Реконструкция контактной сети участка электрифицированной железной дороги Азей - Шуба

Определение проводов контактной сети и выбор типа подвески, проектирование трассировки контактной сети перегона. Выбор опор контактной сети, поддерживающих и фиксирующих устройств. Механический расчет анкерного участка и построение монтажных кривых.

Рубрика Транспорт
Вид дипломная работа
Язык русский
Дата добавления 23.06.2010
Размер файла 1,2 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

(10.9)

Напряжение шага с учетом дополнительных сопротивлений определиться из выражения

(10.10)

Из равенства (10) следует, что напряжение шага зависит от ширины шага а и расстояния от человека до места замыкания на землю; формы и конфигурации заземлителя; удельного сопротивления поверхностного слоя грунта. При х = 0 шаговое напряжения будет максимальным. По мере удаления от места стекания тока в землю напряжение шага становится всё меньше, т. е. .

При больших токах замыкания на землю напряжение прикосновения и шага могут достигнуть значений, опасных для жизни человека. Ряд стержней, соединенных полосой, не даёт желаемого результата даже при весьма малых величинах сопротивления заземляющего устройства r3.

Уменьшить опасность поражения током можно выравниванием потенциалов, применением электрической обуви и увеличением удельного сопротивления поверхностного слоя грунта.

Для снижения напряжений прикосновения и шагового способом выравнивая потенциалов в пределах установки, устраивают контурное заземление. Для достижения наилучшего эффекта, выравнивая потенциалов заземлителей в контурном заземлении располагают как по контуру, так и внутри защищаемой зоны.

При достаточно близких расстояниях между заземлителями контура участки земли внутри контура приобретают потенциалы, близкие к потенциалу заземлителей, разность потенциалов между отдельными точками земли выравнивается, а, следовательно, снижается напряжение прикосновения и шаговое напряжение.

За пределами защищаемой зоны остается крутой спад потенциалов. В этих местах возможно поражение человека шаговым напряжением. Избежать опаянных шаговых напряжений за пределами контур в местах проходов и проездов в защищаемой зоне можно созданием более пологой кривой спада потенциала. Для этого вне контура вдоль проходов и проездов закладываются стальные шины.

11. Применение компенсатора блочно-полиспастного типа КБП-3-30 при строительстве новых участков

Проектная документация «Анкеровки проводов контактной подвески с блочно-полиспастным компенсатором КБП-3-30» разработана для применения при электрификации новых участков и замены при модернизации и капитальном ремонте компенсированных анкеровок с компенсаторами блочного типа.

Проект разработан в соответствии с «Нормами проектирования контактной сети» ВСН141-90, «Правилами устройства и технической эксплуатации контактной сети электрифицированных железных дорог» ЦЭ-197 (ПУТЭКС) с учетом технических указаний № К-19/97 ЦЭТ-2 от 05.03.1997 г. «О повышении надежности узла средней анкеровки контактной сети» и № К- 11/95 ЦЭТ- 2 от 08.06.1995 г. «О повышении уровня анкеровки контактного провода на железобетонных опорах».

Компенсаторы изготавливаются по техническим условиям «Компенсатор контактной сети блочно-полиспастный » (ТУ 5264331 - 752 - 013393674 - 2000).

Компенсаторы блочного типа имеют следующие недостатки:

- блоки КС 041-76 имеют недостаточный диаметр 200 мм. При тросе диаметром 11 мм соотношение диаметра каната к диаметру блока составляет 1:18 вместо рекомендуемого 1:20;

- при работе компенсатора грузовой трос, проходя через подвижный и неподвижные блоки, изгибается в противоположные направления, что ухудшает условия работы троса и снижает его срок службы;

- срок службы стального оцинкованного троса не превышает 10-15 лет;

- блоки с подшипниками качения имеют недостаточную допустимую нагрузку, требуют периодической замены смазки, чувствительны к попаданию влаги и абразива. Блоки с подшипниками скольжения требуют периодической замены смазки, имеют повышенное трение в подшипниковом узле.

Трехблочные анкеровки с коэффициентом передачи 1:4 имеют ход грузов в 1,3З раза больше, чем анкеровки с коэффициентом передачи 1:3. Допустимый диапазон температур при расстоянии от средней анкеровки 800м составляет 78°С без учёта нагрева проводов от солнечной радиации.

