

Распределенная функциональная плоскость. Согласно Q.1214 на третьем уровне INCM (распределенная функциональная плоскость - DFP) общесетевые функции определены в виде отдельных функциональных объектов FE. Специфицированные на плоскости GFP блоки SIB реализуются на плоскости DFP в виде последовательности функциональных объектов FEA, в результате выполнения которой возникают информационные потоки IF. В CS-1 определено 60 различных IF, соответствующих процедурам прикладного протокола INАР.

Узлы ИС, как правило, выполняют одну или несколько функций, которые делятся на три основные категории: функции, относящиеся к управлению вызовом, функции, относящиеся к управлению услугами и функции, обеспечивающие услуги (эксплуатационная поддержка и администрирование сети).

Функция коммутации услуг SSF тесно связана с функцией управления вызовом ССF. Обычно считается, что эти две функции образуют единый пакет SSF/CCF. Запрос на услугу, как правило, заключается в снятии трубки телефона и набору некоторого количества цифр. Роль функции коммутации услуг заключается в том, чтобы зафиксировать вызов и сформировать стандартный запрос. Функция управления вызовом не «интеллектуальна», но запрограммирована так, чтобы распознать запрос на услугу и послать его функции управления услугами SCF [6].

Функция SCF декодирует полученный запрос и интерпретирует его в контексте предоставляемых ИС услуг. После этого формулируется, кодируется и посылается стандартное подтверждение, отсылаемое функции коммутации услуг SSF. Процесс формулирования подтверждения может включать выполнение комплекса программ, в том числе, контакт с вызываемым абонентом и обращение к функции поддержки данных SDF.

Функция SSF, получив от SCF подтверждение, декодирует и интерпретирует его, а затем посылает функции ССF инструкции о том, как осуществить процесс установления соединением.

В процессе формулирования подтверждения от SCF к SSF может потребоваться диалог между SCF и вызывающим или вызываемым абонентом. Такой диалог обычно заключается в отправке подсказки и получении некоторой последовательности цифр. Функция SCF не имеет средств для непосредственного осуществления такого диалога, который происходит не иначе, как с помощью функции специализированных ресурсов SRF. Обычно SCF обращается к SRF с запросом о соединении абонента с соответствующим устройством, входящим в SRF (например, с речевым автоинформатором), и о необходимости получить от абонента определенные данные.

В отличие от описанного порядка взаимодействия между SSF, SCF и SRF, который осуществляется по инициативе абонентов, функции, касающиеся обеспечения услуг, инициируются операторами сети. Эти функции не связаны с каким-либо вызовом абонента или предоставлением конкретной услуги.

Функции SMF, SMAF и SCEF могут использоваться для удаления или изменения уже имеющихся услуг, а также для создания новых услуг. Это достигается путем изменения информации в SSF, SCF, SDF и SRF. Причем такие изменения не должны отражаться на качестве предоставляемых в этот момент услуг [7].

Физическая плоскость. На четвертом уровне INCM согласно Q.1205 определяются физические объекты (Physical entities - РЕ), способы отображения функциональных объектов на физические и описываются способы реализации сетевых элементов ИС. На рисунке 4.6 представлена физическая плоскость ИС.

Физическая плоскость состоит из следующих физических объектов:

- SSP (Service Switching Point) - узел коммутации услуг;

- SCP (Service Control Point) - узел управления услугами;

- SDP (Service Data Point) - узел базы данных;

- IP (Intelligent Peripheral) - интеллектуальная периферия;

- SN (Service nodes) - узел услуг;

- SMP (Service Management Point) - узел менеджмента услуг;

- SCEP (Service Creation Environment Point) - узел среды создания услуг;

- AD (Adjunct) - адъюнкт;

- SSCP (Service Switching and Control Point) - узел коммутации и управления услугами;

- SMAP (Service Management Access Point) - узел доступа администрирования услуг.

Распределение сетевых функций по узлам ИС может иметь следующий вид:

SSP. Кроме обеспечения пользователям доступа в телефонную сеть и выполнения любых необходимых для коммутации функций, SSP обеспечивает доступ к интеллектуальной сети. Он должен быть связан с узлами, выполняющими функции управления услугами (SCF), например, с узлами управления услугами SCP [13].

SCP. Этот узел имеет набор программ, обеспечивающих выполнение услуг и, возможно, обработки данных, получаемых от пользователей ИС. SCP выполняет функцию управления услуг SCF и, возможно, функцию поддержки данных SDF. SCP имеет прямой доступ к узлу SDP или может подсоединяться к нему через сеть сигнализации. При этом узел SDP может входить как в ту же сеть, что и узел SCP, так и в другие сети. Через сеть сигнализации SCP может быть связан с узлом коммутации услуг SSP и интеллектуальной периферией IP.

Рисунок 4.6 - Физическая плоскость ИС (по Q.1205)

SDP. Узел содержит данные, необходимые для предоставления индивидуализированных услуг, т.е. выполняет функцию поддержки данных. Доступ к SDP может быть получен либо через сеть сигнализации, либо через узел SCP или узел SMP. Различные узлы поддержки данных могут быть связаны друг с другом [16].

IP. Интеллектуальная периферия содержит средства, делающие услуги сети удобными для пользователей, например: запись речи пользователя, устройство распознавания речи, синтезатор речи. IP выполняет функции SRF, SSF и CCF. Последние две функции используются для обеспечения доступа к средствам, входящим в IP, который осуществляется по запросу из узла SSP.

SMP. Данный узел выполняет функции SMF, SMAF и функцию среды создания услуг SCEF. Он может быть связан с любым узлом ИС, управлять базами данных, тестировать сеть, управлять нагрузкой и проводить измерения различных характеристик сети.

SCEP. Данный узел выполняет функцию среды создания услуг и служит для разработки, формирования, тестирования и внедрения услуг в пункте их обеспечения SMP.

AD. Данный узел аналогичен узлу SCP, но имеет непосредственную связь с узлом SSP. Связь между вспомогательным узлом управления и узлом коммутации услуг поддерживается по высокоскоростному каналу.

SN. Данный узел напрямую связан с одним или более узлами SSP и выполняет функции SCF, SDF, SRF, а также функции SSF и CCF. При этом функции SSF/CCF в узле услуг тесно связаны с функцией SCF и недоступны из других узлов, выполняющих функцию управления услугами. Данный узел имеет возможности как у узлов коммутации услуг, управления услуг и интеллектуальной периферии, вместе взятых.

