Разработка и внедрение проекта безопасной сети, малого предприятия на базе технологии Wi-Fi

Беспроводные локально-вычислительные сети, их топология. Ресурс точки доступа. Проектирование и разработка соединения LAN и WLAN для работы пользователей по WI-FI (802.11g), терминального доступа на основе ПО Citix Metaframe с использованием VPN-сервиса.

Рубрика Коммуникации, связь, цифровые приборы и радиоэлектроника
Вид дипломная работа
Язык русский
Дата добавления 19.02.2013
Размер файла 1,6 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Межсетевой экран должен обеспечивать:

1. защиту ЛВС от доступа из сети Internet;

2. подключение информационных серверов через выделенный порт;

3. настройку алгоритмов передачи данных в зависимости от адресов IP и других характеристик передаваемых пакетов данных.

2.2.5 Требования к системе бесперебойного питания основного оборудования ЛВС

Система бесперебойного питания основного оборудования ЛВС должна обеспечить выполнение следующих функции:

1. обеспечение электропитания центрального (основного) оборудования ЛВС при отсутствии внешнего питания;

2. защита активного от импульсных помех внешней электросети;

3. поддержка питания в пределах номинальных значений.

4. Система бесперебойного питания основного оборудования ЛВС должна строиться на локальных ИБП (источник бесперебойного питания) необходимой мощности.

5. ИБП должны поддерживать управление по сети с использованием SNMP-протокола с помощью ПО управления под Windows 2000.

6. ИБП должны устанавливаться в 19-дюймовые монтажные шкафы.

7. ИБП должны быть изготовлены компанией APC, для обеспечения стабильности работы.

3. Проектирование беспроводной сети стандарта 802.11g

3.1 Развертывание Wi-Fi сети

При принятии решений относительно развертывания беспроводных LAN (WLAN) неоходимо учитывать:

v особенности работы протокола 802.11g,

v поведение мобильных узлов,

v вопросы защиты,

v качество связи (QoS)

v приложения, используемые беспроводными клиентами.

Физический аспект выполнения картирования места работ дает возможность понять, какую зону покрытия имеет каждая точка доступа, каково количество точек доступа, необходимое для покрытия заданной области, и установить параметры каждого канала и излучаемую мощность.

3.1.1 Сетевой аудит

Этот процесс включает:

v Сбор чертежей здания и схем проводки, расположения электрических систем, розеток, структурных элементов (металлических перегородок, стен, дверных проемов).

v Оценка зоны распространения радиосигнала (рис. 2.16), включая выбор зон установки компонентов для обеспечения минимальной потери сигнала. Определение оптимальной схемы размещения точек доступа и антенн.

v Оценка интерференции каналов, включая тестирование для обеспечения отсутствия перекрытия радиопередач.

v Оценка электрических систем, в том числе оценка альтернатив подключения точки доступа к электросети для предотвращения деградации производительности в связи со случайными или неизбежными электрическими проблемами.

Учтите при проведении исследования следующее:

v Если в здании используются деревянные полы, то зоны действия точек доступа могут перекрываться по вертикали. Убедитесь, что выбор каналов подходит для точек доступа, соседствующих друг с другом по вертикали.

v Закройте двери всех офисов и помещений перед началом исследования, чтобы оценить уровень приема на самом низком уровне.

3.1.2 Стандарты протокола 802.11

802.11a. Данная версия является как бы "боковой ветвью" основного стандарта 802.11. Для увеличения пропускной способности канала здесь используется диапазон частот передачи 5,5 ГГц. Для передачи в 802.11a используется метод множества несущих, когда диапазон частот разбивается на подканалы с разными несущими частотами (Orthogonal Frequency Division Multiplexing), по которым поток передается параллельно, разбитым на части. Использование метода квадратурной фазовой модуляции позволяет достичь пропускной способности канала 54 Мбит/сек.

802.11b. Этот стандарт является наиболее популярным на сегодняшний день и, собственно, он носит торговую марку Wi-Fi. Как и в первоначальном стандарте IEEE 802.11, для передачи в данной версии используется диапазон 2,4 ГГц. Он не затрагивает канальный уровень и вносит изменения в IEEE 802.11 только на физическом уровне. Для передачи сигнала используется метод прямой последовательности (Direct Sequence Spread Spectrum), при котором весь диапазон делится на 5 перекрывающих друг друга поддиапазонов, по каждому из которых передается информация. Значения каждого бита кодируются последовательностью дополнительных кодов (Complementary Code Keying). Пропускная способность канала при этом составляет 11 Мбит/сек.

802.11c.Стандарт, регламентирующий работу беспроводных мостов. Данная спецификация используется производителями беспроводных устройств при разработке точек доступа.

802.11d. Стандарт определял требования к физическим параметрам каналов (мощность излучения и диапазоны частот) и устройств беспроводных сетей с целью обеспечения их соответствия законодательным нормам различных стран.

802.11e. Создание данного стандарта связано с использованием средств мультимедиа. Он определяет механизм назначения приоритетов разным видам трафика - таким, как аудио- и видеоприложения.

802.11f. Данный стандарт, связанный с аутентификацией, определяет механизм взаимодействия точек связи между собой при перемещении клиента между сегментами сети. Другое название стандарта - Inter Access Point Protocol.

802.11g. Целью разработки данного стандарта было повышение пропускной способности канала до 54 Мбит/сек при условии совместимости с начальными версиями (использование диапазона 2,4 ГГц). Можно считать, что стандарт g явился симбиозом стандартов a и b. Для совместимости в данном методе обязательным является как кодирование с помощью Complementary Code Keying, так и мультиплексирование частот с помощью Orthogonal Frequency Division Multiplexing. Прямая и обратная совместимость предусматривает возможность работы устройств стандарта 802.11g в сетях 802.11b и наоборот.

802.11h. Разработка данного стандарта связана с проблемами при использовании 802.11а в Европе, где в диапазоне 5 ГГц работают некоторые системы спутниковой связи. Для предотвращения взаимных помех стандарт 802.11h имеет механизм "квазиинтеллектуального" управления мощностью излучения и выбором несущей частоты передачи.