При диапазоне температур от -40°С до +40°С с учётом требований « Норм проектирования контактной сети» ВСН 141-90 по температуре нагрева проводов от солнечной радиации 14°С трехблочные анкеровки с коэффициентом передачи 1:4 возможно применить при расстоянии от средней анкеровки не более 650м.

При низких температурах компенсирующие устройства требуют проверки их состояния. Отказы в работе блоков вызывают обрывы проводов контактной сети в местах местных дефектов в первую очередь в пролетах, близких к средней анкеровки. В целом компенсирующие устройства блочного типа имеют низкую надежность и недостаточный ресурс.

Компенсатор блочно-полиспастного типа КБП-3-30 включает в себя подвеску из двух неподвижных блоков диаметром 360 и 260 мм, установленных в одной раме, подвижного блока диаметром--360мм и мелкожильного каната (троса) из нержавеющей стали диаметром 9,5 - 11,5 мм.

Возможно применение канатов Белорецкого металлургического комбината диаметром 9,5мм по ТУ 14-173-11-91, диаметром 11 и 11,5 мм по ТУ 14-173-184-90, каната К9,5 ГОСТ 2172-80 или других производителей с аналогичными характеристиками.

Для диаметров каната 9,5 мм в клиновые зажимы запасовки канатов устанавливаются клины.

Грузовой трос, проходя через подвижный и неподвижный блоки, изгибается в одну сторону.

Минимальное соотношение диаметров троса (d=11,5 мм) и блока (D=260 мм) составляет 1:23. Блок компенсатора через кронштейны анкеровки шарнирно крепится на опоре.

Блоки компенсатора изготовлены из высокопрочного чугуна ВЧ40

(По согласованию с заказчиком блоки компенсаторов могут быть изготовлены из стали 20 ГЛ по ГОСТ 977-88 или алюминиевого сплава АМг6 лч (Ал 23-1)). Оси блоков изготовлены из нержавеющей стали.

Подшипниковые узлы компенсатора изготовлены на основе композиционных подшипников скольжения, разработанных для компенсаторов контактной сети (ТУ 4183 - 002 - 46919903 - 98).

Антифрикционный внутренний слой подшипников выполнен на основе углеродфторопластовой композиции, наружный слой - из стеклопластика.

Подшипники не обладают эффектом "схватывания" при длительном простое под нагрузкой и на морозе, их антифрикционный слой при температуре эксплуатации от минус 50° до плюс 100°С стоек к воздействию воды, масло - и нефтепродуктов, абразивных частиц. Подшипниковые узлы защищены от воздействия окружающей среды фторопластовыми шайбами.

Компенсаторы обеспечивают постоянную величину натяжения проводов контактных подвесок независимо от изменений температуры окружающей среды и проводов в пределах возможного хода грузов.

Сила сопротивления движению компенсатора при температурном изменении длины проводов, обусловленная трением в подшипниках блоков, не превышает 2% от силы натяжения компенсируемых проводов. Установленный срок службы компенсаторов не менее 50 лет. Вероятность безотказной работы в течение первых пяти лет 0,995.

Блочно-полиспастный компенсатор имеет коэффициент передачи 1:3. Анкеровки данной конструкции требуют увеличения грузов в 1,33 раза по сравнению с анкеровками с коэффициентом передачи 1:4, но имеют соответственно меньший ход грузов. Допускаемый диапазон температур при расстоянии от средней анкеровки 800м составляет 106°С.

С учетом нагрева проводов, от солнечной радиации анкеровки с коэффициентом передачи 1:3 обеспечивают компенсацию проводов при диапазоне температур от - 45°С до +45°С.

Положение грузов и расстояние между осями блоков в зависимости от температуры монтажа определяется по графикам регулировки и монтажным таблицам, приведенным в проекте.

С учетом возможности установки анкерных опор на насыпях или в выемках в графиках и таблицах перемещения грузов за отметку нижнего предельного положения грузов принята отметка уровня головок рельсов (УГР).

Допустимая точность установки положения грузов зависит от расстояния до средней анкеровки и диапазона минимальных и максимальных температур района.

