Метрология и ее разделы
Цели и задачи метрологии. Основы метрологического обеспечения. Федеральное агентство по техническому регулированию и метрологии. Калибровка средств измерений. Российская система калибровки. Воспроизведение единиц физических величин и передача их размера.
Рубрика | Коммуникации, связь, цифровые приборы и радиоэлектроника |
Вид | учебное пособие |
Язык | русский |
Дата добавления | 29.01.2011 |
Размер файла | 7,8 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
В зависимости от того, на какие интервалы разбита шкала, один и тот же размер представляется по-разному. Например, длина перемещения некоторого тела на 1 м может быть представлена как L = 1 м = 100 см = 1000 мм. Отмеченные три варианта являются значениями измеряемой величины -- оценками размера величины в виде некоторого числа принятых для нее единиц. Входящее в него отвлеченное число называется числовым значением. В приведенном примере это 1, 100, 1000.
В практической деятельности необходимо проводить измерения различных величин, характеризующих свойства тел, веществ, явлений и процессов. Некоторые свойства проявляются только качественно, другие -- количественно. Разнообразные проявления (количественные или качественные) любого свойства образуют множества, отображения элементов которых на упорядоченное множество чисел или в более общем случае условных знаков образуют шкалы измерения этих свойств. Шкала измерений количественного свойства является шкалой ФВ. Шкала физической величины -- это упорядоченная последовательность значений ФВ, принятая по соглашению на основании результатов точных измерений. Термины и определения теории шкал измерений изложены в документе МИ 2365-96.
Таблица. Основные ФВ.
Наименование величины |
Ее обозначение |
Размерность |
|
длина |
L |
метр |
|
масса |
M |
килограмм |
|
время |
T |
секунда |
|
сила электрического тока |
I |
ампер |
|
температура |
Q |
кельвин |
|
количество вещества |
N |
моль |
|
сила света |
J |
кандела |
Вопросы и задания.
67. На скольких основных величинах базируется механика? теплотехника? физика?
68. Что такое единица физической величины?
69. Что такое значение физической величины?
70. Что такое измерение?
71. Что такое модель измерения?
72. Что такое шкала физической величины?
§18. Международная система единиц физических величин
1. Генеральная конференция по мерам и весам (ГКМВ) в 1954 г. определила шесть основных единиц физических величин для их использования в международных отношениях: метр, килограмм, секунда, ампер, градус Кельвина и свеча. XI Генеральная конференция по мерам и весам в 1960 г. утвердила Международную систему единиц, обозначаемую SI (от начальных букв французского названия Systeme International d' Unites), на русском языке -- СИ. В последующие годы Генеральная конференция приняла ряд дополнений и изменений, в результате чего в системе стало семь основных единиц, дополнительные и производные единицы физических величия, а также разработала следующие определения основных единиц:
единица длины -- метр -- длина пути, которую проходит свет в вакууме за 1/299792458 долю секунды;
единица массы -- килограмм -- масса, равная массе международного прототипа килограмма;
единица времени -- секунда -- продолжительность 9192631770 периодов излучения, которое соответствует переходу между двумя сверхтонкими уровнями основного состояния атома цезия-133 при отсутствии возмущения со стороны внешних полей;
единица силы электрического тока - ампер - сила неизменяющегося тока, который при прохождении по двум параллельным проводникам бесконечной длины и ничтожно малого кругового сечения, расположенным на расстоянии 1 м один от другого в вакууме, создал бы между этими проводниками силу, равную 2 · 10-7 З на каждый метр длины;
единица термодинамической температуры -- кельвин -- 1/273,16 часть термодинамической температуры тройной точки йоды. Допускается также применение шкалы Цельсия;
единица количества вещества -- моль -- количество вещества системы, содержащей столько же структурных элементов, сколько атомов содержится в нуклиде углерода-12 массой 0,012 кг;
единица силы света -- кандела -- сила света в заданном направлении источника, испускающего монохроматическое излучение частотой 540 · 1012 Гц, энергетическая сила которого в этом направлении составляет 1/683 Вт/ср.
Приведенные определения довольно сложны и требуют достаточного уровня знаний, прежде всего в физике. Но они дают представление о природном, естественном происхождении принятых единиц, а толкование их усложнялось по мере развития науки н благодаря новым высоким достижениям теоретической и практической физики, механики, математики и других фундаментальных областей знаний. Это дало возможность, с одной стороны, представить основные единицы как достоверные и точные, а с другой -- как объяснимые и как бы понятные для всех стран мира, что является главным условием для того, чтобы система единиц стала международной.
Международная система СИ считается наиболее совершенной и универсальной по сравнению с предшествовавшими ей. Кроме основных единиц, в системе СИ есть дополнительные единицы для измерения плоского и телесного углов -- радиан и стерадиан соответственно, а также большое количество производных единиц пространства и времени, механических величин, электрических и магнитных величин, тепловых, световых и акустических величин, а также ионизирующих излучений.
2. СИ (Система Интернациональная) -- международная система единиц, современный вариант метрической системы. СИ является наиболее широко используемой системой единиц в мире, как в повседневной жизни, так и в науке и технике.
В настоящее время СИ принята в качестве основной системы единиц большинством стран мира и почти всегда используется в области техники, даже в тех странах, в которых в повседневной жизни используются традиционные единицы. В этих немногих странах (например, в США) определения традиционных единиц были изменены -- они стали определяться через единицы СИ.
В России действует ГОСТ 8.417--2002, предписывающий обязательное использование единиц СИ. В нём перечислены единицы физических величин, разрешённые к применению, приведены их международные и русские обозначения и установлены правила их использования.
ГОСТ 8.417 -- государственный стандарт, устанавливающий единицы измерения, применяемые в Российской Федерации и некоторых других странах, входивших ранее в СССР. В стандарте определены наименования, обозначения, определения и правила применения этих единиц. В России с 1 сентября 2003 года действует «ГОСТ 8.417--2002 ГСИ. Единицы величин», заменивший «ГОСТ 8.417--81 ГСИ. Единицы физических величин».