802.11i. Целью создания данной спецификации является повышение уровня безопасности беспроводных сетей. В ней реализован набор защитных функций при обмене информацией через беспроводные сети - в частности, технология AES (Advanced Encryption Standard) - алгоритм шифрования, поддерживающий ключи длиной 128, 192 и 256 бит. Предусматривается совместимость всех используемых в данное время устройств - в частности, Intel Centrino - с 802.11i-сетями.

802.11j. Спецификация предназначена для Японии и расширяет стандарт 802.11а добавочным каналом 4,9 ГГц.

802.11n. Перспективный стандарт, находящийся на сегодняшний день в разработке, который позволит поднять пропускную способность сетей до 100 Мбит/сек.

802.11r. Данный стандарт предусматривает создание универсальной и совместимой системы роуминга для возможности перехода пользователя из зоны действия одной сети в зону действия другой.

Подводя итог сказанному, можно заметить, что разработки спецификаций стандарта 802.11 значительно приблизили беспроводные сети по параметрам к обычным, проводным сетям. Дальнейшее развитие беспроводных технологий связано еще и с принципиально новыми стандартами - такими, как 802.15 и 802.16, - которые описывают устройства персональных беспроводных сетей и беспроводных сетей масштаба города.

3.2 Физический уровень протокола 802.11g

Стандарт IEEE 802.11g является логическим развитием стандарта 802.11b/b+ и предполагает передачу данных в том же частотном диапазоне, но с более высокими скоростями. Кроме того, стандарт 802.11g полностью совместим с 802.11b, то есть любое устройство 802.11g должно поддерживать работу с устройствами 802.11b. Максимальная скорость передачи в стандарте 802.11g составляет 54 Мбит/с.

При разработке стандарта 802.11g рассматривались несколько конкурирующих технологий: метод ортогонального частотного разделения OFDM, предложенный к рассмотрению компанией Intersil, и метод двоичного пакетного сверточного кодирования PBCC, опционально реализованный в стандарте 802.11b и предложенный компанией Texas Instruments. В результате стандарт 802.11g основан на компромиссном решении: в качестве базовых применяются технологии OFDM и CCK, а опционально предусмотрено использование технологии PBCC.

3.2.1 Ортогональное частотное разделение каналов с мультиплексированием

Распространение сигналов в открытой среде, коей является радиоэфир, сопровождается возникновением всякого рода помех, источником которых служат сами распространяемые сигналы. Классический пример такого рода помех -- эффект многолучевой интерференции сигналов, заключающийся в том, что в результате многократных отражений сигала от естественных преград один и тот же сигнал может попадать в приемник различными путями. Но подобные пути распространения имеют и разные длины, а потому для различных путей распространения ослабление сигнала будет неодинаковым. Следовательно, в точке приема результирующий сигнал представляет собой суперпозицию (интерференцию) многих сигналов, имеющих различные амплитуды и смещенных друг относительно друга по времени, что эквивалентно сложению сигналов с разными фазами.

Следствием многолучевой интерференции является искажение принимаемого сигнала. Многолучевая интерференция присуща любому типу сигналов, но особенно негативно она сказывается на широкополосных сигналах. Дело в том, что при использовании широкополосного сигнала в результате интерференции определенные частоты складываются синфазно, что приводит к увеличению сигнала, а некоторые, наоборот, -- противофазно, вызывая ослабление сигнала на данной частоте.

Говоря о многолучевой интерференции, возникающей при передаче сигналов, различают два крайних случая. В первом случае максимальная задержка между различными сигналами не превосходит времени длительности одного символа и интерференция возникает в пределах одного передаваемого символа. Во втором случае максимальная задержка между различными сигналами больше длительности одного символа, а в результате интерференции складываются сигналы, представляющие разные символы, и возникает так называемая межсимвольная интерференция (Inter Symbol Interference, ISI).

Наиболее отрицательно на искажение сигнала влияет межсимвольная интерференция. Поскольку символ -- это дискретное состояние сигнала, характеризующееся значениями частоты несущей, амплитуды и фазы, то для различных символов меняются амплитуда и фаза сигнала, поэтому восстановить исходный сигнал крайне сложно.

Чтобы избежать, а точнее, частично компенсировать эффект многолучевого распространения, используются частотные эквалайзеры, однако по мере роста скорости передачи данных либо за счет увеличения символьной скорости, либо из-за усложнения схемы кодирования, эффективность использования эквалайзеров падает.

В стандарте 802.11b с максимальной скоростью передачи 11 Мбит/с при использовании CCK-кодов схемы компенсации межсимвольной интерференции вполне успешно справляются с возложенной на них задачей, но при более высоких скоростях такой подход становится неприемлемым.

Поэтому при более высоких скоростях передачи применяется принципиально иной метод кодирования данных - ортогональное частотное разделение каналов с мультиплексированием (Orthogonal Frequency Division Multiplexing, OFDM). Идея данного метода заключается в том, что поток передаваемых данных распределяется по множеству частотных подканалов и передача ведется параллельно на всех этих подканалах. При этом высокая скорость передачи достигается именно за счет одновременной передачи данных по всем каналам, а скорость передачи в отдельном подканале может быть и невысокой.

Поскольку в каждом из частотных подканалов скорость передачи данных можно сделать не слишком высокой, это создает предпосылки для эффективного подавления межсимвольной интерференции.

При частотном разделении каналов необходимо, чтобы ширина отдельного канала была, с одной стороны, достаточно узкой для минимизации искажения сигнала в пределах отдельного канала, а с другой -- достаточно широкой для обеспечения требуемой скорости передачи. Кроме того, для экономного использования всей полосы канала, разделяемого на подканалы, желательно как можно более плотно расположить частотные подканалы, но при этом избежать межканальной интерференции, чтобы обеспечить полную независимость каналов друг от друга. Частотные каналы, удовлетворяющие перечисленным требованиям, называются ортогональными. Несущие сигналы всех частотных подканалов (а точнее, функции, описывающие эти сигналы) ортогональны друг другу.

Важно, что хотя сами частотные подканалы могут частично перекрывать друг друга, ортогональность несущих сигналов гарантирует частотную независимость каналов друг от друга, а, следовательно, и отсутствие межканальной интерференции.