При расстоянии от средней анкеровки 800м для района с диапазоном температур 90°С точность должна составлять ±15см, с диапазоном температур 80°С ±25см.

Количество грузов (n) в блочно-полиспастном компенсаторе определяется по формуле: n=К/75, где К, кг -- натяжение компенсированных проводов.

Все детали компенсаторов из углеродистых и низколегированных сталей, а также из чугуна защищены от коррозии методом горячего цинкования с толщиной цинкового покрытия 120-150 мкм по ГОСТ 9.307-89. Болты, гайки и шайбы диаметром до 12 мм выполнены из коррозионно-стойких сталей.

Резьба всех изделий покрывается антикоррозийной смазкой МС-50 ГОСТ 9762-76.

Допускаемая нагрузка составляет 30 кН, что позволяет применять его в конструкциях контактных подвесок, имеющих повышенное натяжение проводов.

Компенсатор выдерживает без остаточных деформаций его деталей и сборочных единиц испытательную нагрузку, равную удвоенному значению допускаемого натяжения компенсируемых проводов - 60 кН.

Компенсаторы имеют климатическое исполнение УХЛ, категории размещения 1 по ГОСТ 51150-69. Для использования компенсаторов в районах с минимальной температурой ниже минус 40°С углеродистые стали заменяются на низколегированные в соответствии с ВСН 141-90.

За расчетную температуру для выбора марки сталей принимается средняя температура наиболее холодной пятидневки обеспеченностью 0,92 в соответствии со СНиП 2.01.01-82.

Тросы компенсаторов должны быть покрыты антикоррозийной смазкой АМС по ГОСТ 2712-75.

ОАО «ЦНИИС» проведены ресурсные испытания существующих компенсаторов блочного типа и блочно-полиспастного. Трехблочный компенсатор выдержал до повреждения 1150 циклов. Блочно-полиспастный, после количества циклов в 15,8 раза выше (количество циклов при испытании соответствует сроку эксплуатации 40 лет), сохранил полную работоспособность.

Узлы анкеровок разработаны для железобетонных конических опор ССА, СС и могут применяться при других типах железобетонных опор.

Конструкция компенсатора предусматривает его установку на анкерных кронштейнах, как существующих типовых оттяжек АК-2, АП-2, АК-1, А1, БК-2 и БП-2, так и вновь разработанных оттяжек типа АК-2У, АК-1У, БКО-2.

В проекте даны узлы блочно-полиспастных анкеровок контактных подвесок переменного тока со сталемедным несущим тросом (ПБСМ 95; 70), медным (М 120; 95) и одиночным контактным проводом. Для переменного тока даны узлы совмещенной компенсированной анкеровки контактного провода и несущего троса на один компенсатор через коромысло.

Совмещенная анкеровка проводов допускается при расчетной минимальной температуре не ниже -45°С.

В конструкции анкеровок применены сдвоенные гирлянды чугунных грузов. Гирлянды железобетонных грузов имеют большую длину, чем с чугунными грузами. При достаточном диапазоне свободного хода в ряде схем анкеровок переменного тока возможно применение железобетонных грузов:

- компенсированная анкеровка;

- полукомпенсированная анкеровка.

Гирлянды грузов, выступают в сторону пути за пределы очертания железобетонной опоры на 200 мм, что следует учитывать при назначении габарита анкерных опор.

В анкеруемые провода врезаются гирлянды из тарельчатых стеклянных изоляторов на единицу больше, чем в поддерживающих гирляндах, но не менее 4-х при переменном токе.

При натяжении до 14 кН устанавливаются изоляторы класса 70, при суммарном натяжении свыше 14 кН устанавливаются изоляторы класса 120.

Допускается применение при переменном токе стержневых полимерных натяжных изоляторов класса 120.

Основные схемы применения анкеровки проводов контактной сети блочно -полиспастного типа:

Для переменного тока.

- компенсированная анкеровка блочно-полиспастного типа применяется при строительстве с установкой оттяжек АК-2У;

- компенсированная анкеровка при модернизации, применяется с установкой оттяжек АК-2;

- компенсированная совмещенная анкеровка блочно-полиспастного типа, применяется при строительстве с установкой оттяжек АК-1У;

- компенсированная совмещенная анкеровка блочно-полиспастного типа при модернизации, применяется с установкой оттяжек АК-1; А-1;

- полукомпенсированная анкеровка блочно-полиспастного типа при модернизации, применяется с установкой оттяжек АП-2.