SSCP. Данный узел объединяет узлы коммутации и управления услугами и выполняет функции SSF, CCF, SCF, SDF, CCAF и, возможно, функцию SRF. SMAP. Данный узел дает некоторым избранным пользователям доступ к узлам менеджмента услуг SMP [7].

В заключение к данному разделу еще раз подчеркнем, что концептуальная модель представляет собой абстрактное средство для создания услуг ИС путем их последовательного описания «сверху вниз».

Вывод: текущие понятия набора услуг CS-1 включают ряд недостатков, которые обычно накладывают ограничения на описание продуктов:

- степень детализации низкого уровня CS-1 SIB недостаточна для моделирования сложных услуг. Процесс составления услуг и их свойств, основанный на CS-1 SIB, усложнен. Невозможно разбить услуги и сервисные свойства в функции высокого уровня или процессы для их дальнейшего совершенствования. CS-1 SIB разработаны для последовательного выполнения, в то время как необходимо параллельное выполнение сервисов. CS-1 рассматривает ИС как одиночный объект. SIB в CS-1 не позволяют моделирование услуги, поддерживающие несколько сетей;

- в CS-1 количество SIB ограничено. Только часть сервисных аспектов создания может быть обработана стандартизированным SIB;

- в CS-1 SIB поддерживают только услуги, связанные с вызовом. Услуги, несвязанные с вызовом - вне компетенции CS-1.

Указанные недостатки набора CS-1 планируется устранить в реализациях последующих наборов услуг CS-2, CS-3 и другие [6].

4.3 Прикладной протокол INAP и интерфейсы ИС

Для обеспечения передачи всей необходимой управляющей информации между узлами интеллектуальной сети при предоставлении интеллектуальных услуг необходимо применение соответствующей системы сигнализации. Разработанная в конце 70-х годов и стандартизированная на международном уровне универсальная общеканальная система сигнализации №7 (ОКС №7) обладает всеми необходимыми возможностями и в некоторой степени явилась одной из предпосылок появления концепции интеллектуальных сетей. В данном разделе рассмотрены основные положения использования ОКС №7 в интеллектуальных сетях.

Стандартизованная на международном уровне система общеканальной сигнализации ОКС № 7 предназначена для обмена сигнальной информацией в цифровых сетях связи с цифровыми программно-управляемыми станциями. Она работает по цифровым каналам со скоростью 64 кбит/с, управляя установлением соединений, передавая информацию для технического обслуживания и эксплуатации и может быть использована для передачи других видов информации между станциями и специализированными центрами сетей электросвязи. Сеть ОКС №7 по сути является специализированной сетью ПД с коммутацией пакетов переменной длины [12].

Одна из проблем развития связи заключается в обеспечении совместимости средств связи, разрабатываемых разными производителями. Для решения этой проблемы разработаны международные рекомендации и стандарты, использующие унифицированный язык и способы описания. Для описания функциональной архитектуры средств связи используется эталонная модель взаимодействия открытых систем (ВОС), описанная в рекомендации ITU-T X.200. Эталонная модель ВОС имеет следующие семь уровней: 1 - физический, 2 - канальный, 3 - сетевой, 4 - транспортный, 5 - сеансовый, 6 - представительный, 7 - прикладной.

Система сигнализации ОКС №7 разработана с учетом ее согласования с эталонной моделью ВОС. Система ОКС №7 также построена по многоуровневому принципу, но уровни модели ОКС №7 не идентичны уровням эталонной модели ВОС. Нижние уровни ОКС №7: первый уровень (звено передачи данных сигнализации) и второй уровень (канал передачи сигнализации) полностью согласуются с физическим и канальным уровнями модели ВОС. Третий уровень ОКС №7 - сеть сигнализации не обеспечивает все функции сетевого уровня модели ВОС: не выполняются полностью функции маршрутизации. Все три уровня ОКС №7 вместе называются подсистемой передачи сообщений (Message Transfer Part - МТР) [16].

В целом модель ОКС №7 состоит из двух основных частей:

- подсистемы передачи сообщений МТР;

- подсистемы пользователей и приложений.

Подсистема МТР является единой транспортной платформой, над которой расположены подсистемы пользователей и приложений, предназначенные для обеспечения соответствующих услуг связи. Эта подсистема предоставляет транспортную услугу без соединения, но с упорядоченной последовательностью передачи. Подсистема передачи сообщений МТР обеспечивает передачу информации в неискаженной форме, без потерь, дублирования и ошибок, в установленной последовательности, от одного пункта сигнализации к другому. Причем эта подсистема не анализирует значения передаваемых сигнальных сообщений, формируемых различными подсистемами пользователя. Благодаря такой независимости работы МТР от передаваемых сообщений имеется возможность реконфигурации и гибкого управления сигнальным трафиком при отказах или перегрузках в сети сигнализации. Следует заметить, что выполнение функций передачи сообщений в некоторых случаях выполняется совместно подсистемой МТР и подсистемой управления сигнальными соединениями SCCP.

Четвертый уровень ОКС (функции подсистемы пользователя) состоит из различных подсистем пользователей, каждая из которых определяет функции и процедуры сигнализации, характерные для определенного типа пользователя системы. Набор функций подсистемы пользователя может значительно различаться для разных категорий пользователей системы сигнализации [6].

4.3.2 Прикладной протокол INAP

Протокол INAP (Intelligent Network Application Protocol) является протоколом верхнего уровня в системе сигнализации ОКС №7 и обеспечивает взаимодействие между двумя основными объектами телефонной сети, построенной по принципам ИС, а именно между узлом коммутации SSP и узлом управления услугами SCP, как это показано на рисунке 4.7.

Рисунок 4.7 - Использование протокола INAP в интеллектуальной сети

Согласно рекомендации ITU-T Q.1218 для набора CS1 протокол INAP должен обеспечивать взаимодействие четырех функциональных элементов FE определенных в функциональной модели интеллектуальной сети [7].

В данном случае коммутатор услуг SSP реализует три функции:

- коммутации услуги SSF, суть которой состоит в выходе к SCP при обнаружении запроса на интеллектуальную услугу;

- управления вызовом ССР, т.е. само установление соединения через данную АТС;

- специализированных ресурсов SRF, то есть функцию интеллектуальной периферии IP.

