Устройства генерирования и канализации субмиллиметровых волн
Проблема генерирования колебаний в субмиллиметровом диапазоне радиоволн. Ламповые и полупроводниковые генераторные приборы, резонансные устройства, волноводы; канализация энергии. Распространение, военные и гражданские применения радиотехнических систем.
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Затухание двухрешетчатого аттенюатора подсчитывает-ся по формуле:
Дб. (4.5)
4.3 Модуляторы
Используемые в диапазоне субмиллиметровых волн генераторные лампы не дают возможности осуществлять амплитудную модуляцию сигнала без сколько-нибудь заметных смещений частоты. Здесь практически приемлемой становится лишь амплитудная модуляция в линии передачи, основанная на активном поглощении части энергии без заметного отражения в источник излучения, так как последнее также может привести к неустойчивости частоты генератора.
Полупроводники, проводимость которых может электрическим путем меняться во много раз, позволяют создать активные модуляторы для линий передачи всех диапазонов длин волн начиная от метровых и кончая коротковолновым участком инфракрасного спектра. Основные конструктивные особенности модуляторов в соответствующем диапазоне частот в значительной степени определяются механизмом взаимодействия электромагнитных волн с полупроводниковым материалом и способом канализации энергии.
Поскольку с укорочением длины волны начинают сказываться явления, которые не проявлялись заметно на более низких частотах (дисперсия показателя преломления и показателя поглощения ряда веществ, увеличение потерь и др.), то в субмиллиметровом диапазоне для решения необходимых практических задач требуются совершенно новые методы и технические приемы. В частности, имеется тенденция решать практические и исследовательские задачи в субмиллиметровом диапазоне методами, принятыми в оптике. Управление энергией в этом диапазоне также целесообразно осуществлять, используя некоторые оптические свойства полупроводников, связанные с поглощением фотонов малой энергии.
Практически это можно осуществить, располагая на пути пучка электромагнитной энергии некоторый объем полупроводника, оптическая плотность которого может меняться вследствие изменения концентрации или подвижности свободных носителей тока. При этом используются процессы, совершающиеся в объеме тел, а не в очень малых по сравнению с длиной волны областях (как, например, в точечном диоде).
Наиболее простой метод изменения концентрации свободных носителей тока -- это инжекция неосновных носителей с помощью р-п перехода. В этом случае модулятор представляет собой полупроводниковую пластинку, на одном конце которой имеется р -п переход, а на другом -- неинжектирующий эксклюзионный п-п+ или р-р+ переход («омический контакт»). Пластинка располагается поперек сфокусированного пучка энергии в лучевом волноводе, заполняя все его сечение, причем контакты находятся за пределами электромагнитного поля. При пропускании тока через такой диод изменяются концентрация носителей тока в объеме вследствие инжекции неосновных носителей тока из р-п перехода при этом изменяется' и прозрачность слоя по отношению к электромагнитной энергии. Так может быть осуществлена модуляция энергии в лучевом волноводе.
Плоский слой вещества с управляемой концентрацией носителей тока обладает свойствами, интересными с точки зрения применения их для управления электромагнитным излучением. Отраженная от слоя и прошедшая сквозь слой энергия, а также коэффициент модуляции прошедшей энергии являются осциллирующими функциями относительной толщины слоя
(d--толщина слоя, - длина волны электромагнитного излучения, - диэлектрическая проницаемость полупроводника). При этом возможен ряд вариантов.
Когда толщина слоя кратна половине длины волны в нем, коэффициент отражения, начальные потери и скачок фазы отраженной волны минимальны и слабо растут с увеличением проводимости слоя; коэффициент модуляции прошедшей волны максимален (т = 80 - 90%).
Если толщина слоя полупроводника кратна четверти длины волны в нем, то коэффициент отражения и начальные потери максимальны, скачок фазы отраженной волны мал (несколько градусов), коэффициент модуляции минимален.
Широкополосность модуляторов можно увеличить применением, например, антиотражающих покрытий или такой ориентировкой образца, при которой коэффициент отражения вертикально-поляризованной волны минимален. В качестве согласующих материалов используются кварц, полиэтилен, слюда.
5. Измерение частоты и мощности в субмиллиметровом диапазоне
5.1 Измерение частоты и длины волны
Частота или длина волны колебаний субмиллиметрового диапазона является одной из основных характеристик, подлежащих определению при аттестации генераторов и приемников, диагностике плазмы и изучении свойств различных веществ как твердых, так и газообразных. Особенно важно знать точное значение частоты или длины волны колебаний при спектроскопических исследованиях.
Развитие радиотехники миллиметрового диапазона радиоволн, освоение нового, более коротковолнового субмиллиметрового диапазона потребовало разработки специальных приборов для измерений частоты и длины волны. Принципиально возможны два пути решения этой задачи: использование хорошо известных радиотехнических методов частотных измерений и не менее хорошо разработанных оптических методов измерений длины волны с помощью различных оптических резонаторов (интерферометров) и дифрактометров. Кроме этого, возможны гибридные системы, использующие как радиотехнические, так и оптические методы измерений.
В свободном пространстве скорость движения волны v равна скорости света с. При распространении радиоволн в различных средах и линиях передачи их фазовая скорость отличается от скорости света. Фазовая скорость, или фазовая длина волны в волноводах, зависит от их формы и геометрических размеров. Итак, при постоянной частоте колебаний f их фазовая скорость и длина волны не являются постоянными величинами при распространении в различных средах и линиях передачи. В то же время частота колебаний не зависит от условий распространения электромагнитной энергии и является постоянным параметром, характеризующим электромагнитное колебание.
В практике измерений на СВЧ удобно пользоваться термином «длина волны», так как геометрические размеры колебательных систем соизмеримы с длиной волны. Благодаря этому имеется возможность во многих случаях свести измерение длины волны колебаний к измерению линейных или угловых перемещений рабочих элементов. Для более точных измерений используется метод сравнения частот эталонов того или иного типа или их гармоник с частотой неизвестного колебания.
Рассмотрим теперь конкретные примеры построения волномеров и частотомеров субмиллиметрового диапазона радиоволн.
5.1.1 Волномеры с объемными резонаторами
В сантиметровом и миллиметровом диапазонах радиоволн, особенно в длинноволновом его участке, широкое распространение получили волномеры, использующие резонансные явления в отрезках коаксиальной линии или в круглых и прямоугольных волноводах.