Виды анкеровок и типы оттяжек приведены в таблице.

При новом строительстве высота анкеруемого контактного провода должна быть выше на 500+100мм принятого, в проекте уровня рабочего контактного провода.

При модернизации контактной сети установка компенсатора производится на кронштейнах типовых оттяжек, АК-2, АП-2, БК-2 и БП-2 без замены анкерных опор и оттяжек.

Полукомпенсированная контактная подвеска при модернизации, как правило, должна переводиться в компенсированную.

Замена компенсаторов при ремонте и модернизации должна производиться с выполнением требованиями ПУТЭКС по высотам анкеровок. При заниженной высоте анкеровок должна производиться замена анкерных опор и оттяжек.

Повышение уровня контактного провода без замены анкерных опор и оттяжек должно производиться в соответствии с техническим указанием № К-11/95 ЦЭТ-2 от 08.06.1995 г. «О повышении уровня анкеровки контактного провода на железобетонных опорах» (Сборник технических указаний и информационных материалов по хозяйству электроснабжения, 1996 г.)

При замене компенсаторов зажимы средней анкеровки заменяются на зажим средней анкеровки КС-322 (ТОО «ТРЭЛ») и зажим средней анкеровки несущего троса УКС-052.

Компенсаторы блочно-полиспастного типа должны поставляться в сборе. По заказу потребителя производится поставка всех сборочных единиц.

9.1 Порядок монтажа и эксплуатации компенсаторов КБП-3-30

1.Установить на грузовом канате клиновой зажим для последующего соединения с гирляндой грузов.

Необходимая длина каната между центрами отверстий в клиновых зажимах выбирается по соответствующему чертежу компенсируемой анкеровки, в зависимости от типа анкеруемых несущих тросов и контактных проводов, а также от схемы анкеровки и исполнения компенсатора. Эта длина каната определяет соответствие положения грузов "b" относительно УГР и расстояние "z" между осями подвижного и неподвижного блоков соответствующим графикам и таблицам регулировок.

Предприятием-изготовителем поставляются компенсаторы с унифицированной для всех схем длиной грузового каната (13,6 м для КП и 17,4м для НТ), определенной с учетом максимально возможного удлинения на 50см, в соответствии с п.2.15.9 ПУТЭКС.

2. Соединить анкерную штангу в сборе с гирляндой изоляторов и соединить её с рамой подвижного блока компенсатора.

3. Поднять подвеску компенсатора и прикрепить поводок неподвижных блоков к штанге анкерного кронштейна.

4. Собрать гирлянду грузов.

5. Вытянуть грузовой канат вниз и соединить со штангой гирлянды грузов.

6. Определить по соответствующим графикам или таблицам положение грузов "b" относительно УГР и расстояние "z" между осями подвижного и неподвижного блоков в соответствии с температурой воздуха при монтаже.

7. Закрепить полиспасты к анкерной штанге и анкеруемому проводу (тросу) и произвести вытяжку проводов до достижения расстояния "z" между осями неподвижного и подвижного блоков, соответствующего таблице. Соединить анкеруемые провода с гирляндой изоляторов.

8. Проверить правильность положения грузов "b" относительно УГР и расстояние "z" между осями подвижного и неподвижного блоков.

9. Произвести пробное качание грузов с проверкой работы блоков.

10. Установить кронштейн успокоителя грузов.

11. Смонтировать трос успокоителя грузов и отрегулировать его натяжение.

Замена блочных компенсаторов на блочно-полиспастные производится по соответствующей технологической карте на капитальный ремонт контактной сети.

Техническое обслуживание компенсаторов КБП-3-30 производится по технологической карте «Проверка состояния, регулировка и ремонт компенсирующих устройств» аналогично блочным компенсаторам за исключением необходимости наполнения смазкой подшипников и восстановления защитного покрытия стальных изделий.