Рассмотренный способ деления широкополосного канала на ортогональные частотные подканалы называется ортогональным частотным разделением с мультиплексированием (OFDM). Одним из ключевых преимуществ метода OFDM является сочетание высокой скорости передачи с эффективным противостоянием многолучевому распространению. Если говорить точнее, то сама по себе технология OFDM не устраняет многолучевого распространения, но создает предпосылки для устранения эффекта межсимвольной интерференции. Дело в том, что неотъемлемой частью технологии OFDM является охранный интервал (Guard Interval, GI) -- циклическое повторение окончания символа, пристраиваемое в начале символа.

Охранный интервал является избыточной информацией и в этом смысле снижает полезную (информационную) скорость передачи, но именно он служит защитой от возникновения межсимвольной интерференции. Эта избыточная информация добавляется к передаваемому символу в передатчике и отбрасывается при приеме символа в приемнике.

Наличие охранного интервала создает временные паузы между отдельными символами, и если длительность охранного интервала превышает максимальное время задержки сигнала в результате многолучевого распространения, то межсимвольной интерференции не возникает.

При использовании технологии OFDM длительность охранного интервала составляет одну четвертую длительности самого символа. При этом сам символ имеет длительность 3,2 мкс, а охранный интервал -- 0,8 мкс. Таким образом, длительность символа вместе с охранным интервалом составляет 4 мкс.

3.2.2 Скоростные режимы и методы кодирования в протоколе 802.11g

В протоколе 802.11g предусмотрена передача на скоростях 1, 2, 5,5, 6, 9, 11, 12, 18, 22, 24, 33, 36, 48 и 54 Мбит/с. Некоторые из данных скоростей являются обязательными, а некоторые - опциональными. Кроме того, одна и та же скорость может реализовываться при различной технологии кодирования. Ну и как уже отмечалось, протокол 802.11g включает в себя как подмножество протоколы 802.11b/b+.

Технология кодирования PBCC опционально может использоваться на скоростях 5,5; 11; 22 и 33 Мбит/с. Вообще же в самом стандарте обязательными являются скорости передачи 1; 2; 5,5; 6; 11; 12 и 24 Мбит/с, а более высокие скорости передачи (33, 36, 48 и 54 Мбит/с) -- опциональными.

Отметим, что для обязательных скоростей в стандарте 802.11g используется только кодирование CCK и OFDM, а гибридное кодирование и кодирование PBCC является опциональным. Соотношение между различными скоростями передачи и используемыми методами кодирования отображено в табл.3.3.

Говоря о технологии частотного ортогонального разделения каналов OFDM, применяемой на различных скоростях в протоколе 802.11g, мы до сих пор не касались вопроса о методе модуляции несущего сигнала.

Напомним, что в протоколе 802.11b для модуляции использовалась либо двоичная (BDPSK), либо квадратурная (QDPSK) относительная фазовая модуляция. В протоколе 802.11g на низких скоростях передачи также используется фазовая модуляция (только не относительная), то есть двоичная и квадратурная фазовые модуляции BPSK и QPSK. При использовании BPSK-модуляции в одном символе кодируется только один информационный бит, а при использовании QPSK-модуляции -- два информационных бита. Модуляция BPSK используется для передачи данных на скоростях 6 и 9 Мбит/с, а модуляция QPSK -- на скоростях 12 и 18 Мбит/с.

Для передачи на более высоких скоростях используется квадратурная амплитудная модуляция QAM (Quadrature Amplitude Modulation), при которой информация кодируется за счет изменения фазы и амплитуды сигнала. В протоколе 802.11g используется модуляция 16-QAM и 64-QAM. В первом случае имеется 16 различных состояний сигнала, что позволяет закодировать 4 бита в одном символе. Во втором случае имеется уже 64 возможных состояний сигнала, что позволяет закодировать последовательность 6 бит в одном символе. Модуляция 16-QAM применяется на скоростях 24 и 36 Мбит/с, а модуляция 64-QAM -- на скоростях 48 и 54 Мбит/с.

Естественно, возникает вопрос: почему при одном и том же типе модуляции возможны различные скорости передачи? Рассмотрим, к примеру, модуляцию BPSK, при которой скорость передачи данных составляет 6 или 9 Мбит/с. Дело в том, что при использовании технологии OFDM используется сверточное кодирование с различными пунктурными кодерами, что приводит к различной скорости сверточного кодирования. В результате при использовании одного и того же типа модуляции могут получаться разные значения информационной скорости -- все зависит от скорости сверточного кодирования. Так, при использовании BPSK-модуляции со скоростью сверточного кодирования 1/2 получаем информационную скорость 6 Мбит/с, а при использовании сверточного кодирования со скоростью 3/4 -- 9 Мбит/с.

Таблица 3.1 Соотношение между скоростями передачи и типом кодирования в стандарте 802.11g

Скорость передачи, Мбит/с

Метод кодирования

Модуляция

1

(обязательно)

Код Баркера

DBPSK

2

(обязательно)

Код Баркера

DQPSK

5,5

(обязательно)

CCK

DQPSK

(опционально)

PBCC

DBPSK

6

(обязательно)

OFDM

BPSK

(опционально)

CCK-OFDM

BPSK

9

(опционально)

OFDM, CCK-OFDM

BPSK

11

(обязательно)

CCK

DQPSK

(опционально)

PBCC

DQPSK

12

(обязательно)

OFDM

QPSK

(опционально)

CCK-OFDM

QPSK

18

(опционально)

OFDM, CCK-OFDM

QPSK

22

(опционально)

PBCC

DQPSK

24

(обязательно)

OFDM

16-QAM

(опционально)

CCK-OFDM

33

(опционально)

PBCC

36

(опционально)

OFDM, CCK-OFDM

16-QAM

48

(опционально)

OFDM, CCK-OFDM

64-QAM

54

(опционально)

OFDM, CCK-OFDM

64-QAM

Единственное, о чем мы пока не упоминали, -- это техника гибридного кодирования. Для того чтобы понять сущность этого термина, вспомним, что любой передаваемый пакет данных содержит заголовок/преамбулу со служебный информацией и поле данных. Когда речь идет о пакете в формате CCK, имеется в виду, что заголовок и данные кадра передаются в формате CCK. Аналогично при использовании технологии OFDM заголовок кадра и данные передаются посредством OFDM-кодирования. При применении технологии CCK-OFDM заголовок кадра кодируется с помощью CCK-кодов, но сами данные кадра передаются посредством многочастотного OFDM-кодирования. Таким образом, технология CCK-OFDM является своеобразным гибридом CCK и OFDM. Технология CCK-OFDM -- не единственная гибридная технология: при использовании пакетного кодирования PBCC заголовок кадра передается с помощью CCK-кодов и только данные кадра кодируются посредством PBCC.