Для иллюстрации на рис. 5.1 приведены их упрощенные схемы. С помощью подвижного поршня 2 изменяется длина камеры l, т. е. ее резонансный объем. Связь с линией передачи осуществляется через отверстия связи 3. Момент резонанса фиксируется по показаниям индикаторного прибора (микроамперметра), включенного в цепи детектора. В зависимости от схемы включения волномера микроамперметр в момент резонанса покажет либо минимум тока (рис. 5.1, а и в), либо максимум (рис. 5.1, б). В этом случае длина резонатора будет кратна целому числу полуволн, т. е.
(5.1)
где -- длина волны в волноводе; п -- целое положительное число.
Продолжая движение поршня в сторону укорочения или удлинения линии, добиваются повторных резонансов. Разность отсчетов положения поршня между двумя соседними резонансами равна половине длины волны в волноводе.
Рис. 5.1 Объемные резонаторы: круглого сечения (а); прямоугольного сечения (б); коаксиальный (в); 1 - резонансный объем; 2 - подвижный поршень; 3 - элемент связи
Точность волномеров может быть повышена, если отсчет длины волны осуществляется не по двум соседним резонансам, а через несколько полуволн. Обычно погрешность измерений лежит в пределах 0,5 - 0,1 %.
Погрешность волномеров в основном определяется технологическими допусками на изготовление камеры резонатора, температурной зависимостью размеров камеры, ошибками при настройке в резонанс, а также погрешностью отсчетной и микрометрической систем.
5.1.2 Резонансные волномеры с плоскими оптическими зеркалами
При конструировании волномеров на базе открытого резонатора с плоскими зеркалами любого вида приходится выбирать его размеры исходя из необходимой разрешающей способности по частоте, связанной в свою очередь с заданной точностью измерений при минимальном числе ложных резонансов. Обычно разрешающаяся способность по частоте минимум в 2 - 3 раза выше абсолютного значения ошибки измерения частоты колебаний.
Элементами связи в волномерах с открытыми резонаторами могут быть открытый конец волновода, щель на конце или в стенке волновода, круглое отверстие и т. д. В большинстве волномеров применяют круглые зеркала, а элемент связи располагают в центре. Чистота обработки поверхности зеркал не ниже 10--12 класса. Обычно зеркала изготовляют из латуни, а на рабочую поверхность после окончательной полировки наносят слой серебра или золота путем вакуумного распыления. В этом случае не требуется дополнительная полировка. После гальванического покрытия рабочую поверхность приходится вновь полировать, что весьма нежелательно. В состав волномера входит юстировочное устройство, позволяющее установить параллельность зеркал с ошибкой не более нескольких угловых секунд. При их перекосе на несколько угловых минут добротность резонатора ухудшается в десятки раз.
В субмиллиметровом диапазоне особое внимание приходится уделять повышению плавности перемещения зеркал и точности отсчета линейных перемещений. Допустимая ошибка не должна превышать для волномеров средней точности в зависимости от рабочего участка 1 - 5 мкм. Благодаря этому плавность хода существенно увеличилась, а плотность настройки уменьшилась. Погрешность измерений таким волномером ±0,3% и определяется в основном погрешностью механизма перемещения зеркала. Добротность резонатора достигает 30 000.
Чтобы резко уменьшить потери на излучение и сократить число возможных видов колебаний, в резонатор вводят круглый диэлектрический волновод с малыми потерями. Диаметр его выбирается таким, чтобы основная доля энергии распространялась над поверхностью диэлектрического стержня, что соответствует слабозамедленной волне.
5.1.3 Резонансные волномеры с выпуклыми зеркалами
На рис. 5.2 изображены три наиболее распространенные в измерительной технике схемы открытых резонаторов со сферическим профилем зеркал. Проходная и реактивная схемы резонаторов (рис. 5.2, а, б) различаются только способом вывода энергии из резонатора. В первом случае при наступлении резонанса сигнал на выходе достигает максимальной величины, во втором - при резонансе регистрируется резкое уменьшение коэффициента отражения от элемента связи в раскрыве активного зеркала.
Вследствие фокусирующего действия зеркал резонансная длина волны колебаний между зеркалами отличается от длины волны колебаний в свободном пространстве . Волномеры, в которых использованы открытые резонаторы со сферическими зеркалами, показывают завышенное значение длины волны. В рабочем интервале перемещений зеркал оно не превышает 10-3 и для волномеров средней точности, имеющих суммарную погрешность (2- 5) * 10-3, может не учитываться, так как ошибка имеет систематический характер. Однако ее всегда можно исключить
Рис. 5.2 Схемы открытых резонаторов со сферическими зеркалами:
а -- проходная схема с двумя сферическими зеркалами; б -- «реактивная» схема с двумя сферическими зеркалами; в --«реактивная» схема с плоским и сферическим зеркалами.
Существуют конструкции волномеров средней точности с двумя или одним сферическим зеркалом, которые благодаря наличию встроенного проходного детектора удобно использовать для анализа частотных характеристик генераторов в диапазоне длин волн от 2,5 до 0,4 мм.
Исследования показали, что наиболее удобным элементарным возбудителем для резонаторов со сферическими зеркалами является щелевой возбудитель, образованный плавным сужением волновода, рассчитанного на волну Н01, в щель по широкой стенке.
Особое внимание при конструировании волномеров субмиллиметрового диапазона уделяется выбору размеров резонатора и элементов связи, при которых резонатор имеет максимальную добротность и приемлемый коэффициент передачи для основного вида колебаний по отношению к колебаниям нежелательных видов.
5.1.4 Гетеродинные частотомеры
Точное измерение частоты в коротковолновой части миллиметрового и в субмиллиметровом диапазоне связано со значительными техническими трудностями. В настоящем параграфе основное внимание уделено рассмотрению отдельных элементов гетеродинных частотомеров, предназначенных для работы в указанных диапазонах, которые разработаны на кафедре радиоизмерений Харьковского Государственного университета. Пока они могут использоваться главным образом в лабораторных условиях. Измерение частоты основано на сравнении измеряемой частоты с частотой одной из гармоник перестраиваемого калибруемого генератора, которые регистрируются осциллографическим индикатором. Другие способы индикации, например, по нулевым биениям, на миллиметровых и субмиллиметровых волнах применить весьма трудно. В то же время осциллографический метод индикации приводит к противоречивым требованиям в отношении полосы обзора, точности измерения частоты и чувствительности прибора.