Производные единицы могут быть выражены через основные с помощью математических операций: умножения и деления. Некоторым из производных единиц, для удобства, присвоены собственные названия, такие единицы тоже можно использовать в математических выражениях для образования других производных единиц.
Десятичные кратные и дольные единицы образуют с помощью стандартных множителей и приставок СИ, присоединяемых к названию или обозначению единицы.
Кратность |
Приставка |
Обозначение |
Пример |
|||
русская |
международная |
русское |
международное |
|||
101 |
дека |
deca |
да |
da |
дал - декалитр |
|
102 |
гекто |
hecto |
г |
h |
гПа - гектопаскаль |
|
103 |
кило |
kilo |
к |
k |
кН - килоньютон |
|
106 |
мега |
Mega |
М |
M |
МПа - мегапаскаль |
|
109 |
гига |
Giga |
Г |
G |
ГГц - гигагерц |
|
1012 |
тера |
Tera |
Т |
T |
ТВ - теравольт |
|
1015 |
пета |
Peta |
П |
P |
Пфлоп - петафлоп |
|
1018 |
экса |
Exa |
Э |
E |
ЭБ - эксабайт |
|
1021 |
зетта |
Zetta |
З |
Z |
ЗэВ - зеттаэлектронвольт |
|
1024 |
йотта |
Yotta |
И |
Y |
Йб - йоттабайт |
Большинство приставок образовано от греческих слов.
3. Обозначения единиц печатают прямым шрифтом, точку как знак сокращения после обозначения не ставят.
Обозначения помещают за числовыми значениями величин через пробел, перенос на другую строку не допускается. Исключения составляют обозначения в виде знака над строкой, перед ними пробел не ставится. Примеры: 10 м/с, 15°.
Если числовое значение представляет собой дробь с косой чертой, его заключают в скобки, например: (1/60) с-1.
При указании значений величин с предельными отклонениями их заключают в скобки или проставляют обозначение единицы за числовым значением величины и за её предельным отклонением: (100,0 ± 0,1) кг, 50 г ± 1 г.
Обозначения единиц, входящие в произведение, отделяют точками на средней линии (Н·м, Па·с), не допускается использовать для этой цели символ «Ч». В машинописных текстах допускается точку не поднимать или разделять обозначения пробелами, если это не может вызвать недоразумения.
В качестве знака деления в обозначениях можно использовать горизонтальную черту или косую черту (только одну). При применении косой черты, если в знаменателе стоит произведение единиц, его заключают в скобки. Правильно: Вт/(м·К), неправильно: Вт/м/К, Вт/м·К.
Допускается применять обозначения единиц в виде произведения обозначений единиц, возведённых в степени (положительные и отрицательные): Вт·м-2·К-1, А·мІ. При использовании отрицательных степеней не разрешается использовать горизонтальную или косую черту (знак деления).
Допускается применять сочетания специальных знаков с буквенными обозначениями, например: °/с (градус в секунду).
Не допускается комбинировать обозначения и полные наименования единиц. Неправильно: км/час, правильно: км/ч.
Обозначения единиц, произошедшие от фамилий, пишутся с заглавной буквы, в том числе с приставками СИ, например: ампер -- А, мегапаскаль -- МПа, килоньютон -- кН, гигагерц -- ГГц.
Вопросы и задания.
73. В каком году ГКМВ определила шесть основных единиц физических величин для их использования в международных отношениях?
74. Назовите семь основных единиц СИ.
75. Что определяет ГОСТ 8.417--2002 ГСИ. Единицы величин?
76. Назовите основные правила написания обозначения единиц?
§19. Воспроизведение единиц физических величин и передача их размера. Эталоны единиц физических величин
1. Воспроизведение единицы физической величины - совокупность операций по материализации единицы физической величины с наивысшей в стране точностью с помощью государственного эталона или исходного образцового средства измерений.
Воспроизведение основной единицы - воспроизведение единицы путем создания фиксированной по размеру физической величины в соответствии с определением единицы.
Воспроизведение производной единицы - определение значения физической величины в указанных единицах на основании косвенных измерений других величин, функционально связанных с измеряемой величиной.
Погрешность воспроизведения единицы физической величины - погрешность результата измерений, выполняемых при воспроизведении единицы физической величины.
Эталон единицы физической величины - средство измерений или комплекс средств измерений:
ь предназначенных для воспроизведения и хранения единицы и передачи ее размера нижестоящим по поверочной схеме средствам измерений; и
ь утвержденных в качестве эталона в установленном порядке.
По М.Ф. Маликову эталон должен обладать тремя свойствами: неизменностью, воспроизводимостью и сличаемостью.
Неизменность -- свойство эталона удерживать неизменным размер воспроизводимой им единицы в течение длительного интервала времени, при этом все изменения, зависящие от внешних условий, должны быть строго определенными функциями величин, доступных точному измерению. Реализация этих требований привела к идее создания "естественных" эталонов различных величин, основанных на физических постоянных.
Воспроизводимость -- возможность воспроизведения единицы ФВ (на основе ее теоретического определения) с наименьшей погрешностью для существующего уровня развития измерительной техники. Это достигается путем постоянного исследования эталона в целях определения систематических погрешностей и их исключения путем введения соответствующих поправок.
Сличаемостъ -- возможность обеспечения сличения с эталоном других СИ, нижестоящих по поверочной схеме, в первую очередь вторичных эталонов, с наивысшей точностью для существующего уровня развития техники измерения. Это свойство предполагает, что эталоны по своему устройству и действию не вносят каких-либо искажений в результаты сличений и сами не претерпевают изменений при проведении сличений.