3.2.3 Максимальная скорость передачи данных в протоколах 802.11b/g

Как было показано, максимальная скорость, определяемая протоколом 802.11b, составляет 11 Мбит/с, а для протокола 802.11g -- 54 Мбит/с.

Однако следует четко различать полную скорость передачи и полезную скорость передачи. Дело в том, что технология доступа к среде передачи данных, структура передаваемых кадров, заголовки, прибавляемые к передаваемым кадрам на различных уровнях модели OSI, -- все это предполагает наличие достаточно большого объема служебной информации. Вспомним хотя бы наличие охранных интервалов при использовании OFDM-технологии. В результате полезная или реальная скорость передачи, то есть скорость передачи пользовательских данных, всегда оказывается ниже полной скорости передачи.

Более того, реальная скорость передачи зависит и от структуры беспроводной сети. Так, если все клиенты сети используют один и тот же протокол, например 802.11g, то сеть является гомогенной и скорость передачи данных в такой сети выше, чем в смешанной сети, где имеются клиенты как 802.11g, так и 802.11b. Дело в том, что клиенты 802.11b «не слышат» клиентов 802.11g, которые используют OFDM-кодирование. Поэтому с целью обеспечения совместного доступа к среде передачи данных клиентов, использующих различные типы модуляции, в подобных смешанных сетях точки доступа должны отрабатывать определенный механизм защиты. В результате использования механизмов защиты в смешанных сетях реальная скорость передачи становится еще меньше.

Кроме того, реальная скорость передачи данных зависит и от используемого протокола (TCP или UDP) и от размера длины пакета. Естественно, что протокол UDP предусматривает более высокие скорости передачи.

3.3 Поведение мобильных узлов

3.3.1 Классификация беспроводного сетевого оборудования

Беспроводное сетевое оборудование предназначено для передачи по радиоканалам информации (данных, телефонии, видео и др) между компьютерами, сетевыми и другими специализированными устройствами.

С начала 1990-х годов стали активно применяться устройства с кодовой (цифровой) модуляцией радиосигнала. Кодовая модуляция радиосигнала приводит к расширению его спектра и снижению его амплитуды до уровня шумов. Поэтому такие устройства получили название широкополосных шумоподобных систем (ШПС). Технология широкополосной беспроводной связи гарантирует высокое качество и надежность коммуникаций, устойчивость к индустриальным помехам и погодным условиям. Высокая эффективность применения таких систем привела к революционным изменениям в радиосвязи и возможности построения эффективных и надежных беспроводных сетей самого различного назначения.

Современное состояние беспроводной связи определяется ситуацией со стандартом IEEE 802.11. Разработкой и совершенствованием стандарта занимается рабочая группа по беспроводным локальным сетям (Working Group for Wireless Local Area Networks) комитета по стандартизации Института Инженеров Электротехники и Электроники (Institute of Electrical and Electronic Engineers, IEEE) под председательством Вика Хэйса (Vic Hayes) из компании Lucent Technologies. В группе около ста членов с решающим и около пятидесяти с совещательным голосом; они представляют практически всех изготовителей оборудования, а также исследовательские центры и университеты. Четыре раза в год группа собирается на пленарные заседания и принимает решения по совершенствованию стандарта.

Есть несколько типов беспроводных стандартов: 802.11a, 802.11b и 802.11g. В соответствии с этими стандартами существуют и различные типы оборудования. Стандарты беспроводных сетей семейства 802.11 отличаются друг от друга прежде всего максимально возможной скоростью передачи. Так, стандарт 802.11b подразумевает максимальную скорость передачи до 11 Мбит/с, а стандарты 802.11a и 802.11g - максимальную скорость передачи до 54 Мбит/с. Кроме того, в стандартах 802.11b и 802.11g предусмотрено использование одного и того же частотного диапазона - от 2,4 до 2,4835 ГГц, а стандарт 802.11a подразумевает применение частотного диапазона от 5,15 до 5,35 ГГц.

Оборудование стандарта 802.11a, в силу используемого им частотного диапазона, не сертифицировано в России.

Следует учесть, что стандарт 802.11g полностью совместим со стандартом 802.11b, то есть стандарт 802.11b является подмножеством стандарта 802.11g, поэтому в беспроводных сетях, основанных на оборудовании стандарта 802.11g, могут также работать клиенты, оснащённые беспроводным адаптером стандарта 802.11b. Верно и обратное - в беспроводных сетях, основанных на оборудовании стандарта 802.11b, могут работать клиенты, оснащённые беспроводным адаптером стандарта 802.11b. Впрочем, в таких смешанных сетях скрыт один подводный камень: если мы имеем дело со смешанной сетью, то есть с сетью, в которой имеются клиенты как с беспроводными адаптерами 802.11b, так и с беспроводными адаптерами 802.11g, то все клиенты сети будут работать по протоколу 802.11b. Более того, если все клиенты сети используют один и тот же протокол, например 802.11b, то данная сеть является гомогенной, и скорость передачи данных в ней выше, чем в смешанной сети, где имеются клиенты как 802.11g, так и 802.11b. Дело в том, что клиенты 802.11b «не слышат» клиентов 802.11g. Поэтому для того, чтобы обеспечить совместный доступ к среде передачи данных клиентов, использующих различные протоколы, в подобных смешанных сетях точки доступа должны отрабатывать определённый механизм защиты. Не вдаваясь в подробности реализации данных механизмов, отметим лишь, что в результате применения механизмов защиты в смешанных сетях реальная скорость передачи становится ещё меньше.

Поэтому при выборе оборудования для беспроводной сети стоит остановиться на оборудовании одного стандарта. Протокол 802.11b сегодня является уже устаревшим, да и реальная скорость передачи данных при использовании данного стандарта может оказаться неприемлемо низкой. Так что оптимальный выбор - оборудование стандарта 802.11g.