Чувствительность частотомера определяется минимальной величиной мощности на входе прибора, при которой обеспечивается измерение частоты с определенной погрешностью в любой точке диапазона. Чувствительность гетеродинных частотомеров миллиметрового и субмиллиметрового диапазонов сильно зависит от частоты измеряемого сигнала (т. е. от используемого номера гармоники плавного гетеродина) и может колебаться от долей до десятков микроватт. Под рабочим диапазоном частотомера понимается интервал частот, перекрываемый прибором ступенями или плавно, в пределах которого обеспечивается необходимая точность замеров, а полоса обзора -- специфический параметр, присущий лишь измерителям с панорамным индикатором. Полоса обзора зависит от масштаба частотной развертки и полностью им определяется. Она равна полосе одновременно просматриваемых частот, в пределах которой ведется измерение.
В состав гетеродинных частотомеров входят следующие основные элементы (рис. 5.3): блок формирования калибрационных меток 10 и 1 Ггц, гетеродин высокочастотного тракта с выносной смесительной головкой, двухканальное приемно-усилительное устройство, осциллографический индикатор, источник питания.
Рис. 5.3. Блок-схема гетеродинного частотомера:
1 - выносной смеситель сигнального канала; 2 - гетеродин двухканальное приемное устройство; 4 - смеситель калибрационного канала; 5 - кварцевый калибратор; 5 - видеоусилитель; 7 - осциллографический индикатор; 8 - генератор развертки; 9 - генератор пилообразного напряжения модуляции гетеродина; 10 - блок формирования подвижной сетки калибрационных частот.
5.1.5 Интерференционный метод измерения длины волны
Ранее уже было отмечено, что применению металлических волноводов в диапазоне субмиллиметровых волн препятствуют сложность их изготовления из-за малых размеров и чрезмерно большие погонные затухания. Это обусловило развитие теории и практики лучевых квазиоптических волноводов различного типа. Одновременно изменились конструкции оптических резонаторов (интерферометров) и дифрактометров, которые применялись в оптическом и миллиметровом диапазонах для быстрого изменения длины волны сигналов.
При повышении частоты сигналов, генерируемых радиотехническими методами, их свойства все более приближаются к свойствам излучений оптического диапазона. Поэтому вполне естествен возникший вновь интерес к оптическим методам измерений в диапазоне субмиллиметровых волн. Одним из них является интерференционный метод, сущность которого заключается в следующем. При сложении двух колебаний
Asin(t -- x)
и Asin(t -- x +x0)
одинаковых по амплитуде и частоте, результирующие колебание
2Asin(t -- x +x0)cos(x0/2)
будет иметь амплитуду 2Acos(x0/2).
Максимум амплитуды этого результирующего сигнала имеет место всякий раз, когда аргумент
x0/2=k,
а минимум амплитуды отмечается при
x0/2=(2k + 1)*/2.
Здесь k - целое произвольное число, включая нуль. Иными словами, колебания к приемнику приходят по двум путям разной длины. Для максимума сигнала разность хода волн определяется из соотношения x0=k, а при минимуме из x0=(2k + 1)*/2.
Таким образом, для получения двух соседних максимумов или минимумов необходимо изменить разность хода двух волн на одну длину волны. Если в миллиметровом диапазоне интерферирующие лучи можно пропустить внутри металлического волновода, то в субмиллиметровом диапазоне интерферометры, или оптические резонаторы, работают в квазиоптических волноводных линиях передачи и практически повторяют классические устройства оптического диапазона.
5.1.6 Дифракционный метод измерения длины волны
Рассматривая оптические методы измерения длины волны в диапазоне субмиллиметровых волн, следует остановиться на использовании здесь явления дифракции на различных телах.
В оптическом диапазоне дифракционные спектрометры широко применяются при построении различных спектральных приборов, измеряющих как длину волны сигнала, так и распределение энергии по различным составляющим. В силу того, что свойства излучения субмиллиметрового диапазона близки к свойствам световых колебаний, естественно было применить уже известные принципы и схемные решения для измерений длины волн. Оказалось возможным создать дифракционные решетки, имеющие разрешающую способность, близкую к разрешающей способности интерферометров Фабри-Перо.
Рассмотрим основные дифракционные волномеры, описания которых появились в литературе в различное время.
Рис. 5.4 Блок-схема дифрактометра с поворотной проволочной или ленточной решеткой:
1 - лучевой волновод; 2 - дифракционная решетка; 3 - фокусирующая линза; 4 - гидеодетектор; 5 - видеоусилитель с индикатором; 5 - механизм отсчета углового положения решетки и приемника; 7 - индикаторный прибор.
На рис. 5.4 изображена блок-схема прибора с проволочной или ленточной дифракционной решеткой. Исследуемый сигнал с помощью квазиоптической линии передачи 1 подводится к поверхности дифракционной решетки 2, расположенной по отношению к оси волнового пучка под произвольным известным углом 8. После прохождения через решетку сигнал оказывается разложенным на несколько составляющих, соответствующих дифракционным спектрам различного порядка. Поворачивая вокруг оси решетки приемное устройство 3, определяются углы, под которыми имеют место дифракционные максимумы. Для четкой индикации принятый сигнал усиливается и индицируется либо стрелочным прибором, либо самописцем. В последнем случае поворот приемного устройства вокруг решетки и запись на ленте должны быть жестко синхронизированы между собой. Направления прихода энергии к решетке и приема дифрагированного поля связаны между собой следующим соотношением:
(5.2)
где р -- период решетки; i - угол между направлением падения излучения на решетку и нормалью к ее плоскости; - угол между нормалью к поверхности решетки и направлением приема; п -- номер порядка дифракционного спектра.
На рис. 5.5 приведена блок-схема дифрактометра с отражающей ступенчатой дифракционной решеткой. Обозначения на схеме аналогичны рис. 5.4 При произвольном положении отражающей решетки по отношению к падающему излучению находят положение дифракционного максимума n-го порядка и по формуле находят длину волны сигнала.
Интенсивность отраженного сигнала в n-й максимум сильно зависит от наклона ступенек, т. е. электрической глубины канавок и угла наблюдения при постоянном отношении периода решеток к длине волны.