Узел управления услугами SCF реализует единственную функцию - управления услугой SCF, т.е. контроль прохождения алгоритма реализации услуги согласно ее логике, определяемой международными рекомендациями.

Собственно протокол INAP представлен набором из подпротоколов ASE для выполнения отдельных операций, например, InitialDP и других. Если в SSF, например, обнаружена точка DP, инициализирующая услугу и требующая участия SCF, то функция SSF формирует сообщение, которое называется InitialDP Operation и посредством подсистемы транзакций ТСАР, где в свою очередь еще выделены два подуровня (компонентный и транзакций), начинается сеанс связи с соответствующими уровнями протоколов контроллера SCP. При этом используются также подсистемы, а также канал передачи данных ОКС №7 .

Для адресации сообщений INAP используются глобальные заголовки SCCP и коды пунктов сигнализации МТР, гарантирующие доставку сообщений INAP заданному физическому адресату, независимо от того, в какой сети этот адресат находится.

Для выполнения какой-либо удаленной операции в интеллектуальной сети формируется необходимое сигнальное сообщение, которое посредством соответствующего подпротокола ASE передается через многоуровневую цепочку протоколов системы ОКС №7 вниз и затем вверх. В европейских рекомендациях для набора услуг ИС CS-1 заданы 29 операций и 21 под-протокол ASE (часть операций обслуживается только парами операций типа запрос-ответ Request-Report, поэтому общее число ASE меньше числа операций) [16].

На практике при реализации первой очереди внедрения услуг ИС CS-1 протокол INAP-R значительно упрощается за счет уменьшения общего числа подпротоколов ASE. Упрощается также описание операций, так как уменьшается число передаваемых параметров, ошибок и т.д. Только жесткая стандартизация всех деталей протокола INAP-R обеспечивает использование оборудования разных поставщиков на интеллектуальной сети.

4.3.3 Интерфейсы ИС

В рекомендации ITU-T Q.1215 определен основной набор интерфейсов между физическими объектами ИС: SCP-SSP; AD-SSP; IP-SSP; SN-SSP; AD-IP; SCP-SDP [21].

Интерфейсы SCP-SSP, SCP-IP и SCP-SDP осуществляются стеком протоколов ОКС №7. Интерфейсы AD-SSP и AD-IP на верхнем уровне используют протокол ТСАР ОКС №7, а нижние уровни пока не специфицированы и здесь могут быть использованы протоколы аналогичные МТР и SCCP ОКС №7 (например, Х.25). В качестве интерфейсов IP-SSP и SN-SSP возможно применение базового метода доступа ISDN типа 2B+D. Пользователи применяют существующие интерфейсы базовой, по отношению к ИС, сети связи. Для сигнализации применяются либо стандартные аналоговые средства, либо сигнализация ISDN no D каналу (DSS1) [6].

Возможный сценарий сетевой физической архитектуры ИС с использованием основных функциональных и физических объектов из набора возможностей CS-1 приведен ранее на рисунке 4.6.

4.4 Реализация интеллектуальных сетей и варианты доступа к ИС

Международный опыт развития интеллектуальных сетей показывает, что, несмотря на разработанные стандарты и очевидные преимущества технологии ИС, внедрение последней в практику многих стран, например, таких как Россия, происходит, не так быстро, как хотелось бы. Это обусловлено проблемами экономической эффективности и техническим состоянием сетей связи, на базе которых реализуется технология ИС.

Как указывалось ранее, архитектура ИС описывается шестью основными функциональными узлами: SCP, SSP, SMP, SCEP, SDP и IP. Различная комбинация этих функций предопределяет разные варианты построения ИС, начиная от централизованной архитектуры - Service Node (SN) - «узел услуг» - до распределенной - «классической» (рисунок 4.8).

Рисунок 4.8 - «Классическая» архитектура ИС

Первый вариант - полномасштабное классическое решение в виде отдельных архитектурных элементов (рисунок 4.8):

- узел SSP - коммутатор ТфОП, оснащенный обратной связью с подключенным к нему компьютером;

- узел SCP, управляющий логикой предоставления услуг;

- узел SMP, предназначенный для ввода новых услуг и корректировки старых, содержащий данные обо всех оказываемых услугах, а также оригиналы всех программ обслуживания;

- среда создания услуг SCEP;

- интеллектуальная периферия IP, которая обеспечивает процесс предоставления услуг специализированными ресурсами (объявления, речевые подсказки и пр.);

- БД услуг SDP, хранящая данные, используемые программами логики услуг [7].

«Полная» или так называемая «классическая» архитектура ИС для первого набора услуг CS-1 предназначена для использования в больших или средних сетях с высоким трафиком. Она способна обеспечить на нынешнем этапе развития практически все требования, как операторов, так и будущих пользователей. Но эта система достаточно дорогая. Поэтому компании, которых интересует, прежде всего, дешевизна и компании, которые хотят сначала оценить эффективность от внедрения новых услуг, часто выбирают другие варианты.

К одной из таких конфигураций относится вариант реализации ИС на базе узла услуг SN (рисунок 4.9), совмещающий в себе все необходимые функции ИС (SSP, SCP и IP) на единой платформе и являющийся независимым и полностью автономным сетевым элементом. Узлы услуг подключаются к сети связи по существующим системам сигнализации. Таким образом, практически все речевые соединения проходят через узел SN. Внимание должно быть обращено на наличие открытых интерфейсов, соответствующих национальным спецификациям, которые позволяют при росте трафика осуществить безболезненный переход от SN к более производительным конфигурациям. Общим требованием к базовой сети является то, что при установке SN сервис-провайдер должен обеспечить поддержку системы сигнализации ОКС №7, которая связывает все узлы «классической» ИС со всеми АТС телефонной сети. Напротив, узлы типа SN обычно могут работать с ТфОП по цифровым потокам, принятым в данной стране. И это очень важно для Казахстана, где в региональных телефонных сетях ОКС №7 не всегда поддерживается. Кроме того, для передачи абонентами ИС дополнительной информации (например, номера телефонной карты) в качестве абонентских терминалов, как правило, используются ТА с тональным режимом набора номера. Однако в странах, где принят преимущественно декадный способ набора номера, развитие услуг сдерживается из-за необходимости замены парка ТА. Если даже разом заменить все аналоговые АТС на цифровые, то вряд ли удастся заставить всех абонентов заменить свои ТА, поэтому несколько теряется смысл введения ИС. Построение ИС с узлом типа SN позволяет решить проблему за счет более гибкой реализации функции узла SSP [7].