Единство измерений достигается точным воспроизведением, хранением установленных единиц ФВ и передачей их размеров всем рабочим средствам измерений (РСИ) с помощью эталонов и образцовых средств измерений. Высшим звеном в метрологической цепи передачи размеров единиц измерений являются эталоны. Создание, хранение и применение эталонов, контроль за их состоянием подчиняются единым правилам, установленным ГОСТ 8.057-80 “ГСИ. Эталоны единиц физических величин. Основные положения” и ГОСТ 8.372-80 “ГСИ. Эталоны единиц физических величин. Порядок разработки, утверждения, регистрации, хранения и применения”.
2. Эталон единицы - средство измерений (или комплекс средств измерений), обеспечивающее воспроизведение и хранение единицы с целью передачи ее размера нижестоящим по поверочной схеме средствам измерений, выполненное по особой спецификации и официально утвержденное в установленном порядке в качестве эталона.
Воспроизведение единиц в зависимости от технико-экономических требований производится двумя способами.
Первый способ - централизованный - с помощью единого для всей страны или группы стран государственного эталона. Централизовано воспроизводятся все основные единицы SI и большая часть производных.
Второй способ воспроизведения - децентрализованный - применим к производным единицам, размер которых не может передаваться прямым сравнением с эталоном и обеспечивать необходимую точность (например, единица площади - квадратный метр).
Различают следующие виды эталонов:
* первичный -- обеспечивает воспроизведение и хранение единицы с наивысшей в стране (по сравнению с другими эталонами той же величины) точностью. Первичные эталоны -- это уникальные СИ, часто представляющие собой сложнейшие измерительные комплексы, созданные с учетом новейших достижений науки и техники. Они составляют основу государственной системы обеспечения единства измерений;
* специальный -- обеспечивает воспроизведение единицы в особых условиях, в которых прямая передача размера единицы от первичного эталона с требуемой точностью не осуществима, и служит для этих условий первичным эталоном;
* государственный-- это первичный или специальный эталон, официально утвержденный в качестве исходного для страны. Утверждение проводит главный метрологический орган страны. Государственные эталоны создаются, хранятся и применяются центральными метрологическими научными институтами страны. Точность воспроизведения единицы должна соответствовать уровню лучших мировых достижений и удовлетворять потребностям науки и техники. В состав государственных эталонов включаются СИ, с помощью которых воспроизводят и (или) хранят единицу ФВ, контролируют условия измерений и неизменность воспроизводимого или хранимого размера единицы, осуществляют передачу размера единицы. Государственные эталоны подлежат периодическим сличениями с государственными эталонами других стран;
* вторичный -- хранит размер единицы, полученной путем сличения с первичным эталоном соответствующей ФВ. Вторичные эталоны являются частью подчиненных средств хранения единиц и передали их размеров, создаются и утверждаются в тех случаях, когда это необходимо для организации поверочных работ, а также для обеспечения сохранности и наименьшего износа государственного эталона. В состав вторичных эталонов включаются СИ, с помощью которых хранят единицу ФВ, контролируют условия хранения и передают размер единицы.
По своему метрологическому назначению вторичные эталоны делятся на следующие:
* эталон-копия -- предназначен для передачи размера единицы рабочим эталонам. Он создается в случае необходимости проведения большого числа поверочных работ с целью предохранения первичного или специального эталона от преждевременного износа. Эталон-копия представляют собой копию государственного эталона только по метрологическому назначению, поэтому он не всегда является его физической копией;
* эталон сравнения -- применяется для сличения эталонов, которые по тем или иным причинам не могут быть непосредственно сличаемы друг с другом;
* эталон-свидетель -- предназначен для проверки сохранности и неизменности государственного эталона и замены его в случае порчи или утраты. В настоящее время только эталон килограмма имеет эталон-свидетель. Его основное назначение -- обеспечивать возможность контролироля постоянства основного эталона;
* рабочий эталон -- применяется для передачи размера единицы рабочим средствам измерений. Это самые распространенные эталоны. С целью повышения точности измерений ФВ рабочие эталоны применяются во многих территориальных метрологических органах и лабораториях министерств и ведомств.
Способы выражения погрешностей эталонов устанавливает ГОСТ 8.381-80 "ГСИ. Эталоны, Способы выражения погрешностей".
3. Поверочная схема ? это утвержденный в установленном порядке документ, регламентирующий средства, методы и точность передачи размера единицы физической величины от государственного эталона рабочим средствам измерений.
Поверочные схемы в зависимости от области распространения подразделяются на следующие виды:
ь государственные поверочные;
ь ведомственные поверочные;
ь локальные.
Государственная поверочная схема распространяется на все средства измерений данной физической величины, применяемые в стране, т. е. устанавливают порядок передачи информации о размере единицы в масштабе страны. Государственные поверочные схемы разрабатываются метрологическими институтами. Они возглавляются первичными и специальными эталонами.
Ведомственная поверочная схема распространяется на средства измерений, подлежащие поверке внутри ведомства. Ведомственные поверочные схемы согласовываются с главным центром государственных эталонов и утверждаются руководством ведомства.
Локальная поверочная схема распространяется на средства измерений, подлежащие поверке в данном органегосударственной метрологической службы или в органе метрологической службы юридического лица. Локальная схема разрабатывается метрологической службой юридического лица, согласовывается с территориальным ЦСМ (Центром стандартизации и метрологии).
Содержание и построение поверочных схем установлены ГОСТ 8.061_80 «Поверочные схемы. Содержание и построение».
Вопросы и задания.
77. Что такое воспроизведение единицы ФВ?
78. Что такое эталон единицы ФВ?
79. Какими способами производится воспроизведение единиц?
80. Что такое первичные и вторичные эталоны?
81. Что такое поверочная схема?
82. Назовите определения всех видов поверочных схем.
§20. Виды измерений
1. Измерения различают по способу получения информации, по характеру изменений измеряемой величины в процессе измерений, по количеству измерительной информации, по отношению к основным единицам.
По способу получения информации измерения разделяют на прямые, косвенные, совокупные и совместные.
Прямые измерения -- это непосредственное сравнение физической величины с ее мерой. Например, при определении длины предмета линейкой происходит сравнение искомой величины (количественного выражения значения длины) с мерой, т.е. линейкой.