После вытяжки проводов производится перестановка грузов в соответствии с графиками (таблицами) регулировки "а" и "b" ("b1")

Минимально допустимое расстояние между неподвижным блоком и торцом клинового зажима подвижного блока составляет 0,5 м.

Изменение натяжения проводов при их износе производится изменением количества грузов. Количество грузов (n) определяется по формуле: n = К/75, где К, кг - натяжение компенсированных проводов.

Заключение

При проектировании реконструкции контактной сети участка перегона Азей - Шуба на современную контактную сеть КС-160 были определены сечение проводов контактной сети и тип подвески. С помощью программного комплекса ZBlock выбрана контактная подвеска ПБСМ-95+МФ-100 и определено сечение контактной сети в медном эквиваленте, которое составило 374 мм2, при узловой схеме соединения контактных подвесок путей между собой. Данная подвеска проходит по нагреванию и допустимому току.

Рассчитаны нагрузки на провода цепной подвески при трех режимах:

- при гололеде;

- при максимальном ветре;

- при гололеде с ветром.

Нагрузка на трос при максимальном ветре составила 1,91 даН/м, при гололеде 0,342даН/м. Максимальная нагрузка на трос в режиме гололеда с ветром составила 2,08 даН/м.

Рассчитали длины пролетов на перегоне для прямого участка и для кривых разным радиусом. В сравнении с Правилами устройства и технической эксплуатации контактной сети были выбраны оптимальные длины пролетов для данного перегона. На прямом участке длина пролета составила 60 м, на кривой с минимальным радиусом длина пролета составила 46 м.

Был произведен механический расчет анкерного участка, в котором были построены монтажные кривые зависимостей натяжения и стрел провеса от температуры. Стрелы провеса несущего троса и контактного провода в сравнении с Правилами устройства и технической эксплуатации контактной сети допустимы. Температура беспровесного положения контактного провода составила -11 ?С. Максимальная стрела провеса контактного провода составила 0,07 м..

При выборе опор контактной сети учтен максимальный изгибающий момент относительно условного обреза фундамента опоры, который составил М0=72,56 кНм. Выбрана опора типа СС-136,6-3.

Затраты на реконструкцию перегона составили 18259,72 тыс. руб. Увеличение объемов перевозок в связи с увеличением скорости движения поездов и снижение затрат на содержание контактной сети дает экономический эффект со сроком окупаемости затрат на реконструкцию перегона составит 6,6 года.

Список литературы

1. Правила устройства и технической эксплуатации контактной сети элек- трифицированных железных дорог. - М.: Трансиздат, 2002.- 184 с.

2. Правила устройства системы тягового электроснабжения железных дорог РФ / МПС РФ. М: Транспорт, 1997.

3. Правила технической эксплуатации железных дорог Российской Федерации. М.: Трансиздат, 2000. - 190 с.

4. Нормы проектирования конструкций контактной сети ВСН 141-84. М.: Минтрансстрой, 1985. - 169 с.

5. Нормативно-методическая документация по эксплуатации контактной сети и воздушных линий.

6. Правила тяговых расчётов для поездной работы. М.: Трансжелдориздат, 1989.

7. Дворовчикова Т.В., Зимакова Н.А. Электроснабжение и контактная сеть электрифицированных железных дорог. Пособие по дипломному проектированию. - М.: Транспорт, 1989. - 166 с.

8. Марквардт К.Г. Электроснабжение электрических железных дорог. - М.: Транспорт, 1982. - 528 с.

9. Гринберг-Басин М.М. Тяговые подстанции. Пособие по дипломному проектированию. - М.: Транспорт, 1986. - 168 с.

10. Герман Л. А., Векслер М.И., Шелом И. А. Устройства и линии электроснабжения блокировки. - М.: Транспорт, 1987. - 192 с.

11. Справочник по электроснабжению железных дорог // В 2-х т. Т. 1 / Под ред. К.Г. Марквардта. - М.: Транспорт, 1980. - 256 с.

12. Справочник по электроснабжению железных дорог // В 2-х т. Т. 2 / Под ред. К.Г. Марквардта. - М.: Транспорт, 1981. - 392 с.

13. Борц Ю.В., Чекулаев В.Е. Контактная сеть. - М.: Транспорт, 1981. - 223 с.