3.3.2 Выбор оборудования для беспроводной сети

Из всего сказанного выше следует, что при выборе конкретной модели беспроводного устройства в первую очередь стоит обратить внимание не на производителя, а на функциональные возможности устройства. Если речь идёт о простейшей точке доступа, то под функциональностью понимают поддержку ей тех или иных протоколов связи и их комбинации. Кроме того, немаловажными факторами являются поддерживаемые протоколы шифрования и аутентификации пользователей, а также возможность использования точки доступа в режиме моста для построения распределённой беспроводной сети со множеством точек доступа.

Основным элементом любой беспроводной сети является точка доступа. Последняя может представлять собой как отдельное устройство, так и быть интегрированной в беспроводной маршрутизатор.

Как мы уже отмечали, основным недостатком беспроводной сети, построенной на основе одной точки доступа, является её ограниченный радиус действия и ярко выраженная зависимость скорости соединения от наличия преград и расстояния между точкой доступа и беспроводным клиентом сети. Если речь идёт о создании беспроводной сети в пределах одного этажа, то одной точки доступа будет вполне достаточно. Нам же требуется реализовать задачу создания беспроводной сети в офисе, состоящей из двух этажей, разделённых бетонными стенами с арматурой, то одной точки доступа может оказаться вполне достаточно.

Итак, в нашей ситуации, когда в офисе имеется 153 стационарных компьютера и 54 ноутбуков, оснащённых беспроводными адаптерами, а также одна точка доступа (AP), подключённая к стационарному компьютеру. Требуется развернуть беспроводную сеть на основе одной точки доступа с тем, что бы получить доступ к ресурсам LAN.

Итак, после того, как архитектура распределённой беспроводной сети определена, рассмотрим пример её практической реализации. Однако, прежде чем переходить к рассмотрению конкретных настроек точки доступа, необходимо определиться с тем, какая именно точка доступа нужна, с тем, чтобы на ее основе можно было создавать беспроводную сеть.

Точка доступа 108 Мбит/с 802.11g MIMO Wireless позволяет эксплуатировать устройства беспроводной связи без ограничений в их месторасположении, уменьшив при этом помехи и случаи нарушения в работе системы. Технология MIMO (Multiple Input Multiple Output), о которой сегодня говорят практически все издания, предполагает использование нескольких антенн для передачи и приёма данных. Несколько антенн позволяют параллельно передавать множество сигналов, что, в свою очередь, позволяет увеличить суммарную пропускную способность. Кроме того, такая реализация позволяет повысить стабильность канала и устойчивость к помехам. Что касается передачи сигнала, то она происходит по нескольким различным частотам, т.е. поток разделяется до передачи и соединяется после приёма.

Вторая технология, которая лишь недавно стала появляться в практических образцах беспроводного сетевого оборудования - WPA2. Со времени принятия стандарта 802.11, в 1999 году, когда всё, что предлагалось для защиты данных - это Wired Equivalent Privacy (WEP - безопасность, эквивалентная проводной сети). К сожалению, схема шифрования оказалась слабой и ненадёжной. Если первое время существования WEP его взлом занимал достаточно много усилий, то позже появились специализированные утилиты. Следующим шагом стало появление стандарта WPA (Wi-Fi Protected Access), который использовал более стойкую защиту, но, тем не менее, не обеспечивал достаточной безопасности данных. Следующим этапом стало появление WPA2, в котором, как уверяют разработчики, все слабые места устранены.

Таблица 3.2 (Характеристика точки доступа TEW-610APB)

Частота

2.412 - 2.484 ГГц

Мощность передатчика (802.11b)

18dBm

Мощность передатчика (802.11g)

16dBm

Скорость передачи данныхSuper G:

108 Мбит/сек;

802.11g:

54, 48, 36, 24, 18, 12, 9, 6 Мбит/сек;

802.11b:

11, 5.5, 2, 1 Мбит/сек

Чувствительность приемника (802.11b)10 - 5 BER @

85 dBm

Чувствительность приемника (802.11g)10 - 5 BER @

75 dBm

Режимы

Access Point, WDS Bridge (до 6 устройств)

Соответствие стандартам

IEEE 802.11g, IEEE 802.11b, 802.3 (Ethernet), 802.3u (Fast Ethernet)

Модуляция 802.11b:

CCK (11 и 5.5 Мбит/сек), Barker Modulations (1, 2 Мбит/сек);

802.11g:

OFDM (6, 9, 12, 18, 24, 36, 48, 54 Мбит/сек)

Радиус действия

150 метров в помещении

400 метров на открытой местности

Управление

Веб-интерфейс

Порты

1 порт 10/100 Мбит/сек LAN с поддержкой Auto-MDIX

Безопасность

WEP-кодирование с 64- или 128-битным ключом; поддержка кодирования WPA/WPA2 и WPA-PSK/WPA2-PSK; фильтрация по MAC-адресу

Антенна

2 внешние несъемные дипольные антенны 4dBi,

2 внутренние антенны

Усиление антенны

4 dBi

Поддержка ОС

Windows 95, Windows 98, Windows NT, Windows 2000, Windows XP, Windows 2003 Server; Linux; Mac.

На всех компьютерах, входящих в беспроводную сеть, используется операционная система Windows XP Professional SP3 (русская версия).

3.4 Ресурс точки доступа

Количество пользователей, одновременно работающих с точкой доступа, зависит в основном от объема трафика данных (большие или маленькие загружаемые файлы). Пропускная способность распределяется между пользователями беспроводной сети, как и в проводных сетях. Производительность сети измеряется по количеству одновременно работающих пользователей сети. Например, пропускная способность точки доступа 802.11g составляет до 54 Мбит/с.

Эта пропускная способность достаточна для:

v до 200 пользователей, иногда проверяющих электронную почту (в текстовом формате) и практически не использующих Интернет.

v до 100 активных пользователей, часто использующих электронную почту и работающих с файлами среднего размера.

v От 40 до 80 очень активных пользователей, постоянную использующих сеть и работающих с большими файлами.

В нашем случае одной точки доступа оказалось достаточно, чтобы обеспечить приемлимую скорость доступа для пользователей и достаточная зона покрытия (рис. 3.4). В дальнейшем для повышения производительности можно добавить еще точки доступа, дающие пользователям более высокую скорость для входа в сеть. Оптимизация сетей достигается благодаря настройке различных каналов для точек доступа.