Рис. 5.5 Блок-схема дифрактометра с отражающей поворотной решеткой (обозначения те же, что и на рис. 5.4).
Схему дифрактометра с произвольным падением сигнала на решетку можно несколько изменить, использовав для измерения длины волны явление, заключающееся в том, что при повороте решетки дифракционный максимум приближается к поверхности решетки и, наконец, превращается в неизлучающую поверхностную волну. Момент этого перехода фиксируется достаточно четко для любых решеток. На рис. 5.6 изображена блок-схема измерительной установки, использующей этот принцип. При измерении длины волны приемное устройство регистрирует момент возникновения интенсивной поверхностной волны, соответствующей определенному углу падения облучающего сигнала но отношению к нормали. Расчетная формула упрощается и имеет вид
(5.3)
Благодаря тому, что угловые интервалы могут отсчитываться с высокой точностью, погрешность измерений длины волны с помощью поворотных дифрактометров может быть доведена в субмиллиметровом диапазоне до величины ±10-4. Общим недостатком рассмотренных дифрактометров является низкая разрешающая способность по частоте, которая к тому же зависит от угла поворота решетки.
Рис. 5.6 Блок-схема дифрактометра с поворотной решеткой, использующего режим скольжения дифрагированного поля вдоль решетки.
1 - лучевой волновод; 2 - решетка; 3 - приемное устройство; 4 - видеодетектор; 5 - индикатор; 6 - механизм отсчета углового положения.
Значительно более высокой разрешающей способностью обладает дифрактометр с отражающей ступенчатой решеткой, работающей при нормальном падении волны по отношению к одной из граней канавки.
5.2 Измерение мощности
В отличие от измерителей мощности сантиметрового и длинноволновой части миллиметрового диапазонов, к приборам, измеряющим мощность в субмиллиметровом диапазоне, предъявляется ряд специфических требований. Основное требование - независимость показаний измерителей от распределения всей мощности по многим видам колебаний в волноводах повышенного сечения или квазиоптических линиях. Для поглощения мощности чаще следует применять нагрузки конусообразной формы, распространенные в приборах оптического диапазона.
В субмиллиметровом диапазоне длин волн приходится измерять в основном малые уровни мощности, что обусловливает довольно высокие требования к чувствительности приборов, которая должна составлять единицы микроватт.
Источники колебаний субмиллиметрового диапазона являются широкополосными. Следовательно, измерители мощности должны работать во всей требуемой полосе частот.
По принципу действия измерители мощности могут быть поглощающего типа, когда вся высокочастотная мощность рассеивается на приемном элементе измерителя, и проходящего типа, когда почти вся СВЧ энергия проходит в нагрузку, а незначительная ее часть используется для измерений. Применяя калиброванные ответвители, можно с помощью приборов поглощающего типа измерять проходящую мощность.
По уровням измеряемой высокочастотной мощности приборы делятся на измерители малых уровней -- от сотен милливатт и менее, средних уровней -- от сотен милливатт до десятков ватт и больших уровней -- от десятков ватт и выше.
В технике субмиллиметровых волн измерители мощности могут предназначаться для измерений мощности непрерывных колебаний, средней мощности амплитудно-модулированных и импульсно-модулированных колебаний и мощности в импульсе. При работе с генераторами импульсно-модулированных колебаний необходимо, чтобы приемные элементы измерителей мощности выдерживали большие значения пиковой мощности, т. е. имели высокую электрическую прочность.
Мощность в импульсе обычно определяется по среднему значению импульсно-модулированной мощности, параметрам импульса и частоте их повторения.
Измерение мощности колебаний субмиллиметрового диапазона может быть произведено приборами, основанными на тепловом и пондеромоторном действиях высокочастотной энергии. В первом из этих способов измерения используется закон сохранения СВЧ энергии при превращении ее в тепловую, которая измеряется калориметрическими методами, во втором -- механическое давление энергии электромагнитной волны на вещества, находящиеся на пути ее распространения.
Использовать эффект Холла, излучение черного тела, фотометрический и другие методы в субмиллиметровом диапазоне затруднительно из-за малых поперечных размеров устройств или особенностей излучения.
Большое затухание СВЧ энергии в волноводах основного сечения и малые поперечные размеры волноводов, а также то, что эти размеры необходимо выдерживать с высокой точностью, делают практически невозможным использование в измерителях мощности термисторов и нитяных болометров, которые так широко распространены в более длинноволновых диапазонах.
Далее кратко рассмотрим основные измерители мощности, применяемые на практике.
5.2.1 Калориметрические измерения
Небольшие размеры волноводных элементов субмиллиметровых волн позволяют создать калориметрические измерители мощности с высокой чувствительностью и небольшим временем измерения. Такие измерители позволяют измерять малые уровни мощности - от единиц микроватт до сотен милливатт - и часто являются легкими компактными приборами, простыми и надежными в работе.
Широкое распространение получили калориметры переменной температуры, балансные, постоянной температуры и проточные.
В волноводных калориметрах следует вводить поправку на высокочастотные потери мощности в стенках подводящего волновода. Следует также учитывать шероховатость поверхности волновода, которая увеличивает затухание, т. е. отношение действительного периметра волновода к его номинальному значению.
В зависимости от способов получения волноводов коэффициент шероховатости может изменяться в пределах от 1,05 до 1,25. Одноволновые металлические волноводы ввиду значительного увеличения затухания практически применяются только на волнах не короче 1,5 мм. В более коротковолновой части используются металлические волноводы повышенного сечения, в которых может распространяться большое число видов колебаний. Затухание волноводов повышенного сечения значительно меньше, но оно может изменяться в зависимости от состава распространяющихся видов колебаний.
Калориметры переменной температуры и термобалансные калориметры
В калориметрах переменной температуры СВЧ мощность поглощается в нагрузке и повышение температуры нагрузки регистрируется одним из известных способов. В качестве поглощающей нагрузки могут быть использованы твердые диэлектрики с большими потерями или металлические пленки с большим сопротивлением. Для измерения повышения температуры могут быть использованы металлические и полупроводниковые термопары, термобатареи, термисторы, термометры сопротивления и другие устройства. Калибровка таких измерителей может производиться абсолютным методом по известным тепловым постоянным прибора, с помощью эталонного ваттметра или методом замещения мощностью постоянного или низкочастотного тока.