Следующей конфигурацией ИС, которую целесообразно рассмотреть, является архитектура с вынесенными из узла услуг функциями SSP (рисунок 4.10). Такое построение ИС позволит обеспечить обработку большего трафика и является хорошим решением по внедрению услуг ИС для тех операторов, которые имеют на своей сети станции с функциями SSP, обладающие протоколом INAP-R.

Здесь функции коммутации и управления вызовами выполняются станциями, а их взаимодействие с платформой ИС осуществляется по протоколу INAP. Такая архитектура выгодно отличается от структуры узла услуг экономией емкости коммутационного поля и числа речевых каналов при предоставлении услуг ИС. Она способна поддерживать большой пакет услуг без каких-либо заметных ограничений [7].

Рисунок 4.9 - Конфигурация ИС на базе узла услуг SN

Рисунок 4.10 - Архитектура ИС с вынесенными из платформы функциями SSP

Достаточно простым решением для внедрения таких услуг ИС, где отсутствует необходимость предоставления речевых уведомлений или существуют другие возможности их реализации, а ожидаемый трафик оценивается как средний, является конфигурация с вынесением функций IP из платформы (рисунок 4.11).

Функции контроля и административного управления ИС располагаются на единой платформе, а функции коммутации и управления вызовами выполняются в станциях. Специальные ресурсы обеспечиваются внешней интеллектуальной периферией IP или в ограниченном объеме могут предоставляться системами коммутации. В этом случае при росте трафика, числа абонентов или развитии услуг и необходимости перехода к более мощной системе не требуется каких-либо модификаций в спецификациях услуг ИС или в данных абонентов услуг.

Рисунок 4.11 - Архитектура ИС с вынесенными из платформы функциями SSP и IP

На первом этапе внедрения ИС целесообразно работать только с одним поставщиком оборудования. Поставщики программно-аппаратных средств ИС предлагают на рынке досконально проработанные алгоритмы предоставления услуг. Они облегчают изучение особенностей ИС и способствуют более быстрому внедрению новых услуг [12].

Сеть ИС ГТС целесообразно развивать поэтапно: от варианта наложенной сети с SSP, интегрированными в УСС, до полномасштабной реализации ИС с SSP на уровне оконечных цифровых АТС, позволяющей оптимально перераспределять трафик вызовов ИС и расширять перечень предоставляемых клиентам МГТС услуг, начиная от сравнительно небольшого их числа, рекомендуемого для первого этапа внедрения в Республике Казахстан, и заканчивая полным набором возможностей CS-1. Для г.Кокшетау, где сеть полностью цифровая доступна полномасштабная реализация ИС с SSP.

Основные преимущества ИС станут очевидными в процессе реализации возможностей CS-2, которые, кроме поддержки пользователей подвижной связи, будут способны обеспечить реальное взаимодействие между различными сетями по предоставлению услуг ИС.

4.5 Программное обеспечение ИС и создание интеллектуальных услуг

4.5.1 Создание услуг и испытательная среда для ИС

Для реализации гибких функций создания, предоставления и модификации услуг, являющихся неотъемлемой частью интеллектуальной сети, необходима не только среда, в которой услуга может быть создана и модифицирована, но также среда, в которой действие созданных услуг может быть подтверждено.

Создание услуги включает в себя построение глобальной логики обслуживания (GSL) посредством соединения определенных заранее программных функциональных блоков. В соответствии с рекомендациями CS-1, каждый из таких программных блоков, строится из SIB.

Другими словами, процесс создания услуги состоит из двух этапов: на первом этапе элементарные блоки необходимо соединить в цепь, образовав программный блок, реализующий какую-либо функцию услуги. На втором этапе следует объединение полученных блоков в услугу [6].

Для подтверждения работы услуги необходимо сначала верифицировать действие отдельных блоков услуг, а затем - действие самой услуги. Логическая проверка структуры услуги и составляющих ее блоков обеспечивается программным обеспечением SCEP. Однако этот уровень проверки не гарантирует корректности поведения каждого функционального объекта (FE) и физического объекта (РЕ), участвующего в процессе предоставления услуги, в результате чего непосредственное внедрение услуги в коммерческую сеть может быть сопряжено с риском. Для исключения такого риска необходима среда более высокого уровня, обеспечивающая моделирование работы отдельных функциональных и физических объектов [7].

4.5.2 Программное обеспечение ИС

Обычно интеллектуальные сети строятся на базе UNIX-систем, как наиболее адаптивных для сетевого взаимодействия. Кроме того, UNIX-системы обладают очень высокой степенью надежности и устойчивой защитой, что очень важно для ИС. Структура программного обеспечения SCP Alcatel 1425 приведена на рисунке 4.12. В его основе лежит многозадачная операционная система UNIX. Ядро программного обеспечения образуют операционная система, пользовательский интерфейс GUI, система управления файлами FMS и стеки протоколов ОКС-7 (для связи с SSP), Х.25 и TCP/IP (для связи с SMS). Над ядром находятся система управления реляционной базой данных ORACLE, которая содержит административные, постоянные и динамические данные, а также интерпретатор логики услуг SLI. Самый верхний уровень программного обеспечения образуют программы реализации логики услуг SLR [13].

ПО имеет высокий коэффициент готовности, возможность наращивания памяти процессоров в рабочем состоянии, коррекции без значительного снижения готовности, высокую производительность обработки вызовов и очень короткое время реакции. В результате, SCP обеспечивает устойчивую работу в сочетании со средствами обработки, ориентированными на транзакции, которые могут обработать большой объем внешних сообщений с минимальной задержкой.

Все программное обеспечение условно разделяется на слои.

Самый нижний уровень, собственно операционная система UNIX, предназначен для управления системными ресурсами (такими как процессор, жесткие диски и т.д). OMNI-платформа осуществляет функции связи с SSP.

Реализованные на втором уровне функции по администрированию баз данных и функциональных библиотек представляют базовые блоки обмена и управления данными, обработки вызовов.

Самый верхний уровень содержит приложения по общему управлению SCP, контролю обработки вызовов и обработке перегрузок [6].