3.5 Технология коллективного доступа в беспроводных сетях семейства 802.11g

Такие вопросы, как регулирование совместного использования среды передачи данных, определяются на более высоком уровне - уровне доступа к среде передачи данных. Этот уровень называют МАС-уровнем (Media Access Control). Именно на MAC-уровне устанавливаются правила совместного использования среды передачи данных одновременно несколькими узлами беспроводной сети.

На МАС-уровне определяются два основных типа архитектуры беспроводных сетей -- Ad Нос и Infrastructure Mode.

3.5.1 Режим Ad Hoc

В режиме Ad Hoc, который называют также Independent Basic Service Set (IBSS) или режимом Peer to Peer (точка-точка), станции непосредственно взаимодействуют друг с другом. Для этого режима нужен минимум оборудования: каждая станция должна быть оснащена беспроводным адаптером. При такой конфигурации не требуется создания сетевой инфраструктуры. Основными недостатками режима Ad Hoc являются ограниченный диапазон действия возможной сети и невозможность подключения к внешней сети (например, к Интернету).

3.5.2 Режим Infrastructure Mode

В режиме Infrastructure Mode (рис. 3.5) станции взаимодействуют друг с другом не напрямую, а через точку доступа (Access Point), которая выполняет в беспроводной сети роль своеобразного концентратора (аналогично тому, как это происходит в традиционных кабельных сетях). Рассматривают два режима взаимодействия с точками доступа -- BSS (Basic Service Set) и ESS (Extended Service Set). В режиме BSS все станции связываются между собой только через точку доступа, которая может выполнять также роль моста к внешней сети. В расширенном режиме ESS существует инфраструктура нескольких сетей BSS, причем сами точки доступа взаимодействуют друг с другом, что позволяет передавать трафик от одной BSS к другой. Между собой точки доступа соединяются с помощью либо сегментов кабельной сети, либо радиомостов.

Кроме двух различных режимов функционирования беспроводных сетей на MAC-уровне определяются правила коллективного доступа к среде передачи данных.

Метод коллективного доступа с обнаружением несущей и избежанием коллизий (Carrier Sense Multiple Access / Collision Avoidance, CSMA/CA). Собственно, этот метод даже по своему названию напоминает технологию коллективного доступа, реализованную в сетях Ethernet, где используется метод коллективного доступа с опознанием несущей и обнаружением коллизий (Сarrier-Sense-Multiply-Access With Collision Detection, CSMA/CD). Единственное различие состоит во второй части метода - вместо обнаружения коллизий используется технология избежания коллизий.

Перед тем как послать данные в "эфир", станция сначала отправляет специальное сообщение, называемое RTS (Ready To Send), которое трактуется как готовность данного узла к отправке данных. Такое RTS-сообщение содержит информацию о продолжительности предстоящей передачи и об адресате и доступно всем узлам в сети. Это позволяет другим узлам задержать передачу на время, равное объявленной длительности сообщения. Приёмная станция, получив сигнал RTS, отвечает посылкой сигнала CTS (Clear To Send), свидетельствующего о готовности станции к приёму информации. После этого передающая станция посылает пакет данных, а приёмная станция должна передать кадр ACK, подтверждающий безошибочный прием. Если АСК не получен, попытка передачи пакета данных будет повторена. Таким образом, с использованием подобного четырёхэтапного протокола передачи данных (4-Way Handshake) реализуется регламентирование коллективного доступа с минимизацией вероятности возникновения коллизий.

беспроводный вычислительный сеть

3.6 Тестирование производительности созданной беспроводной сети

3.6.1 Методика тестирования

Итак, после того как беспроводная сеть настроена и её работоспособность проверена, можно приступать к тестированию её производительности. Под производительностью понимается скорость передачи трафика между LAN и WLAN. При тестировании ноутбуки с беспроводным адаптером располагался в непосредственной близости от точки доступа, в качестве которой выступала TEW-610APB.

В качестве генератора сетевого трафика я использовал программный пакет NetIQ Chariot рис. 2.18.

NetIQ Chariot -- это синтетический тест, который, по сути, является программным генератором сетевого трафика и позволяет измерять практически все необходимые параметры. С его помощью можно определять абсолютную пропускную способность сетевого адаптера как в режиме передачи, так и в режиме приема. Кроме того, измеряется скорость передачи/приема пакетов, количество операций ввода-вывода, степень утилизации процессора и многое другое. Важно отметить, что программный пакет NetIQ Chariot позволяет не только измерять указанные параметры, но и эмулировать необходимую модель сетевого доступа. Настройке подлежат такие параметры, как размер запроса приема/передачи, процентное соотношение между случайным и последовательным распределением запросов, процентное соотношение между распределением операций приема/передачи.

Для тестов используются три скрипта, генерирующие различные типы трафика:

v Пакеты максимального размера;

v Пакеты размера 512 байт;

v Пакеты размера 64 байта;

Наличие тестов на пакетах небольшого и среднего размеров способно выявить ошибки реализации некоторых алгоритмов работы тестируемого устройства.

С помощью программы генерировался TCP-трафик (с пакетами преимущественно максимального размера) и моделировались все возможные ситуации.

v Передача трафика (LAN -> WLAN);

v Передача трафика (WLAN -> LAN);

В случае измерения пропускной способности в режиме приема данных на каждом из компьютеров-клиентов с операционной системой Windows XP Professional запускалась программа генератора, эмулирующая сетевой трафик.

Другой важный вопрос, который предстояло выяснить на первом этапе тестирования, -- насколько адаптеры разных производителей ноутбуков, поддерживающие один и тот же стандарт IEEE 802.11g, действительно совместимы друг с другом. Как оказалось, все рассмотренные нами адаптеры действительно совместимы друг с другом. Такая важная для беспроводных адаптеров характеристика, как «простота» установления связи, оценивалась мной субъективно по среднему количеству необходимых пересогласований (Rescan) для установления связи. Субъективно оценивалась и такая характеристика, как стабильность установленного соединения.

На этапе тестирования рассматривался режим взаимодействия Infrastructure, когда все узлы беспроводной сети взаимодействовали с точкой доступа. Сама же точка доступа служила мостом между беспроводной сетью и внешней сетью Ethernet и подключалась к сегменту внешней кабельной сети. Внешняя сеть состояла всего из одного компьютера, выполняющего роль сервера. Рассматривалось взаимодействие узлов беспроводной сети с этим сервером. Как и в предыдущем случае, измерялась пропускная способность точки доступа в режиме приема данных и в режиме передачи данных. В первом случае на каждом из компьютеров-клиентов беспроводной сети запускалась программа генератора, эмулирующая сетевой трафик в направлении к компьютеру сегмента сети Ethernet, а во втором случае, наоборот, программа генератора на клиентах эмулировала сетевой трафик в направлении от компьютера внешней сети.