Калориметры постоянной температуры
Широкое распространение получили изотермические калориметры, в которых поглощающая нагрузка во время измерений не изменяет своей температуры. В одном случае это достигается тем, что тепловая мощность отбирается от нагрузки холодным спаем термоэлемента вследствие эффекта Пельтье. В другом случае нагрузку окружают смесью определенных веществ, находящихся в твердой и жидкой фазах, и при отборе тепловой мощности используется фазовый переход из твердой фазы в жидкую. В качестве рабочего вещества чаще всего выбирают воду и используют фазовый переход лед-вода. Кроме воды можно использовать дифенилметан, уксусную кислоту, нафталин, фенол, дифениловый эфир и другие вещества.
Основным преимуществом изотермических калориметров является почти полное отсутствие перепада температуры между калориметрическим телом и окружающей оболочкой и, следовательно, минимальная погрешность неэквивалентности тепловых потерь.
Проточные калориметры
Поглощающая нагрузка такого калориметра представляет собой специальной формы трубку из диэлектрика с малыми потерями в рабочем диапазоне длин волн, по которой с постоянным расходом течет вода. Температура водяного потока на входе нагрузки с высокой степенью точности поддерживается равной температуре волновода, в который вмонтирована нагрузка.
Контролируемая термочувствительным элементом разность температур между входным и выходным потоками воды прямо пропорциональна рассеиваемой тепловой мощности и обратно пропорциональна расходу воды. Следовательно, измеряемая мощность может быть определена по формуле:
P = vcT,
где T -- разность температур, °С;
Р -- рассеиваемая в водяном потоке мощность, Вт;
с -- удельная теплоемкость воды, дж*град/г;
v -- расход воды, г/сек.
5.2.2 Тепловые измерители проходящей мощности
В коротковолновой части миллиметрового и в длинноволновой части субмиллиметрового диапазонов, где еще используются прямоугольные волноводы, в которых распространяются колебания основного вида, с успехом могут быть применены тепловые измерители проходящей мощности с поглощающей стенкой.
Однако ввиду малых значений затуханий и довольно больших размеров волноводов чувствительность их низкая.
Рис. 5.7 Волноводная секция измерителя проходящей мощности
Для очень коротких длин волн увеличивающееся затухание и малые размеры волноводов позволяют создать довольно чувствительные и широкополосные измерители проходящей мощности.
Основным элементом таких измерителей является тонкостенный участок волновода из металла с большим удельным сопротивлением (рис. 5.7), расположенным между толстостенными участками волноводов, концы которых имеют фланцы. Такая измерительная секция включается в волноводный тракт. Стенки волновода должны иметь толщину, превышающую в 3--5 раз глубину проникновения тока вследствие поверхностного эффекта на самой длинной волне, пропускаемой по волноводу, чтобы полностью отсутствовало излучение через сам волновод. Длина тонкостенного участка волновода должна составлять несколько длин волн для уменьшения погрешности показаний, обусловленной фазой коэффициента отражения нагрузки.
При прохождении по волноводу электромагнитной энергии часть мощности поглощается тонкостенным участком. Температура тонкостенного волновода при этом повышается. Повышение температуры прямо пропорционально поглощенной и проходящей мощностям и может быть зарегистрировано при помощи термопар или по изменению сопротивления тонкостенного волновода постоянному току (волноводный болометр). Во втором случае материал тонкостенного участка должен обладать большим температурным коэффициентом сопротивления. Оба эти способа позволяют осуществить абсолютную калибровку измерителей по мощности постоянного тока и экспериментально определенному коэффициенту затухания.
Рассматриваемая система практически не вносит изменений в волноводный тракт и не снижает уровня мощности, пропускаемого волноводом данного сечения. Полоса пропускания прибора определяется полосой волновода.
Распределение температуры по периметру тонкостенного волновода при рассеянии в нем высокочастотной мощности и мощности постоянного тока можно получить после решения уравнения теплопроводности. Постановка такой задачи вызывается тем, что при пропускании постоянного тока мощность его распределяется равномерно по толщине, а СВЧ мощность выделяется в тонком поверхностном слое внутри волновода. Вследствие этого можно ожидать и неравномерности распределения температуры.
5.2.3 Пондеромоторные измерители мощности
За последние годы в сантиметровом диапазоне разработаны пондеромоторные измерители мощности, использующие механическое давление электромагнитных волн на отражающие поверхности. Экспериментально наличие светового давления впервые было доказано замечательными опытами П. Н. Лебедева. И только спустя много лет этот эффект был использован для измерения мощности сверхвысоких частот. В последнее время пондеромоторные измерители находят широкое применение для измерения импульсной энергии и непрерывной мощности оптических квантовых генераторов.
В субмиллиметровом диапазоне может быть использовано явление давления электромагнитных волн на отражающую поверхность в свободном пространстве или подвижное зеркало открытого резонатора. Пондеромоторный измеритель мощности с подвижным зеркалом состоит из двух скрепленных подвижных дисков, подвешенных симметрично на вертикально растянутой проволоке, волноводного входа, оканчивающегося дисковым зеркалом с отверстием связи, и двух пластин, расположенных вблизи подвижных дисков. Один из подвижных дисков и зеркало на конце волновода образуют открытый резонатор. Неподвижные пластины совместно с подвижными дисками образуют два конденсатора, один из которых используется для индикации отклонения подвижного зеркала по изменению емкости, а другой - для калибровки.
Сила давления, действующая на подвижное зеркало открытого резонатора при расстоянии между зеркалами, равном половине длины волны, будет
, (5.3)
где Р0 -- измеряемая высокочастотная мощность; с -- скорость света;
Q -- нагруженная добротность резонатора; F0 -- сила, действующая на отражающий элемент в свободном пространстве.
Сила давления волн сместит подвижное дисковое зеркало на малую величину, при которой условия резонанса не нарушаются, и вызовет изменение емкости между неподвижной пластинкой и подвижным диском. В индикаторном контуре возбуждены колебания с частотой, несколько отличной от резонансной. Изменение емкости, входящей в контур, приводит к расстройке контура, которая регистрируется по изменению падения напряжения на нем.