Косвенные измерения отличаются от прямых тем, что искомое значение величины устанавливают по результатам прямых измерений таких величин, которые связаны с искомой определенной зависимостью, Так, если измерить силу тока амперметром, а напряжение вольтметром, то по известной функциональной взаимосвязи всех трех названных величин можно рассчитать мощность электрической цепи.
Совокупные измерения сопряжены с решением системы уравнений, составляемых по результатам одновременных измерений нескольких однородных величин. Решение системы уравнений дает возможность вычислить искомую величину.
Совместные измерения -- это измерения двух или более неоднородных физических величин для определения зависимости между ними.
Совокупные и совместные измерения часто применяют в измерениях различных параметров и характеристик в области электротехники.
По характеру изменения измеряемой величины в процессе измерений бывают статистические, динамические и статические измерения.
Статистические измерения связаны с определением характеристик случайных процессов, звуковых сигналов, уровня шумов и т.д.
Статические измерения имеют место тогда, когда измеряемая величина практически постоянна.
Динамические измерения связаны с такими величинами, которые в процессе измерений претерпевают те или иные изменения.
Статические и динамические измерения в идеальном виде на практике редки.
По количеству измерительной информации различают однократные и многократные измерения.
Однократные измерения -- это одно измерение одной величины, т.е. число измерений равно числу измеряемых величин. Практическое применение такого вида измерений всегда сопряжено с большими погрешностями, поэтому следует проводить не менее трех однократных измерений и находить конечный результат как среднее арифметическое значение.
Многократные измерения характеризуются превышением числа измерений количества измеряемых величин. Обычно минимальное число измерений в данном случае больше трех. Преимущество многократных измерений -- в значительном снижении влияний случайных факторов на погрешность измерения.
По отношению к основным единицам измерения делят на абсолютные и относительные.
Абсолютными измерениями называют такие, при которых используются прямое измерение одной (иногда нескольких) основной величины и физическая константа.
Относительные измерения базируются на установлении отношения измеряемой величины к однородной, применяемой в качестве единицы. Естественно, что искомое значение зависит от используемой единицы измерений.
Вопросы и задания.
83. Какие измерения называются прямыми? косвенными? совокупными? совместными?
84. На какие виды подразделяются измерения по характеру изменения измеряемой величины? по количеству измерительной информации? по отношению к основным единицам?
§21. Методы измерений
1. Для точных измерений величин в метрологии разработаны приемы использования принципов и средств измерений, применение которых позволяет исключить из результатов измерений ряд систематических погрешностей и тем самым освобождает экспериментатора от необходимости определять многочисленные поправки для их компенсации, а в некоторых случаях вообще является предпосылкой получения сколько-нибудь достоверных результатов. Многие из этих приемов используют при измерении только определенных величин, однако существуют и некоторые общие приемы, названные методами измерения.
В соответствии с РМГ 29-99, к числу основных методов измерений относят метод непосредственной оценки и методы сравнения: дифференциальный, нулевой, замещения и совпадений.
Метод непосредственной оценки - метод измерений, в котором значение величины определяют непосредственно по отсчетному устройству измерительного прибора прямого действия, например измерения вала микрометром и силы - механическим динамометром.
Методы сравнения с мерой - методы, при которых измеряемая величина сравнивается с величиной, воспроизводимой мерой:
ь дифференциальный метод характеризуется измерением разности между измеряемой величиной и известной величиной, воспроизводимой мерой. Примером дифференциального метода может служить измерение вольтметром разности двух напряжений, из которых одно известно с большой точностью, а другое представляет собой искомую величину;
ь нулевой метод - при котором разность между измеряемой величиной и мерой сводится к нулю. При этом нулевой метод имеет то преимущество, что мера может быть во много раз меньше измеряемой величины, например взвешивание на весах, когда на одном плече находится взвешиваемый груз, а на другом - набор эталонных грузов;
ь метод замещения - метод сравнения с мерой, в котором измеренную величину замещают известной величиной, воспроизводимой мерой. Метод замещения применяется при взвешивании с поочередным помещением измеряемой массы и гирь на одну и ту де чашу весов;
ь метод совпадений - метод сравнения с мерой, в котором разность между измеряемой величиной и величиной, воспроизводимой мерой, измеряют, используя совпадение отметок шкал или периодических сигналов. Примером использования данного метода может служить измерение длины при помощи штангенциркуля с нониусом.
Наиболее просто реализуется метод непосредственной оценки, заключающийся в определении величины непосредственно по отсчетному устройству измерительного прибора прямого действия, например взвешивание на циферблатных весах, определение размера детали с помощью микрометра или измерение давления пружинным манометром.
Вообще следует заметить, что многие из приведенных методов и приемов исключения систематических погрешностей в настоящее время все в большей степени реализуются схемами самих измерительных средств. В результате разработка методологии измерений приобретает все большее значение непосредственно для проектирования измерительной аппаратуры.
Вопросы и задания.
85. Какие методы измерения существуют?
86. Какой метод измерения реализуется наиболее просто?
§22. Виды средств измерений
1. Средство измерений (СИ) - техническое средство, используемое при измерениях и имеющее нормативные метрологические характеристики. Все СИ (в соответствии с РМГ 29-99.ГСИ. "Метрология. Основные термины и определения") делятся на пять видов:
ь меры;
ь измерительные преобразователи;
ь измерительные приборы;
ь измерительные установки;
ь измерительные системы.
Мера - это СИ, предназначенное для воспроизведения физической величины заданного размера.
Измерительный преобразователь - СИ, предназначенное для выработки сигнала измерительной информации в форме, удобной для дальнейшего преобразования, передачи, обработки, хранения, но не предназначенной для непосредственного восприятия наблюдателем. Пример: измерительные трансформаторы тока и напряжения, измерительные усилители, делители напряжения, шунты, добавочные резисторы, цифровые измерители регистраторы (логгеры) и т.п. Измерительный преобразователь не имеет отсчётного устройства и поэтому результат преобразования не может быть воспринят человеком.