В режиме Infrastructure создавались условия для достижения максимально возможного сетевого трафика, то есть размер запроса устанавливался равным 64 Кбайт, все запросы носили 100% последовательный характер, а время задержки между запросами устанавливалось равным нулю. Измеряемым параметром являлся сетевой трафик, проходящий через точку доступа.

Для того чтобы исследовать зависимость сетевого трафика, проходящего через точку доступа, от количества узлов в сети, число взаимодействующих узлов постепенно увеличивалось от двух до десяти. Кроме того, отметим, что вся беспроводная сеть, состоящая из десяти узлов и точки доступа, имела радиус не более 7 м, что позволяло говорить об идеальных условиях связи.

3.6.2 Алгоритм тестирования

Размещено на http://www.allbest.ru/

Кроме того, при тестировании точки доступа оценивались такие характеристики, как стабильность связи. Оценка этого параметра являлась субъективной. Для этого один из ноутбуков с беспроводным адаптером удалялся от точки доступа на 40-45 метров так, чтобы их разделяло несколько стен. Если при этом связь с точкой доступа обрывалась, то тест считался непройденным.

Таблица 3.3 Зависимость сетевого трафика от числа клиентов для точек доступа в режиме взаимодействия Infrastructure

Точки доступа

Количество станций в сети

2

3

4

5

6

7

8

9

10

In

Out

In

Out

In

Out

In

Out

In

Out

In

Out

In

Out

In

Out

In

Out

TRENDnet TEW-610APB

14,41

14,56

14,77

14,73

14,65

14,69

14,62

14,43

12,78

14,43

12,14

14,47

11,9

14,52

11,84

14,43

11,69

14,21

Однако, в любом случае, те преимущества, которые позволяет получить беспроводная сеть, с лихвой компенсируют и незначительное снижение скорости передачи.

3.7 Обеспечение защиты спроектированной беспроводной сети

Если первоначальное тестирование созданной беспроводной сети прошло успешно, можно переходить ко второму этапу - настройке безопасности сети для предотвращения несанкционированного доступа в свою сеть.

Одной из главных проблем беспроводных сетей является их безопасность. Ведь злоумышленник, имея ноутбук с адаптером IEEE 802.11b и находясь рядом с помещением (а при использовании антенн с усилением - и со зданием), в котором имеется беспроводная сеть, может без особого труда проникнуть в нее (со всеми вытекающими из этого последствиями). Причем факт прослушивания сети практически невозможно зафиксировать, да и в отличие от традиционных атак по Интернету, привычный Firewall в данных условиях ничем не поможет

Любая точка доступа, и тем более беспроводной маршрутизатор, предоставляют в распоряжение пользователей возможность настраивать шифрование сетевого трафика при его передаче по открытой среде. Существует несколько стандартов шифрования, которые поддерживаются точками доступа.

Первым стандартом, использующимся для шифрования данных в беспроводных сетях, был стандарт WEP (Wired Equivalent Privacy). В соответствии со стандартом WEP шифрование осуществляется с помощью 40-или 104-битного ключа (некоторые модели беспроводного оборудования поддерживают и более длинные ключи), а сам ключ представляет собой набор ASCII-символов длиной 5 (для 40-битного) или 13 (для 104-битного ключа) символов. Набор этих символов переводится в последовательность шестнадцатеричных цифр, которые и являются ключом. Допустимо также вместо набора ASCII-символов напрямую использовать шестнадцатеричные значения (той же длины).

Как правило, в утилитах настройки беспроводного оборудования указываются не 40-или 104-битные ключи, а 64-или 128-битные. Дело в том, что 40 или 104 бита - это статическая часть ключа, к которой добавляется 24-битный вектор инициализации, необходимый для рандомизации статической части ключа. Вектор инициализации выбирается случайным образом и динамически меняется во время работы. В результате c учётом вектора инициализации общая длина ключа получается равной 64 (40+24) или 128 (104+24) битам.

Протокол WEP-шифрования, даже со 128-битным ключом, считается не очень стойким, поэтому в устройствах стандарта 802.11g поддерживается улучшенный алгоритм шифрования WPA - Wi-Fi Protected Access, который включает протоколы 802.1х, EAP, TKIP и MIC.

Протокол 802.1х -- это протокол аутентификации пользователей. Для своей работы данный протокол требует наличия выделенного RADIUS-сервера.

Протокол TKIP (Temporal Key Integrity Protocol) - это реализация динамических ключей шифрования. Ключи шифрования имеют длину 128 бит и генерируются по сложному алгоритму, а общее количество возможных вариантов ключей достигает сотни миллиардов, и меняются они очень часто.

Протокол MIC (Message Integrity Check) - это протокол проверки целостности пакетов. Протокол позволяет отбрасывать пакеты, которые были «вставлены» в канал третьим лицом.

Помимо упомянутых протоколов, многие производители беспроводного оборудования встраивают в свои решения поддержку стандарта AES (Advanced Encryption Standard), который приходит на замену TKIP.

Однако с точки зрения всеобщей стандартизации все эти схемы защиты являются скорее заплатками, споры о надежности которых не утихают до сих пор, нежели органичной частью беспроводной технологии. Поэтому в настоящее время идет работа над официальным стандартом 802.11i, который будет описывать принципы и механизмы защиты беспроводных локальных сетей от всех известных на сегодняшний день "напастей". В стандарте 802.11i будет реализована система обновления ключей перед началом каждой сессии, кроме того, будет осуществляться проверка пакетов на предмет их принадлежности к данной сессии (дело в том, что в целях несанкционированного доступа хакеры могут повторять проходившие в сети пакеты). Для управления криптографическими ключами будет использоваться стандартная служба аутентификации при удаленном доступе RADIUS (Remote Authentication Dial-In User Service), а также спецификация IEEE802.1x Как видно, заявка на новую спецификацию является довольно всеобъемлющей, так как в ее рамках разработчикам придется охватить множество разнородных вопросов, поэтому и окончательное ее принятие будет задержано как минимум до следующего года.