В миллиметровом диапазоне с таким устройством призора получили максимальную погрешность измерений примерно ±25%. В коротковолновой части миллиметрового диапазона, где волноводные устройства позволяют измерять согласование резонатора с одноволновым волноводом я нагруженную добротность открытого резонатора, максимальная погрешность увеличиваться не будет.
5.2.4 Болометрические измерители мощности
В субмиллиметровом диапазоне длин волн использовать бусинковые термисторы и нитяные болометры для абсолютных измерений мощности практически невозможно ввиду технологических сложностей изготовления, трудностей согласования с линией передачи и определения коэффициента полезного действия головок.
Широко распространенные в технике сантиметровых волн пленочные металлические болометры могут быть использованы в многоволновых волноводах только в случаях, когда они перекрывают все поперечное сечение волновода. Измерение высокочастотной мощности пленочными болометрами основано па изменении их сопротивления при нагреве, независимо от способа нагрева. Следовательно, материал пленки должен обладать значительным температурным коэффициентом сопротивления, хорошими антикоррозийными свойствами и сохранять свои характеристики в течение продолжительного времени. Чаще всего для этих целей используют золото, платину, палладий и никель, наносимые на тонкую слюдяную подложку вакуумным распылением.
Возможность использования метода замещения при абсолютных измерениях мощности металлическими болометрами требует выполнения следующих условий:
1) толщина пленки должна быть значительно меньше глубины скинслоя в интересующем диапазоне длин волн;
2) сопротивление болометра должно быть пропорционально его абсолютной температуре;
3) повышение температуры в любой точке вдоль болометра должно быть пропорционально мощности, рассеиваемой в этой точке.
При выполнении этих условий общее изменение сопротивления болометра будет пропорционально рассеянной мощности.
Впервые металлопленочный болометр, закрывающий все поперечное сечение волновода, был применен для измерения мощности многих видов колебаний в 10 см диапазоне длин волн. Поперечная пленка поглощала только часть проходящей мощности многих видов колебаний, остальная часть поступала в нагрузку. В другом варианте для измерения мощности колебаний сантиметрового диапазона была использована размещенная поперек волновода проволочная решетка, изготовленная из стеклянных нитей с нанесенным проводящим поглощающим слоем или волластоновских нитей. Расстояние между проволоками выбиралось меньше четверти самой короткой длины волны, распространяющейся по волноводу. Снаружи проволочки соединялись параллельно и включались в болометрический мост.
Измерение мощности многих видов колебаний в субмиллиметровом диапазоне с помощью проволочных решеток, установленных в волноводе, затруднительно из-за малого периода решетки и необходимости иметь две решетки, чтобы болометр реагировал на перпендикулярную и параллельную поляризации электромагнитного поля. Наиболее удобными являются пленочные металлические болометры, расположенные для лучшего согласования под углом к оси волновода (рис. 5.8).
Рис. 5.8 Пленочный болометр в многоволновом волноводе.
Если толщина пленки небольшая и пленка поглощает определенную незначительную часть падающей мощности, то болометр может служить измерителем проходящей мощности. Если сопротивление болометра имеет величину, близкую к волновому сопротивлению волновода, то вся падающая мощность будет поглощаться пленкой и устройствобудет измерять полную мощность.
Для лучшего согласования за пленкой можно разместить короткозамыкающую заглушку, тогда прошедшая мощность отразится от нее и снова попадет на пленку. Устройство с короткозамыкающей заглушкой дает более равномерное распределение поглощенной мощности по поверхности пленки.
Исследование металлопленочного болометра, установленного в волноводном сечении 1,8x3,6 мм2 и расположенного под углом к широкой стенке, показало, что коэффициент отражения по мощности в диапазоне длин волн от 5 до 0,5 мм не превышает 4%.
5.2.5 Пироэлектрические измерители мощности
Пироэлектрический эффект находит широкое применение при создании приемников теплового излучения и для регистрации малых и средних перепадов температуры. Пироэлектрический эффект заключается в возникновении электрических зарядов на поверхности кристаллических диэлектриков при их нагревании или охлаждении. Интенсивность возникновения электрических зарядов зависит от скорости изменения температуры.
Появление зарядов на поверхности пироэлектрика связано с изменением существующей внутри него самопроизвольной поляризации при нагревании кристалла. Самопроизвольная или спонтанная поляризация в пироэлектрических кристаллах является результатом наличия в кристаллах доменов, у которых дипольные моменты без внешнего электрического поля ориентируются примерно в одном направлении. В обычных условиях на поверхности кристалла не наблюдается поляризационных зарядов, так как они компенсируются свободными зарядами, оседающими на поверхность кристалла, и электрическое поле внутри образца равно нулю. При быстром изменении температуры кристалла T его спонтанная поляризация изменится на величину П и на поверхности появится заряд = рП, где р - пироэлектрическая постоянная. Если температура кристалла изменяется в другую сторону, то меняется и полярность электрических зарядов. Нагрев кристалла связан с изменением его геометрических размеров и появлением пьезоэлектрических зарядов, которые суммируются с пироэлектрическими. Пироэлектрические кристаллы входят в класс сегнетоэлектриков. Пироэлектрическим эффектом обладают кристаллы сегнетовой соли, турмалина, дигидрофосфата калия, триглицинсульфата, титаната бария, керамики титаната бария, титанат цирконат свинца и другие.
Чувствительность разработанных широкополосных тепловых индикаторов электромагнитного излучения, использующих пироэлектрический эффект, довольно высокая - такая же, как у лучших образцов болометров, работающих при комнатной температуре, и оптико-акустических приемников, но последние имеют значительно меньшую постоянную времени.
Пироэлектрические индикаторы после небольшой доработки можно использовать для измерения абсолютных значений малых уровней потоков электромагнитного излучения. Основным элементом измерителя является пироэлектрический кристалл. Падающее излучение электромагнитных волн поглощается верхним слоем и через тонкую слоистую структуру нагревает кристалл.
Нагрев кристалла приводит к изменению спонтанной поляризации, которое вызывает появление электрического заряда на обкладках конденсатора, образованного серебряными покрытиями. Если на кристалл будет падать поток излучения, модулированный прямоугольными импульсами со скважностью 1, то на обкладках конденсаторов появится переменное напряжение, амплитуда которого прямо пропорциональна поглощаемой мощности. Аналогичный сигнал можно получить рассеиванием мощности калибрацион-ного тока в подогревателе.