Рисунок 4.12 - Программные слои SCP

Следует отметить, что при создании интеллектуальной сети на каждый ее узел (SCP, SMP, SCEP и т.д.) создается индивидуальное ПО. В зависимости от поставщика ИС, варьируется и набор ПО для сети.

4.5.3 Программное обеспечение создания услуг

Наиболее интересную часть программного комплекса интеллектуальной сети представляет собой ПО центра создания услуг. Именно здесь формируется сервисная логика будущей услуги. Поставщики оборудования постарались упростить этот процесс, предоставив пользователю среду визуального программирования. В результате этого, создание новой услуги превратилось в процесс построения взаимоувязанных иерархий услугонезависимых блоков - «дерева услуги». Интерфейс интуитивно понятен и не требует особых навыков работы при поставке платформы ИС, к тому же фирма-производитель проводит обучение будущих пользователей. При работе с программой пользователю предлагается стандартный графический интерфейс операционной системы, на базе которой установлено программное обеспечение, палитра услугонезависимых блоков и все необходимые для построения услуги панели инструментов.

На первом этапе создания сервисной логики при помощи стандартных функций drag&drop («перетащи и оставь»), подключая дополнительные SIB, можно расширить услугу новыми возможностями. Программное обеспечение большинства производителей платформ ИС предоставляет возможность повторного использования отдельных функциональных блоков услуг. Иными словами, программист может создать свой, независимый от услуги программный блок, выполняющий определенную функцию, и использовать его в дальнейшем без повторного конструирования. Часто такие блоки становятся предметом сделок купли-продажи между провайдерами ИС [7].

Следующим этапом проектирования услуги является установление связей между блоками и создание условных переходов.

После установления взаимосвязей между блоками есть возможность задать параметры каждого SIB или соединения между ними.

Так, на рисунке 4.13 схематично изображен фрагмент упрощенного «дерева услуги» по выполнению покупки в магазине через телефон, на котором прямоугольниками изображены услугонезависимые блоки, ромбами - условные переходы, а стрелками - взаимосвязи между ними. Каждый из блоков имеет управляющие параметры, позволяющие изменять их поведение в зависимости от потребностей пользователя и провайдера услуги. Так, условный переход «Проверить время» выбирает нужный путь дальнейшего выполнения услуги в зависимости от параметра «время закрытия магазина», значение которого устанавливается провайдером или абонентом услуги.

Рисунок 4.13 - Фрагмент «дерева услуги»

У большинства производителей система разработки услуг также включает в себя модуль проверки корректности «дерева услуги». Такая проверка не гарантирует работоспособности услуги, а лишь позволяет избежать элементарных ошибок. После такой проверки происходит компиляция (сборка) программы [7].

Однако следует отметить, что для того, чтобы создать принципиально новую услугу провайдеру, все же, приходится обращаться к производителю платформы с целью разработки дополнительных наборов SIB.

В процессе создания услуги параллельно с логикой создаются и таблицы баз данных, используемых для хранения служебной и пользовательской информации. Внесение необходимой информации в базу данных происходит на этапах внедрения и эксплуатации услуги. Если ранее при необходимости предоставления пользователю возможности актуализации баз данных ему приходилось устанавливать выделенный терминал, подключенный к платформе ИС, то с развитием Интернет эта функция стала доступна через WWW.

4.6 Реализация ИС на базе оборудования Alcatel 1000 S12

Конфигурация программно-аппаратных комплексов платформы IN компании Alcatel приведена на рисунке 4.14. Основными элементами архитектуры IN Alcatel, поставляемыми в настоящее время, являются SSP Alcatel 1000 S12, SCP Alcatel 1425 или 1420, SMP Alcatel 1435 или 1430, SCE Alcatel 1452. Оборудование Alcatel в разное время (начиная с 1990 г.) было использовано при построении сетей IN в Бельгии, Бразилии, Германии, Франции и других странах [11].

Рисунок 4.14 - Платформа IN компании Alcatel

4.6.1 Узел SSP на базе Alcatel 1000 S12

Узел SSP может быть реализован на основе станции Alcatel 1000 S12 любой версии простым добавлением ПО и оборудования без прерывания работы станции (рисунок 4.15). SSP обнаруживает запускающие события, которые указывают, что вызов требует доступа к услуге ИС. Средства запуска полностью зависят от вида услуг. Выбор типа запуска основан на ряде механизмов, определенных ITU-T в наборе CS-1, таких как коды специального доступа (набранные цифры), идентификация вызывающей или вызываемой стороны, идентификация входящего тракта, дополнительные услуги, на основе коммутации с управлением в ИС.

Рисунок 4.15 - Архитектура Alcatel 1000 S12

ТСЕ - Управляющий элемент модуля; НССМ - Модуль общего канала сигнализации; ASM - Модуль аналоговых абонентских линий; DIAM - Модуль автоответчика; ISM - Модуль абонентских линий ISDN; SCM - Модуль служебных комплектов; DTM - Модуль цифрового тракта ИКМ ; ЕСМ - Модуль эхозаградителей; DLM - Модуль звена данных; ТТМ - Модуль тестирования трактов; IPTM - Модуль коммутации пакетов; DCM - Модуль цифровой конференц-связи; IRIM - Модуль интерфейса выносного блока ISDN; P&L - Модуль периферии и загрузки; СТМ - Модуль тактовых и тональных частот.

Разработаны функции, которые взаимодействуют с базовой функцией обработки вызовов для управления разными фазами вызова ИС. Каждый такой вызов состоит из последовательности соединений [12].

Функции управления данными SSP позволяют SCP считывать и записывать информацию (например, данные таксации и измерения трафика).

Применяются специальные механизмы для защиты SCP от перегрузки или отказа узла (например, запрет или разрешение вызовов в определенный промежуток времени, постановка в очередь).

Для управления интерфейсом SSP/SCP расширена обработка сигнализации. Для обеспечения внедрения быстро меняющихся услуг в обычной сети, между пунктами доступа ИС, SSP и логикой управления услуг в SCP предусмотрены услугонезависимые интерфейсы. Протокол IN АР фирмы Alcatel, используемый в интерфейсе SSP/SCP, обеспечивает ряд услугонезависимых операций, согласованных в основном с версией ETSI Core INAP, предоставляет дополнительные возможности (например, манипуляция сторонами). Наряду с протоколом INAP фирма Alcatel, для взаимодействия в сетях с оборудованием от нескольких поставщиков, обеспечивает интерфейс с INAP ETSI (CS-1). Напомним, что протокол INAP является подсистемой 4-го уровня в системе сигнализации ОКС №7.