3.8 Преимущества беспроводных сетей передачи данных

Беспроводные локальные сети (WLAN) обладают следующими преимуществами перед кабельными сетями (LAN):

v возможность неограниченного передвижения в области покрытия WLAN, сохраняя доступ к корпоративным информационным ресурсам;

v возможность инсталляции WLAN в случаях, когда установка обычной кабельной сети затруднена или невозможна (в исторических зданиях, на открытой местности);

v возможность создания мобильных передвижных LAN;

v высокая скорость развертывания WLAN;

v близкая к нулю стоимость эксплуатации WLAN.

3.9 Недостатки беспроводных сетей передачи данных

Низкую безопасность и защищенность данных и самих сетей Wi-Fi на сегодня можно считать главным минусом технологии. «Физически» же отследить и отсечь возможного злоумышленника или его аппаратуру внутри сферы радиусом 100 и более метров вряд ли возможно, особенно в многоярусных городских условиях. Некоторые владельцы сетей накладывают дополнительные средства секретности на более верхних уровнях. Однако все равно Wi-Fi сегодня не рекомендуется для использования в правительственных структурах, в ряде частных компаний.

Впрочем, в большей части работающих сегодня сетей не задействованы даже те средства защиты, которыми обладает нынешний Wi-Fi, даже элементарные пароли (это дает повод специалистам по безопасности говорить, что подобная, полностью открытая, сеть -- идеальное место для криминальных хакерских атак: хакер со своим компьютером просто входит в «пятно» сети, выполняет свои действия и затем покидает его; при последующем расследовании все улики покажут на владельца сети -- и ему даже, возможно, придется отвечать перед законом).

Еще один недостаток технологии -- быстрый расход батареек из-за постоянной работы передатчика у оснащенных Wi-Fi-цепями мобильных устройств. Особенно это чувствительно для маленьких устройств вроде PDA и телефонов -- из-за чего их изготовители и не спешат добавлять им функции Wi-Fi; некоторые даже требуют введения в стандарт режимов работы с меньшими скоростями, на которых расход энергии идет не столь интенсивно, разрабатывают специальные маломощные энергосберегающие чипсеты, не удовлетворяющие требованиям 802.11g по дальнобойности. Сейчас готовятся наборы микросхем нового поколения, которые допускают для абонентского устройства «спящий» режим Wi-Fi, из которого его может вывести базовая станция доступа беспроводных сетей передачи данных.

3.10 Моделирование беспроводной локальной сети в условиях высокой нагрузки

Эфир -- и, соответственно, радиоканал -- в качестве среды передачи существует лишь в единственном экземпляре и ведет себя так же, как раньше концентратор в сети Ethernet: при попытке передачи данных несколькими сторонами одновременно сигналы мешают друг другу. Поэтому стандартами WLAN предусматривается, что перед передачей станция проверяет, свободна ли среда. Однако это отнюдь не исключает ситуацию, когда две станции одновременно идентифицируют среду как свободную и начинают передачу. В «разделяемом» Ethernet соответствующий эффект называется коллизией.

В проводной сети отправители могут распознать коллизии уже в процессе передачи, прервать ее и повторить попытку после случайного интервала времени. Однако в радиосети таких мер недостаточно. Поэтому 802.11 вводит «пакет подтверждения» (ACK), который получатель передает обратно отправителю; на эту процедуру отводится дополнительное время ожидания.

Если сложить все предусмотренные протоколом периоды ожидания -- короткие межкадровые интервалы (Short Inter Frame Space, SIFS) и распределенные межкадровые интервалы функции распределенной координации (Distributed Coordination Function Inter Frame Space, DIFS) для беспроводной сети стандарта 802.11а, то накладные расходы составляют 50 мкс на пакет.

Помимо этого, при вычислении издержек следует учесть, что каждый пакет данных содержит не только полезные данные, но и необходимые заголовки для многих протокольных уровней. В случае пакета длиной 1500 байт, передаваемого по стандарту 802.11 со скоростью 54 Мбит/с, появляются «лишние» 64 байт с издержками в 20 мкс. Пакет АСК обрабатывается физическим уровнем так же, как и пакет данных, в нем отсутствуют лишь части от порядкового номера до контрольной суммы. Вдобавок заголовок укорочен, поэтому для пакета АСК необходимо всего 24 мкс.

В общей сложности передача 1500 байт полезной нагрузки со скоростью 54 Мбит/с занимает 325 мкс, поэтому фактическая скорость передачи составляет 37 Мбит/с.

С учетом издержек на ТСР/IP (еще 40 байт на пакет, пакеты подтверждения TCP) и повторов из-за сбоев в передаче достигаемая на практике скорость будет равна 25 Мбит/с -- такое же соотношение значений номинальной/фактической скоростей получается и при использовании 802.11b (от 5 до 6 при 11 Мбит/с).

Для 802.11g, наследника 11b, принцип работы которого мало чем отличается от 802.11а, требование обратной совместимости с IEEE 802.11b может привести к тому, что скорость передачи окажется еще меньше. Проблема возникает, когда в диалог двух станций 11g может вмешаться карта 802.11b: последняя не способна распознать, что среда в данный момент занята, поскольку в 802.11g используется отличный от 11b метод модуляции.

Во избежание коллизий станции 11g (при наличии аппаратного обеспечения 11b) отправляют перед своим пакетом 11g совместимый с 11b управляющий пакет разрешения на отправку (Clear To Send, CTS), при помощи которого и резервируется на определенное время среду передачи. Однако дополнительный пакет CTS имеет почти такую же длину, как и пакет данных, вследствие чего скорость снижается до 15 Мбит/с. Издержки возникают преимущественно тогда, когда на одном канале работает аппаратное обеспечение, поддерживающее сразу два стандарта -- 11b и 11g. По этой причине старая базовая станция 11b у соседа способна тормозить перекрывающуюся с ней сеть 11g, даже если в той применяется исключительно аппаратное обеспечение стандарта 802.11g. Хотя многие g-карты могут работать в так называемом «режиме только g», когда допускается отключение отправки пакетов CTS, прибегать к нему не рекомендуется, поскольку велика вероятность того, что потери данных вследствие коллизии приведут к большему снижению пропускной способности, чем стандартная процедура.


Подобные документы

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.