Если теперь в промежутки времени, когда на кристалл не подается электромагнитное излучение, через пленочный подогреватель пропускать постоянный ток, то на обкладках конденсатора появится сигнал, прямо пропорциональный разности поглощаемой электромагнитной мощности и мощности постоянного тока. При увеличении мощности постоянного тока пироэлектрический сигнал будет уменьшаться и станет равным нулю при равенстве мощностей. При дальнейшем увеличении мощности постоянного тока амплитуда пироэлектрического сигнала станет увеличиваться со сдвигом фазы на 180°. Таким образом, при равенстве поглощенной пиковой мощности и пиковой мощности калибрационного тока не будет происходить изменения температуры кристалла и пироэлектрический сигнал будет равным нулю. Нулевой сигнал компенсации можно использовать для определения значения поглощаемой электромагнитной мощности.
Такой метод определения величины измеряемой мощности исключает ошибки, обусловленные нелинейностью характеристик кристалла, изменениями окружающей температуры, нестабильностью коэффициента усиления усилителя и различием времени открытого и закрытого состояний механического модулятора. Эксперименты показали, что такое устройство может работать с частотой модуляции до 20 Гц.
Основными источниками полной погрешности пироэлектрических измерителей мощности являются ошибки определения мощности постоянного тока, степени поглощения покрытия во всем интересующем диапазоне длин волн, ошибки компенсации нулевого сигнала и систематическая погрешность, обусловленная неэквивалентностью действия на кристалл высокочастотной мощности и мощности постоянного тока.
6. Распространение и применение радиотехнических систем миллиметрового и субмиллиметрового диапазонов волн
В последние двадцать лет выполнялись фундаментальные научно-исследовательские работы по изысканию аффективных средств генерации и приема в диапазоне радиоволн от 1 см до 0.1 мм.
Первая приемопередающая аппаратура для генерации ММ излучения на волне 6 мм была создана в России еще П.Н. Лебедевым в 1894 г. Позднее (в 1922 г.) А.А. Глаголевой-Аркадьевой была осуществлена генерация излучения в диапазоне 0,082...50 мм на основе применения оригинального массового излучателя. Первые теоретические и экспериментальные исследования распространения этих волн в атмосфере были проведены Ван Флеком, В. Вейсскоп-фом, Т. Роджерсом, А.Г. Аренбергом, Б.А. Введенским, М.А. Колосовым и др.
В течение долгих лет при освоении спектра ММ радиоволн в мире существовало недоверие к созданию новых перспективных радиотехнических систем для различных применений. Основной причиной подобного критического отношения к новому диапазону радиоволн было отсутствие каких-либо данных по их распространению в атмосфере. Наряду с работами по генерации, усилению СВЧ-колебаний этих волн большие усилия исследователями были предприняты по изучению основных характеристик распространения ММ и субмиллиметровых волн в атмосфере. В результате ряда теоретических и экспериментальных исследований было установлено, что в отличие от дециметровых и сантиметровых волн ММ и более короткие волны обладают частотно-селективным молекулярным поглощением, испытывают значительное ослабление в различных гидрометеорах, вследствие чет их дальность распространения оказывается существенно меньше общепринятой в диапазоне УКВ. Оказалось, что ММ-волны обладают лучшей помехоустойчивостью, крайне высоким разрешением по углу места, азимуту, дальности и скорости; они могут также обеспечивать высокую скрытность передачи при малых габаритах приемо-передающей радиоаппаратуры и антенн.
Ныне в значительной мере завершается процесс фундаментальных исследований основных характеристик этих новых диапазонов волн. Итогом многих исследований и конструкторских разработок явилось завершение поисков новых принципов генерации, усиления и преобразования СВЧ-колебаний таких волн, создание и освоение в промышленном исполнении многочисленных элементов и узлов новых приемо-передающих радиотехнических комплексов. Все это вместе взятое и положило начало массовому использованию свойств ММ и более коротких радиоволн в реальных действующих радиотехнических системах, что открывает человечеству огромный диапазон частот для многочисленных применений.
6.1 Характеристики распространения
В миллиметровом и субмиллиметровом диапазонах существует значительное число линий поглощения паров воды, примесных газов и линий кислорода, обладающих постоянными электрическими или магнитными моментами, способными взаимодействовать с электромагнитным излучением. В настоящее время закономерности поглощения изучены теоретически и экспериментально достаточно хорошо на малых расстояниях, однако модели, лежащие в основе ряда теоретических исследований Ван Флска, Т. Роджерса, В. Вейсскопфа, С.А. Жевакина, А.П. Наумова, Дж. Вастина и ряда других, не были адекватными процессам резонансного поглощения, вследствие чего теоретические величины поглощения оказались в 1,5-2 раза по децибелам меньше экспериментальных значений, наблюдавшихся в основном в окнах прозрачности спектра поглощения паров воды. Процесс развития и совершенствования теории квантово-механического поглощения еще далек от своего завершения.
Оказалось, что расчеты коэффициента поглощения паров воды и кислорода путем суммирования спектральных линий с контурами типа линий Ван Флека, Вейсскопфа, Лорентца, Гросса и других авторов обладают ограниченной областью применимости. В случае кислорода не удастся описать эффект нереэонансного поглощения в кислороде, а формальное введение в формулы поглощения дополнительного члена для нерезонансной его части не имеет физическою обоснования в рамках модели упругих соударений. Более того, теория Ван Флека--Вейсскопфа приводит к результатам, противоречащим экспериментам в области наиболее высоких частот, где коэффициент поглощения не стремится к нулю и расходится с экспериментом при больших давлениях.
Это послужило основанием С.В. Титову и Ю.В. Калмыкову предложить и исследовать ансамбль невзаимодействующих полярных молекул кислорода в рамках модели j-диффузии, обобщенной на квантовый случай. В этой модели учитывается инерционность молекул, механизм интерференции линий и когерентность времени их соударений. На основе такой модели и существенно более простою математического аппарата по сравнению с ударными теориями перекрывающихся линий удалось рассчитать поглощение и дисперсию показателя преломления в парах воды и в кислороде, где интерференция линий существенна даже при атмосферном давлении. Установлено, что модель диффузии хорошо описывает поглощение в кислороде, нерезонансное поглощение в широких интервалах изменения давлений и эффект смещения максимума поглощения в диапазон более низких частот с ростом давления, а также частотную зависимость поглощения в парах воды.