Функция специальных ресурсов (SRF), используемая при выполнении услуг под контролем интеллектуальных узлов, встроенная в станции Alcatel 1000 S12, peaлизована с помощью ряда модулей динамических интегрированных автоответчиков (DIAM) и модулей служебных комплектов (SCM).

4.6.2 Узел SСР платформы IN Alcatel

Компания Alcatel поставляет оборудование SCP двух типов - Alcatel 1420 и Alcatel 1425. Оборудование первого типа предназначено для корпоративных сетей и имеет специфические программно-аппаратные интерфейсы, в то время как Alcatel 1425 применяется для работы в сетях общего пользования в качестве узла управления услугами в составе открытой платформы и имеет стандартные интерфейсы.

SCP Alcatel 1425 представляет собой распределенную многопроцессорную программно-аппаратную платформу (рисунок 4.16), состоящую из процессоров переднего плана FEP и процессоров зад него плана ВЕР, объединенных локальной сетью Ethernet. Системные данные хранятся на накопителях на жестких дисках, подключенных к шине стандарта SCSI. Для загрузки системы используется CD-ROM. Объем памяти и число модулей FEP и ВЕР определяются обслуживаемой нагрузкой.

К процессорам переднего плана подключаются первичные тракты ИКМ, в которых организованы каналы ОКС-7. Процессоры FEP реализуют подсистемы МТР, SCCP и ТСАР. Процессоры ВЕР работают в режиме разделения нагрузки, содержат функциональные объекты SCF и SDF и реализуют протокол INAP.

Процессорный блок ВЕР выполнен на базе сервера Alfa 4100 компании DEC и содержит до 4 процессоров типа Alfa Processor с общим объемом оперативной памяти 8 Гбайт, объединенных 128-битной системной шиной со скоростью передачи 1.1 Гбайт/с. Отдельный модуль преобразует системную шину в 64-битовую шину стандарта PCI, к которой подключены внешние устройства (накопители, порты и контроллеры шин SCSI и EISA, а также контроллеры локальной сети) [7].

Рисунок 4.16 - Структура SCP Alcatel

Узел SCP Alcatel 1425 хранит логику и данные служб, требуемые для предоставления услуг ИС. SCP основан на мультипроцессорной системе связи Alcatel 8300 реального времени. Основное оборудование дублировано. ПО состоит из ОС реального времени и прикладного ядра для выполнения услуг и управления. Alcatel 8300 является базовым строительным блоком ряда изделий Alcatel в области ИС, пакетной коммутации, сетей подвижной связи и т.д.

Каждый блок Alcatel 1420 рассчитан на обработку более 100 попыток вызовов в секунду. При нормальных условиях он обрабатывает более 20000 одновременных вызовов. В условиях перегрузки, система может обеспечить ограниченное обслуживание до 500 попыток вызовов в секунду.

Основная функция SCP - выбор и исполнение программ логики услуги (ЛУ), запускаемых внутри (по распознаванию условий, таких как время суток или сочетание внутренних событий) или от функциональных внешних условий (например, по получению воздействий от SSP).

Обработка вызовов осуществляется SSP в реальном времени под управлением SCP и контролируется функциями ЛУ, включенными в ядро прикладных процессов. Такими процессами является интерпретатор ЛУ, предназначенный для связывания и мониторинга выполняемых действий, а также библиотека элементарных операций, состоящая из стандартных подпрограмм, выполняющих требуемую обработку для запрошенной услуги.

Управление обработкой вызовов дополнено прикладными процессами, основанными на специфичных элементарных операциях, и записью, которая определяет стандартные и специфичные операции, требуемые для услуги.

При запросе интерпретатор ЛУ анализирует запись вызванной услуги, запускает элементарные операции, указанные в записи, контролирует их выполнение и дистанционно контролирует SSP, использующий операции ИС.

Кроме управления обработкой вызовов, элементы управления обслуживают функции приобретения, используемые в административном управлении, администрации и техобслуживании.

Существуют механизмы для переноса данных из реляционной базы данных SMP в БД реального времени SCP. Общение между SMP и SCP происходит по протоколу Х.25. СУБД реального времени содержит все данные, требуемые для обработки вызовов и механизмов адаптации, а также проверки согласованности между SCP и SMP [6].

4.6.3 Узел SMP платформы IN Alcatel

SMP Alcatel 1435 обеспечивает управление узлами, обрабатывающими службами, используя различные функции, такие как управление услугой, доступ службы таксации, измерение трафика, функции доступа оператора или абонента услуги и контроль SCP.

Узел SMP представляет собой ПК с ОС UNIX. SMP и SCP общаются по протоколу Х.25 (рисунок 4.17). Платформа SMP определяет инфраструктуру управления и окружение для поддержки услуг ИС. В узле SMP расположена платформа общего ПО, используемая всеми услугами ИС, с тем, чтобы не производить разработку аналогичных функций для каждой новой услуги [12].

Эта платформа выполняет следующие функции:

- прикладные (для услуг) функции поддержки программирования, которые включают интерфейсы ОС, реляционной БД и связи с SCP и операторами;

- управление общими функциями, имеется услугонезависимая платформа, занимающаяся общими функциями SCP, такими как управление SCP, управление платформы SMP, ОС UNIX и административного управления ORACLE;

- управление конфигурацией, которое обеспечивает функции контроля, идентификации и сбора данных от SMP и посылки данных к SMP, а также обеспечивает возможность создания, считывания, модификации и удаления данных в SCP;

- управление параметрами, обеспечивающее оценку и индикацию показателей работы узлов ИС и услуг. Они собирают статистические данные для контроля и коррекции качества обслуживания в ИС;

- управление доступом, которое обеспечивает требуемую безопасность в отношении доступа пользователя. Когда пользователь подключается к системе, он получает уведомление о входе, в котором запрашивается идентификация пользователя и пароль для проверки права доступа;

- управление сбоями, обеспечивающее обнаружение, локализацию и коррекцию любых ненормальных действий службы ИС;

- управление измерениями, отвечающее за активацию, сбор, обработку и отображение результатов измерений показателей работы SCP и самого SMP.