Измерительный прибор - это СИ, предназначенное для выработки сигнала измерительной информации в форме, доступной для непосредственного восприятия наблюдателем, т.е. имеет отчётное устройство или индикатор. Пример: электромагнитный щитовой вольтметр, самопишущий прибор, осциллограф, аналоговый тестер, цифровой мультиметр. Измерительный прибор, пожалуй, наиболее распространённый вид СИ.
Измерительная установка - совокупность функционально объединенных СИ и вспомогательных устройств, предназначенная для выработки сигналов измерительной информации в форме, удобной для непосредственного восприятия наблюдателем, и расположенная в одном месте. Пример: лабораторная установка для исследования характеристик электродвигателей, стенд для поверки электрических счётчиков и т.п.. Отличие измерительной установки от измерительной системы заключается в её локальности, компактности размещения.
Измерительная система - совокупность СИ и вспомогательных устройств, соединённых между собой каналами связи, предназначенная для выработки синглов измерительной информации в форме, удобной для автоматической обработки, передачи и/или использования в автоматических системах управления. Пример: многоканальный пространственный распределительный информационно-измерительный комплекс в составе системы управления технологическим процессом.
По метрологическому назначению средства измерений делят на два вида - рабочие средства измерений и эталоны. Рабочие средства измерений применяют для определения параметров (характеристик) технических устройств, технологических процессов, окружающей среды и др. Рабочие средства могут быть лабораторными (для научных исследований), производственными (для обеспечения и контроля заданных характеристик технологических процессов), полевыми (для самолетов, автомобилей, судов и т.п.). Каждый из этих видов рабочих средств отличается особыми показателями.
Вопросы и задания.
87. Какие виды СИ существуют?
88. Какой вид СИ наиболее распространен?
§23. Метрологические характеристики средств измерений
1. Метрологическая характеристика средства измерений (МХ СИ) - характеристика одного из свойств средства измерений, влияющих на результат измерений или его погрешность. Основными метрологическими характеристиками являются диапазон измерений и различные составляющие погрешности средства измерений.
Диапазон измерений средства измерений - область значений величины, в пределах которой нормированы допускаемые пределы погрешности средства измерений.
Класс точности средства измерений - обобщенная характеристика средства измерений, выражаемая пределами его допускаемых основной и дополнительных погрешностей, а также другими характеристиками, влияющими на точность.
Метрологическая исправность средства измерений - состояние средства измерений, при котором все нормируемые метрологические характеристики соответствуют установленным требованиям.
Метрологическая надежность средства измерений - свойство средства измерений сохранять его метрологическую исправность в течение заданного интервала времени.
Метрологический отказ средства измерений - выход метрологической характеристики средства измерений за установленные пределы.
Нестабильность средства измерений - изменение во времени метрологических характеристик средства измерений за установленный интервал времени. Во многих случаях нестабильность обусловлена старением отдельных элементов средства измерений.
Стабильность средства измерений - качественная характеристика средства измерений, отражающая неизменность во времени его метрологических свойств.
Номинальное значение меры - значение физической величины, приписанное мере или партии мер при изготовлении. Обычно номинальное значение меры устанавливается нормативно-техническим документом, которым пользуются при изготовлении.
В качестве количественной оценки стабильности служит нестабильность средства измерений.
Для средств измерений, осуществляющих измерительное преобразование измеряемой физической величины, широко применяют интегральную метрологическую характеристику, которая отражает действительную функцию преобразования (так называемая градуировочная характеристика). Градуировочная характеристика средства измерения (градуировочная характеристика) - зависимость между значениями величин на входе и выходе средства измерений, полученная экспериментально. Градуировочная характеристика может быть выражена в виде формулы, графика или таблицы. Выраженную в виде формулы или графика, номинальную характеристику называют функцией преобразования средства измерений.
Нормируемая метрологическая характеристика - метрологическая характеристика средства измерений, устанавливаемая нормативно-техническими документами.
Нормируемые метрологические характеристики (НМХ) СИ регламентируются ГОСТ 8.009-84. "Нормируемые метрологические характеристики средств измерений". К основным НМХ относится, например, погрешность СИ, номинальная функция преобразования или коэффициент преобразования измерительного преобразователя, чувствительность, диапазон измерений, выходное сопротивление.
Погрешность измерения -- оценка отклонения измеренного значения величины от её истинного значения.
Вариация показаний измерительного прибора (вариация показаний) - разность показаний прибора в одной и той же точке диапазона измерений при плавном подходе к этой точке со стороны меньших и больших значений измеряемой величины.
Порог чувствительности средства измерений (порог чувствительности) - характеристика средства измерений в виде наименьшего значения изменения физической величины, начиная с которого может осуществляться ее измерение данным средством.
Для выбора номенклатуры и назначения метрологических характеристик (МХ) важно определить вид конкретного средства измерений, поскольку для разных СИ используют различные МХ и комплексы МХ. Метрологические характеристики средств измерений (МХ СИ) различных видов существенно отличаются по номенклатуре.
Метрологические характеристики (МХ) средств измерений по ГОСТ 8.009-84 делят на следующие группы:
ь характеристики, предназначенные для определения результатов измерений (без введения поправки). Такие МХ можно назвать номинальными;
ь характеристики погрешностей СИ;
ь характеристики чувствительности СИ к влияющим величинам, которые тоже можно отнести к характеристикам погрешностей;
ь динамические характеристики СИ;
ь неинформативные параметры выходного сигнала СИ (предпочтительно рассматривать неинформативные параметры сигнала измерительной информации).
Вопросы и задания.
89. Какие МХ СИ являются основными?
90. Что такое нормируемые метрологические характеристики?
91. Что такое диапазон измерения СИ?
92. Каким документом регламентируются НМХ СИ?
93. На какие группы делят МХ СИ?