Из-за трудностей точного расчета поглощения широкое распространение в научно-технической литературе получили полуэмпирическис методы определения ослабления в парах воды и в кислороде, предложенные впервые А.Ю. Зражевским и позднее Г. Либе и хорошо согласующиеся с экспериментом. Согласно результатам работ величины поглощения в парах воды и в кислороде могут быть представлены в виде аналитических соотношений:
w<57 ГГц
w<63 ГГц
где и коэффициенты поглощения в парах воды и в кислороде, [дБ/км] соответственно;
w - частота излучения, [ГГц]; р - влажность воздуха
при температуре воздуха 20°С [г/м3].
Заметим, что в экспериментальных исследованиях молекулярного поглощения вплоть до последнее времени отсутствовала статистика различных уровней этого поглощения. Накопление этой статистики представляет собой весьма трудоемкую задачу из-за крайне сильной изменчивости значений влажности и ее зависимости от климатических условий.
В настоящее время удельное ослабление в дождях теоретически изучено достаточно полно путем строгого решения задачи о дифракции электромагнитной волны на водяной сфере в случае ансамбля частиц с заданным распределением их по размерам.
При расчетах ослабления в ансамбле капель дождя для реальных значений комплексного показателя преломления воды, заимствованных из результатов экспериментов, факторы эффективности ослабления, рассеяния и поглощения могут быть представлены в виде бесконечных рядов, число членов которых должно иметь порядок X.
Ослабление в сухом снеге не поддается строгой теоретической оценке; однако известно, что оно примерно вдвое меньше, чем в дождях с интенсивностью менее 5 мм/ч. В мокром снеге ослабление оказывается в 2-3 раза больше, чем в дожде той же интенсивности, причем оно не поддается достаточно падежной теоретической оценке. Расчет ослабления в туманах и облаках проводится в приближении однократного рассеяния для различных функций распределения капель по размерам, при этом выполненные расчеты ослабления были проверены на экспериментах в камерах искусственных туманов.
Так как ослабление в этих случаях зависит от частоты и температуры окружающей среды, то для Оперативных оценок ослабления в мелкокапельных гидрометеорах рекомендуется пользоваться приближенной формулой:
где ослабление [дБ/км]; w - частота излучения; T - абсолютная температура [К]; q - водность тумана или облака [г/м3 ].
Заметим, что существующие методы оценки основных компонентов ослабления в атмосфере являются лишь первым приближением к действительности, поскольку атмосфера является постоянно меняющейся средой, и распространение ММ-радио-волн происходит, вообще говоря, в неоднородной атмосфере, поскольку ее параметры изменяются вдоль траектории распространения с высотой над земной поверхностью и во времени. Таким образом, в настоящее время возможно определение средних удельных значений ослабления, зависящих от различных параметров атмосферы, а также вероятности появления этих значений.
Дальность обнаружения объектов в реальной атмосфере.
Используя уравнение радиолокации в поглощающей среде, можно оценить дальность действия РЛС в дожде с учетом молекулярного поглощения
П = П0 - 2q - 2L - 2l/ - 2Sэ + s
где потенциал
П0 = Рпер/Рпр.пер;
q -- отношение сигнал шум;
l - относительная длина волны к 1 мм;
L -- потери в трактах;
Sэ - относительная эффективная площадь антенны к 1 м ;
Подобные документы
Назначение антенно-фидерного устройства. Основные параметры антенн. Диапазон радиоволн, используемый в системах радиовещания, телевидения, а также других радиотехнических системах, использующих для передачи информации свободное распространение радиоволн.
контрольная работа [911,7 K], добавлен 13.06.2013
Основные активные элементы, применяемые в устройствах, работающих в диапазоне радиоволн. Важные характеристики интегральных микросхем. Полупроводниковые и гибридные интегральные микросхемы. Источники и приемники оптического излучения, модуляторы.
реферат [30,6 K], добавлен 14.02.2016
Получение гармонических колебаний. Параметры колебательного контура. Коды, используемые в радиосвязи. Амплитудная, частотная и фазовая модуляции. Передача непрерывных сигналов цифровым способом. Распространение радиоволн различных частотных диапазонов.
учебное пособие [1,2 M], добавлен 19.01.2012
Сущность и назначение радиопередающего устройства, порядок составления и расчета его структурной схемы. Расчет режима оконечного каскада и основных параметров антенны. Методика конструктивного расчета катушек индуктивности оконечного каскада передатчика.
курсовая работа [235,2 K], добавлен 24.04.2009
Системы передачи информации с помощью радиотехнических и радиоэлектронных приборов. Понятие, классификация радиоволн, особенности их распространения и диапазон. Факторы, влияющие на дальность и качество радиоволн. Рефракция и интерференция радиоволн.
реферат [81,5 K], добавлен 27.03.2009
История исследования электромагнитных волн различной длины, их общая характеристика и свойства. Особенности распространения волн коротковолнового диапазона, поверхностных и пространственных радиоволн. Сверхдлинные, длинные, средние и короткие волны.
реферат [1,6 M], добавлен 17.03.2011
Радиоприемные устройства, входящие в состав радиотехнических систем связи. Разработка структурной схемы согласно требований технического задания, предварительные расчеты узлов. Моделирование узла временного разделения каналов и корпуса устройства. Радиопр
курсовая работа [2,5 M], добавлен 20.06.2008
Общая классификация радиоволн по диапазонам и областям применения. Диапазоны радиочастот и радиоволн, установленные международным регламентом радиосвязи. Механизмы и зоны распространения. Особенности распространения устройства декаметрового диапазона.
контрольная работа [29,1 K], добавлен 02.04.2014
Электронные приборы, действие которых основано на электронных процессах в полупроводниках (полупроводниковые приборы). Классификация полупроводниковых приборов по назначению и принципу действия, типу материала, конструкции и технологии, применению.
реферат [1,6 M], добавлен 17.03.2011
Открытые и волноводные (закрытые) линии передачи электромагнитной энергии. Процесс передачи энергии электромагнитной волны от источника к приемнику. Коаксиальные линии и их характеристики, конструкции волноводов. Классификация волн в волноводе.
презентация [278,9 K], добавлен 13.08.2013