Существуют постоянные измерения, которые после активации всегда присутствуют в SMP, и измерения по запросу, более детальные, которые делаются только по отдельному запросу.

Рисунок 5.17 - Структура SMP Alcatel

4.6.4 Узел SCE платформы IN Alcatel

SCE Alcatel 1452 реализована в виде специализированной программной среды, работающей в качестве прикладной программы под управлением операционной системы Windows. Среда обеспечивает возможность описания услуги с использованием палитры библиотечных блоков SIB, проверку алгоритма функционирования услуги посредством моделирования, описание графического интерфейса пользователя услуги для SMR конфигурирование конечных автоматов, прогнозирование показателей качества обслуживания и развития сети [7].

В каждом из блоков SIB, используемых при работе с редактором услуг, инкапсулировано несколько объектов и методов доступа к ним с целью их конфигурации (используются при создании части программного обеспечения услуги, необходимой для SMP) и с целью их применения (используются при создании части программного обеспечения услуги, необходимой для SCP).

В отдельном программном модуле содержится описание структуры сети - количество SCR SMP и их аппаратная конфигурация. Это обеспечивает возможность генерировать на этапе создания услуги конфигурационные файлы для каждого элемента сети. Другой модуль предназначен для выбора параметров собираемой статистики, определения обслуживаемой нагрузки и ресурсов платформы, отводимых для предоставления услуги [12].

4.6.5 Интеллектуальная периферия IP

Интеллектуальная периферия Alcatel предоставляет такие услуги, как передача фраз автоинформаторов, прием цифр (DTMF), синтез и распознавание речи, конференц-связь, а также передачу и прием факсов. Она может быть реализована как часть SSP или автономная система, в зависимости от требуемой емкости и предпочтений заказчика.

IP взаимодействует с сетью по ряду существующих интерфейсов абонентов и У АТС. Дополнительно можно использовать различные протоколы ПД для доступа к компьютеру, используемому как удаленная дистанционная БД.

IP используется, например, для указания вызывающей стороне набрать дополнительную информацию (например, номер кредитной карты или PIN код). В применении DTMF приемники тонов в IP декодируют ответы пользователей. Сегодня имеются системы распознавания речи, способные декодировать ограниченный набор слов. Они развиваются в мощные системы, способные к распознаванию ключевых слов в речевой фразе и распознаванию речи [7].

4.7 Конвергенция интеллектуальных и мобильных сетей

В последнее время все заметнее стала проявляться конвергенция интеллектуальных сетей, создаваемых на базе стационарных сетей связи и беспроводных сетей подвижной связи. Это обусловлено тем, что архитектура ИС и архитектура сетей подвижной связи очень сходны. При определении местоположения мобильного абонента между элементами сетей подвижной связи применяется сигнализация, основанная на принципах транзакций, похожая на ту, которая используется при запросе услуги ИС. Центр коммутации сети подвижной связи (MSC -- Mobile switching center), к которому попадает вызов, направленный к абоненту обслуживаемой этим MSC сети, передает в регистр местоположения «домашних» абонентов (HLR -- Home location register) запрос о том, где находится в данный момент этот абонент (рисунок 4.18). HLR постоянно обновляет информацию о местоположении абонента на основе данных, получаемых из последней «визитной» сети, в которой тот оказался, и по запросу MSC передает ему информацию, необходимую для маршрутизации.

Однако ни стационарные ИС, ни сети подвижной связи не обладают теми возможностями, какие могла бы иметь сеть, соединившая в себе свойства и тех, и других. Стационарные ИС-сети (как с набором CS-1, так и с набором CS-2) не владеют в полной мере механизмами поддержки мобильности, а сети подвижной связи не способны адекватно обеспечивать принцип независимости от услуг, присущий концепции ИС. Естественно, что операторы сетей подвижной связи стремятся овладеть преимуществами, предлагаемыми концепцией ИС, а операторы стационарных сетей ИС заинтересованы в услугах, поддерживающих мобильных абонентов [21].

Независимо от того, какой подход использован к формированию беспроводной интеллектуальной сети, она приобретает такие присущие сетям подвижной связи черты, как необходимость контроля передвижения мобильного абонента, специфика радиодоступа и проблемы роуминга услуг [7].

Возможны два основных подхода к конвергенции мобильных и интеллектуальных сетей. Первый - сформировать или «наложить» концепцию ИС на архитектуру существующих сетей подвижной связи; второй -- дополнить свойствами поддержки мобильности концепцию ИС, ориентированную преимущественно на стационарные сети. Выбор того или другого подхода зачастую определяется заинтересованной стороной (т.е. администрацией сети подвижной связи или сети ИС).

Рисунок 4.18 - Архитектура ИС (1) и сети подвижной связи (2)

Второй подход, которому следует МСЭ-Т, предполагает, что организовать полную поддержку мобильности в ИС можно будет не ранее реализации набора CS 4, после завершения работ по спецификации систем связи третьего поколения. Первый подход более прагматичен и может быть реализован достаточно простыми средствами в ближайшем будущем. Однако его сторонники тоже разделились на две группы [6].

Первая группа придерживается мнения, что протоколы сигнализации, используемые в сетях подвижной связи (MAP IS-41 или MAP GSM), фактически уже являются протоколами ИС. Такая точка зрения основана на убеждении, что процесс доставки вызова к мобильному абоненту есть услуга ИС, и что сетевые объекты, которые выполняют эту функцию (HLR), по существу представляют собой специализированные пункты управления услугами (SCP). Сказанное подтверждает сравнение процедур запроса данных о местоположении мобильного терминала и запроса услуги ИС - обе процедуры приводят к обмену инструкциями, нужными для маршрутизации и для установления соединения. В связи с этим предлагается модифицировать существующий протокол подвижной связи в соответствии с концепцией ИС и адаптировать его к более унифицированным требованиям, после чего любое различие между запросами, специфическими для подвижной связи, и запросами услуг ИС будет «размыто».