§24. Погрешность измерения
1. Погрешность измерения -- оценка отклонения измеренного значения величины от её истинного значения. Погрешность измерения является характеристикой (мерой) точности измерения.
Поскольку выяснить с абсолютной точностью истинное значение любой величины невозможно, то невозможно и указать величину отклонения измеренного значения от истинного (это отклонение принято называть ошибкой измерения). Возможно лишь оценить величину этого отклонения, например, при помощи статистических методов. На практике вместо истинного значения используют действительное значение величины, т.е. значение физической величины, полученное экспериментальным путем и настолько близкое к истинному значению, что в поставленной измерительной задаче может быть использовано вместо него.
Такое значение, обычно, вычисляется как среднестатистическое значение, полученное при статистической обработке результатов серии измерений. Это полученное значение не является точным, а лишь наиболее вероятным. Поэтому в измерениях необходимо указывать, какова их точность.
Точность средства измерений -- степень совпадения показаний измерительного прибора с истинным значением измеряемой величины. Чем меньше разница, тем больше точность прибора. Точность эталона или меры характеризуется погрешностью или степенью воспроизводимости. Точность измерительного прибора, откалиброванного по эталону, всегда хуже или равна точности эталона.
Точность результата измерений -- одна из характеристик качества измерения, отражающая близость к нулю погрешности результата измерения. Следует отметить, что о повышении качества измерений всегда говорят термином «увеличить точность» -- притом, что величина, характеризующая точность, при этом должна уменьшиться.
Официально к измерительным приборам относят только средства измерения, включённые в Госреестр. Внесение в Госреестр средств измерений в обязательном порядке сопровождается утверждением методики поверки средства измерения на предмет соответствия заявленной в сертификате точности. Как правило, реальная точность прибора после калибровки существенно выше, чем сертифицированная точность. Это связано с тем, что измерительный прибор должен гарантировать паспортную точность не только сразу после калибровки, но в течение всего межповерочного интервала.
2. В зависимости от характеристик измеряемой величины для определения погрешности измерений используют различные методы.
Метод Корнфельда, заключается в выборе доверительного интервала в пределах от минимального до максимального результата измерений, и погрешность как половина разности между максимальным и минимальным результатом измерения:
.
Доверительный интервал в математической статистике -- это интервал, построенный с помощью случайной выборки из распределения с неизвестным параметром, такой, что он накрывает данный параметр с заданной вероятностью.
Средняя квадратическая погрешность:
Среднеквадратическое отклонение или стандартное отклонение -- в теории вероятностей и статистике наиболее распространенный показатель рассеивания значений случайной величины относительно её математического ожидания. Измеряется в единицах измерения самой случайной величины. Равно корню квадратному из дисперсии случайной величины.
3. Погрешности классифицируют
А. по форме представления:
1) абсолютная погрешность -- ДX является оценкой абсолютной ошибки измерения. Величина этой погрешности зависит от способа её вычисления, который, в свою очередь, определяется распределением случайной величины;
2) относительная погрешность -- погрешность измерения, выраженная отношением абсолютной погрешности измерения к действительному или измеренному значению измеряемой величины (относительная погрешность является безразмерной величиной, либо измеряется в процентах):
;
3) приведённая погрешность -- погрешность, выраженная отношением абсолютной погрешности средства измерений к условно принятому значению величины, постоянному во всем диапазоне измерений или в части диапазона;
Б. по причине возникновения:
1) инструментальные (приборные) погрешности -- погрешности, которые определяются погрешностями применяемых средств измерений и вызываются несовершенством принципа действия, неточностью градуировки шкалы, ненаглядностью прибора;
2) методические погрешности -- погрешности, обусловленные несовершенством метода, а также упрощениями, положенными в основу методики;
3) субъективные / операторные / личные погрешности -- погрешности, обусловленные степенью внимательности, сосредоточенности, подготовленности и другими качествами оператора;
В технике применяют приборы для измерения лишь с определённой заранее заданной точностью -- основной погрешностью, допускаемой нормали в нормальных условиях эксплуатации для данного прибора.
по характеру проявления:
4) случайная погрешность -- погрешность, меняющаяся (по величине и по знаку) от измерения к измерению;
Случайные погрешности могут быть связаны с несовершенством приборов (трение в механических приборах и т. п.), тряской в городских условиях, с несовершенством объекта измерений (например, при измерении диаметра тонкой проволоки, которая может иметь не совсем круглое сечение в результате несовершенства процесса изготовления), с особенностями самой измеряемой величины (например при измерении количества элементарных частиц, проходящих в минуту через счётчик Гейгера).
5) систематическая погрешность -- погрешность, изменяющаяся во времени по определённому закону (частным случаем является постоянная погрешность, не изменяющаяся с течением времени);
6) прогрессирующая (дрейфовая) погрешность -- непредсказуемая погрешность, медленно меняющаяся во времени;
7) грубая погрешность (промах) -- погрешность, возникшая вследствие недосмотра экспериментатора или неисправности аппаратуры (например, если экспериментатор неправильно прочёл номер деления на шкале прибора или если произошло замыкание в электрической цепи).
Более подробно классификация погрешностей рассматривается в курсе «Физические основы измерений».
Вопросы и задания.
94. Что такое погрешность измерения?
95. Какие методы используют для определения погрешностей?
96. Как классифицируют погрешности?
§25. Основные принципы выбора средств измерений
1. Выбор средств измерений должен производиться с учётом погрешностей, допускаемых при измерении и заданных в соответствующих нормативных документах.
При выборе средств измерений объёмного или массового расхода, частоты вращения и в связи с тем, что отсутствует нормативная документация регламентирующая определение погрешности измерения этих величин в зависимости от допуска на контролируемый параметр, необходимо задавать предельно допустимую погрешность измерений данных параметров в конструкторской документации на изделие.
Выбор средств измерений по точности должен осуществляться с учётом:
ь допустимых отклонений на параметры (если не оговорено иначе);
ь выбранной методики выполнения измерений и достоверности контроля;
ь требуемой группы исполнения, определяемой условиями их использования в процессе производства, производственного контроля и эксплуатации изделия.
Выбор и назначение средств измерений должен удовлетворять требованиям получения действительных значений измеряемых величин с оптимальной точностью при наименьших затратах времени и материальных средств.
Основными исходными данными для выбора средств измерений являются:
ь номинальное значение и разность между наибольшим и наименьшим предельными значениями (поле допуска) измеряемой величины, указанные в нормативной, конструкторской или технологической документации;
ь условия выполнения измерений.
При наличии в конструкторской документации только максимального или минимального значения измеряемой величины должно быть указано значение погрешности, допускаемой при выборе средств измерений.
При выборе по точности измерительных систем погрешность их следует определять путем суммирования погрешностей всех входящих в систему мер, измерительных приборов, измерительных преобразователей по определенному для каждой системы закону.
Выбор средств измерений производится по стандартам и техническим условиям на конкретные средства измерений для нормальных условий их применения отражённых в ГОСТ 8.050, ГОСТ 8.395, ГОСТ 15150 и технических условиях на средства измерений.
Нормальными условиями измерений принято считать условия измерений, характеризуемые совокупностью значений или областей значений влияющих величин, при которых изменением результата измерений пренебрегают вследствие малости.
Нормальные условия измерений устанавливаются в нормативных документах на средства измерений конкретного типа или по их поверке (калибровке).
2. Все средства измерений, предназначенные для серийного производства, ввоза из-за границы, подвергаются со стороны органов Государственной метрологической службы обязательным государственным испытаниям, под которыми понимается экспертиза технической документации на средства измерений и их экспериментальные исследования для определения степени соответствия установленным нормам, потребностям народного хозяйства и современному уровню развития приборостроения, а также целесообразности их производства.
Установлены два вида государственных испытаний:
ь приемочные испытания опытных образцов средств измерений новых типов, намеченных к серийному производству или импорту в РФ (государственные приемочные испытания);
ь контрольные испытания образцов из установочной серии и серийно выпускаемых средств измерений (государственные контрольные испытания).
Государственные приемочные испытания проводятся метрологическими органами Госстандарта или специальными государственными комиссиями, состоящими из представителей метрологических институтов, организаций-разработчиков, изготовителей и заказчиков.
Государственные контрольные испытания проводятся территориальными организациями Ростехрегулирования. Их цель - проверка соответствия выпускаемых из производства или ввозимых из-за границы средств измерений требованиям стандартов и технических условий.
Вопросы и задания.
97. С учетом каких параметров выбирают СИ?
98. Какие виды государственных испытаний существуют?
Тестовое задание для проведения пробной промежуточной аттестации по метрологии за III семестр.(§1-16)
1. Метрология -- это
a) наука об измерениях,
b) наука о стандартах,
c) наука о качестве продукции.
2. В метрологии нет такого раздела, как
a) теоретическая,
b) законодательная,
c) исполнительная.
3. Главная палата мер и весов была создана в
a) 1861,
b) 1893,
c) 1901.
4. Закон «Об обеспечении единства измерений» был принят в
a) 1993,
b) 1991,
c) 1996.
5. До Закона «Об обеспечении единства измерений» правовые нормы в области метрологии устанавливались:
a) Постановлениями Правительства,
b) предыдущей версией Закона,
c) Федеральным метрологическим кодексом.
6. Какой документ определяет Государственную метрологическую службу?
a) Постановление №125 Правительства РФ от 12 декабря 1996 г.,
b) Закон «Об обеспечении единства измерений»,
c) Положение о Государственной метрологической службе.
7. Под метрологическим обеспечением понимается:
a) финансирование проектов средств измерений, их ремонта и калибровочных работ,
b) лицензирование, сертифицирование и установление нормативных характеристик средства измерения,
c) организация, технические средства, правила и нормы для достижения единства измерений.
8. В Государственной системе обеспечения единства измерений не существует следующей подсистемы:
a) правовой,
b) технической,
c) испытательной.
9. Государственная служба стандартных образцов состава и свойств веществ и материалов находится в подчинении:
a) Ростехрегулирования и ГМС,
b) Государственной метрологической службы,
c) Государственного метрологического контроля и надзора и ГМС.
10. Аббревиатура МБМВ расшифровывается как:
a) Метрологический Банк Мер и Весов,
b) Международное Бюро Мер и Весов,
c) Международный Банк Мер и Весов.
11. Утверждение типа средств измерений производится:
a) Государственной службой утверждения типа,
b) Ростехрегулированием,
c) Метрологическим контролем и надзором.
12. В выдаче лицензии может быть отказано, если
a) у предприятия доход ниже установленного в НД,
b) предпрятие имеет высокий внешний долг,
c) не выполняются условия лицензируемой деятельности.
13. Калибровка имеет:
a) добровольный характер,
b) принудительный характер,
c) характер, установленный в договоренностях между предприятием и ГМС.
14. Какой орган Российской системы калибровки регистрирует и ведет Реестр РСК?
a) Совет РСК,
b) Научно-методический центр РСК,
c) Центральный орган РСК.
15. Методический документ, устанавливающий последовательность, объем и методику метрологической аттестации средств измерений, характеризующихся общностью функционального назначения это:
a) ГОСТ,
b) МИ,
c) ТПМА.
16. Процедура подтверждения соответствия продукции установленным требованиям это:
a) Стандартизация,
b) Сертификация,
c) Метрология.
17. Методика выполнения измерений -- это:
a) Операции и правила, выполнение которых обеспечивает получение результатов измерений с известной точностью,
b) Документ, содержащий рекомендации по выполнению измерений с минимальной погрешностью,
c) Часть государственного стандарта, в которой устанавливаются требования к выполнению измерений.
18. Процедура установления и подтверждения соответствия МВИ предъявляемым к ней метрологическим требованиям это:
a) утверждение типа МВИ,
b) сертификация МВИ,
c) аттестация МВИ.