Вторая группа признает схожесть прикладных протоколов сетей подвижной связи и сетей ИС, однако считает первые недостаточно общими для того, чтобы они могли поддерживать концептуальные идеи ИС. Поэтому предлагается рассматривать обращение к услуге ИС в сети подвижной связи как процесс, который происходит в значительной степени независимо от сигнализации, служащей для установления соединения, и свести к минимуму роль HLR в реализации услуг ИС. Доставка вызова мобильному абоненту считается основной функцией, а не услугой ИС. Операции, используемые для доставки вызова, не изменяются с введением операций ИС, поскольку последние не зависят от протокола установления соединения. Различие между сигнализацией, специфической для подвижной связи, и сигнализацией для поддержки услуги усиливается, поскольку та и другая остаются логически разными [21].

Учитывая потребность в конвергенции концепции ИС и свойств мобильности, организации, занимающиеся стандартизацией, разрабатывают стандарты в этой области.

Примеры услуг, ориентированных на мобильных абонентов.

Контроль использования (Control of Use). Данная услуга объединяет такие возможности, как:

- контроль доступа (Access control) к мобильной станции (MS);

- «экранирование» вызовов (Call screening).

Услуга контроля доступа состоит в том, что клиент получает персональный идентификационный номер (PIN), с помощью которого проводится процедура аутентификации и задания-снятия функций ограничения доступа. Основное преимущество - снижение риска несанкционированного использования и, соответственно, сокращение незапланированных расходов.

Услуга по «экранированию» вызовов касается ограничения, как входящих, так и исходящих звонков, причем существует возможность наложения ограничений на местонахождение, время, а также номер абонента. Последнее реализуется путем составления списков баз данных разрешенных и неразрешенных номеров. Данная услуга важна не только для сокращения расходов, но и для ограничения нежелательных вызовов [6].

Виртуальные частные сети (Virtual Private Network). Данная услуга предполагает создание внутри существующих сетей подвижной связи (GSM/DCS) частных виртуальных сетей (VPN) с выделенным планом нумерации для абонентов VPN.

Услуги по предоплате PPS (Pre Paid Service). Предварительно оплаченные услуги организованы таким образом, что абонент является доступным для входящих и исходящих вызовов до тех пор, пока на его счете имеется определенная сумма. Логика услуги осуществляет контроль за распределением средств на счете абонента PPS и обеспечивает возможность подсказок и предупреждений абонента в различных ситуациях с помощью воспроизведения соответствующих автоматических объявлений.

Внедрение услуг с предварительной оплатой доказало, что успех может быть достигнут незамедлительно. Во многих странах количество «предоплатных» абонентов составило 10% от всей абонентской базы уже в первые месяцы после внедрения услуги. Чем же данная услуга привлекательна для абонентов?

Не нужен долгосрочный контракт с тем или иным оператором сети.

Не нужно регулярно платить абонентскую плату.

Анонимная подписка.

Проще сменить оператора.

Данной услугой могут пользоваться абоненты с существующими терминалами и SIM-картами.

Описанные выше возможности являются лишь малой частью по сути неограниченных возможностей интеллектуальной сети. Достаточное количество подобного рода и прочих услуг предоставляется в зависимости от воображения клиента и потребностей рынка.

В рассмотренном примере отчетливо обозначена тенденция дальнейшего взаимопроникновения независимо развиваемых концепций ИС и систем подвижной связи [21].

5 Проверочный расчет числа межстанционных соединительных линий на ГТС по укрупненным показателям


Подобные документы

  • Обзор существующего положения сети телекоммуникаций г. Кокшетау. Организация цифровой сети доступа. Расчет характеристик сети абонентского доступа. Характеристики кабеля, прокладываемого в домах. Расчет затухания линии для самого удаленного абонента.

    дипломная работа [4,2 M], добавлен 27.05.2015

  • Понятие и структура городской телефонной сети, ее основные элементы и принципы построения, предъявляемые требования. Технические данные ALCATEL 1000 S-12, характеристика функциональных модулей. Расчет интенсивности нагрузок и объема оборудования.

    курсовая работа [29,7 K], добавлен 16.04.2010

  • Организация предоставления коммерческих услуг на базе магистральной мультисервисной транспортной сети. Состав оборудования. Расчет параметров проектируемой сети, срока окупаемости проекта. Организационно-технические мероприятия по технике безопасности.

    курсовая работа [923,4 K], добавлен 04.03.2015

  • Обзор систем речевого оповещения и радиовещания через Интернет. Организация музыкальной трансляция на базе компьютера. Методика расчёта систем оповещения. Разработка радиовещательной сети технического университета. Экономическое обоснование проекта.

    курсовая работа [4,6 M], добавлен 27.10.2011

  • Анализ сети телекоммуникаций города Гомеля, предпосылки модернизации оборудования АТС-57. Виды мультисервисных сетей. Архитектура и технические характеристики коммутационной системы Alcatel 1000 S12. Надежность аппаратуры связи, программное обеспечение.

    дипломная работа [1,9 M], добавлен 01.12.2016

  • Способы построения мультисервисной сети широкополосной передачи данных для предоставления услуги Triple Play на основе технологии FTTB. Обоснование выбранной технологии и топологии сети. Проведение расчета оборудования и подбор его комплектации.

    дипломная работа [5,6 M], добавлен 11.09.2014

  • Характеристика существующего фрагмента узлового района городской телефонной сети. Описание проектируемой цифровой системы коммутации. Характеристика коммутационного оборудования, анализ схемы организации связи. Технико-экономическое обоснование проекта.

    дипломная работа [3,6 M], добавлен 21.03.2014

  • Инженерно-техническое обоснование создания сети DWDM на действующей магистральной цифровой сети связи (МЦСС) ОАО "РЖД". Расчет качества передачи цифровых потоков в технологии DWDM. Обоснование выбора волоконно-оптических линий связи. Анализ оборудования.

    дипломная работа [4,1 M], добавлен 26.02.2013

  • История и особенности развития технологий беспроводного доступа. Разработка плана и обоснование построения сети беспроводной связи на основе стандарта Wi-Fi (IEEE-802.11n) в общежитии института. Технико-экономическое обоснование внедрения данного проекта.

    дипломная работа [3,4 M], добавлен 28.01.2011

  • Характеристика сети, типы модулей сети SDH. Построение мультиплексного плана, определение уровня STM. Расчет длины участка регенерации. Особенности сети SDH-NGN. Схема организации связи в кольце SDH. Модернизация сети SDH на базе технологии SDH-NGN.

    курсовая работа [965,7 K], добавлен 11.12.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.