19. Анализ состояния измерений проводится:
a) в обязательном порядке,
b) в добровольном порядке,
c) может проводиться и добровольно и обязательно.
20. Ведомственную поверку и метрологическую аттестацию СИ постепенно заменяет такой процесс, как:
a) калибровка,
b) лицензирование,
c) сертификация.
Ответы на тест:
1 |
a |
|
2 |
c |
|
3 |
b |
|
4 |
a |
|
5 |
a |
|
6 |
b |
|
7 |
c |
|
8 |
c |
|
9 |
a |
|
10 |
b |
|
11 |
b |
|
12 |
c |
|
13 |
a |
|
14 |
b |
|
15 |
c |
|
16 |
b |
|
17 |
a |
|
18 |
c |
|
19 |
c |
|
20 |
a |
Варианты вопросов для проведения аттестации в III семестре. (§1-16)
Вариант 1.
1. Цели и задачи метрологии.
2. Анализ состояния измерений.
Вариант 2.
1. Основные правовые акты в области метрологии.
2. Метрологическая экспертиза.
Вариант 3.
1. Основы метрологического обеспечения.
2. Методики выполнения измерений.
Вариант 4.
1. Федеральный Закон «Об обеспечении единства измерений».
2. Система сертификации средств измерений.
Вариант 5.
1. Государственная система обеспечения единства измерений.
2. Метрологическая аттестация средств измерений.
Вариант 6.
1. Федеральное агентство по техническому регулированию и метрологии.
2. Калибровка средств измерений. Российская система калибровки.
Вариант 7.
1. Государственная метрологическая служба.
2. Поверка средств измерений.
Вариант 8.
1. Международные метрологические организации.
2. Государственный метрологический контроль и надзор за средствами измерений.
Вариант 9.
1. Основы метрологического обеспечения.
2. Федеральное агентство по техническому регулированию и метрологии.
Вариант 10.
1. Государственная система обеспечения единства измерений.
2. Метрологическая экспертиза.
Варианты вопросов для проведения аттестации в IV семестре. (§17-25)
Вариант 1.
1. Понятие о физической величине.
2. Погрешность измерения.
Вариант 2.
1. Основные физические величины.
2. Выбор СИ.
Вариант 3.
1. Эталоны.
2. Метрологические характеристики средств измерений.
Вариант 4.
1. Поверочные схемы.
2. Методы измерений.
Вариант 5.
1. Виды измерений.
2. Классификация погрешностей.
Вариант 6.
1. Размерности ФВ.
2. Определение погрешности измерения.
Вариант 7.
1. Воспроизведение единиц физических величин.
2. Испытание и контроль СИ.
Вариант 8.
1. Правила написания обозначения единиц.
2. Виды измерений.
Вариант 9.
1. Основные физические величины.
2. Эталоны.
Вариант 10.
1. Классификация погрешностей.
2. Методы измерений.
Список дополнительной литературы
1. А.Г. Сергеев «Метрология», Москва, Логос, 2005.
2. Г.Д. Крылова «Основы стандартизации, сертификации, метрологии», Москва, Юнити, 1999.
Подобные документы
Основные термины и определения в области метрологии. Современное состояние измерений в телекоммуникациях, процесс совершенствования измерительных технологий. Определение относительных уровней напряжения, суть безразмерной измерительной единицы - децибел.
реферат [35,9 K], добавлен 19.09.2015Рассмотрение систематических и случайных погрешностей измерений основных показателей в метрологии. Правила суммирования погрешностей. Основы обработки однократных прямых, многократных и косвенных измерений. Определение границы доверительного интервала.
курсовая работа [78,9 K], добавлен 14.10.2014Изучение метрологии как науки об измерениях, методах и средствах обеспечения их единства, способах достижения требуемой точности. Классификация и принцип работы измерительных средств. Основные этапы развития стандартизации и сертификации в России.
курсовая работа [386,1 K], добавлен 30.06.2015Метрология как наука об измерениях, методах и средствах обеспечения их единства и способах достижения требуемой точности. Способы нормирования метрологических характеристик средств измерений, поверка электродинамических и электромагнитных приборов.
курсовая работа [178,5 K], добавлен 09.11.2012Изучение систем управления цветом. Анализ проблем полиграфии, связанных с работой со цветом. Изучение основных принципов калибровки мониторов. Обзор существующих программных и аппаратных средств калибровки мониторов. Нелинейность монитора-колориметра.
курсовая работа [691,3 K], добавлен 09.02.2013Понятие средства измерений, их виды и классификация погрешностей. Метрологические характеристики средств измерений, особенности норм на их значения. Частные динамические характеристики аналого-цифровых преобразователей и цифровых измерительных приборов.
курсовая работа [340,9 K], добавлен 03.01.2013Применение цифровых фотокамер для стереофотограмметрической съемки. Способ калибровки снимков по фотографиям испытательного полигона. Зависимость координат на местности и их среднеквадратических ошибок. Метод калибровки с помощью тестового полигона.
курсовая работа [2,6 M], добавлен 22.04.2014Изучение системы измерения физических величин путем преобразования их в электрические величины. Принцип работы частотного датчика на основе рекомбинационных волн, особенности его калибровки. Диапазон рабочих частот. Функциональная схема устройства.
курсовая работа [656,8 K], добавлен 09.01.2018Главные приоритеты стандартизации средств связи. Периоды развития стандартизации. Поверка средств измерений как один из основных видов государственного метрологического надзора и ведомственного контроля. Сущность первичной и периодической поверки.
реферат [13,1 K], добавлен 14.11.2010Проблема качества изделий электронной техники и роль взаимозаменяемости, стандартизации, технических измерений и погрешностей. Структурные схемы приборов прямого и уравновешенного преобразования. Характеристики время-импульсного цифрового вольтметра.
контрольная работа [1,5 M], добавлен 22.10.2009