14. Марквардт К.Г. Контактная сеть. М: Транспорт, 1991 (?).

15. Дмитриева В.А. Экономика железнодорожного транспорта. - М.: Транспорт, 1996. - 328 с.

16. Экономика железнодорожного транспорта. Методические указания для выполнения экономической части дипломного проекта. - Иркутск: ИрГУПС, 2002. - 26 с.

РЕЦЕНЗИЯ

на дипломный проект студента Боровикова Романа Сергеевича

факультета электротехнического

кафедры Электроснабжение железнодорожного транспорта

Руководитель дипломного проект Закарюкин Василий Пантелеймонович

Тема дипломного проекта Реконструкция контактной сети участка электрифицированной железной дороги Азей - Шуба Нижнеудинской дистанции электроснабжения ВСЖД

В дипломном проекте Боровикова Р. С. решены следующие вопросы:

1. Определение проводов контактной сети и выбор типа подвески.

2. Спроектирована трассировка контактной сети перегона.

3. Произведен выбор опор контактной сети.

4. Выбраны поддерживающие и фиксирующие устройства.

5. Произведен механический расчет анкерного участка и построены монтажные кривые.

6. Подробно рассмотрен спец вопрос на тему: «Компенсатор блочно-полиспастного типа КБП-3-30».

7. Сведены в таблицу все затраты на строительство контактной сети.

8. В нужном объеме изложен вопрос безопасности работающих при реконструкции контактной сети перегона Азей - Шуба.

В процессе выполнения дипломного проекта студент выполнил большой объем работ по сбору, анализу и обработки исходной информации.

Графическая часть документа подробно иллюстрирует проделанную работу, соответствует заданию и выполнена с соблюдением ГОСТов.

В своей работе Боровиков Р. С. активно привлекал большой объем специальной литературы.

В целом дипломный проект выполнен на высоком уровне, а студент Боровиков Роман Сергеевич заслуживает звания инженер путей сообщения.

Рецензент: начальник дорожной электротехнической лаборатории ВСЖД

Рындин И.И.


Подобные документы

  • Составление монтажных планов контактной сети станции и перегона, проект электрификации железнодорожного участка. Расчет длин пролетов и натяжения проводов, питание контактной сети, трассировка контактной сети на перегоне и поддерживающие устройства.

    курсовая работа [267,5 K], добавлен 23.06.2010

  • Расчет длин пролетов на прямых и кривых участках в режиме максимального ветра. Натяжение проводов контактной сети. Выбор поддерживающих и опорных конструкций. Проверка возможности расположения питающих проводов и проводов ДПР на опорах контактной сети.

    дипломная работа [2,6 M], добавлен 10.07.2015

  • Определение нагрузок, действующих на провода контактной сети. Определение максимально-допустимых длин пролетов. Трассировка контактной сети станции и перегона. Проход контактной подвески под пешеходным мостом и по металлическому мосту (с ездой по низу).

    курсовая работа [356,2 K], добавлен 13.03.2013

  • Определение нагрузок, действующих на провода контактной сети для станции. Определение максимальных допустимых длин пролетов. Расчет станционного анкерного участка полукомпенсированной рессорной подвески. Порядок составления плана станции и перегона.

    курсовая работа [279,8 K], добавлен 18.05.2010

  • Определение нагрузок, действующих на провода контактной сети на главных и боковых путях станции, на перегоне, насыпи. Расчет длин пролетов и станционного анкерного участка полукомпенсированной цепной подвески. Порядок составления плана станции и перегона.

    курсовая работа [1,3 M], добавлен 01.08.2012

  • Определение количества элементов для опор контактной сети. Монтаж контактной подвески и воздушных линий на опорах контактной сети. Техника безопасности при выполнении строительных работ на перегоне. Технические средства, приспособления и инструмент.

    курсовая работа [5,8 M], добавлен 18.06.2019

  • Определение допускаемых длин пролётов на главных и второстепенных путях станции и на прямом участке пути перегона. План контактной сети станции. Расчёт анкерного участка подвески на главном пути. Подбор промежуточной консольной железобетонной опоры.

    курсовая работа [448,2 K], добавлен 21.02.2013

  • Определение объема, трудоемкости, времени выполнения строительных и монтажных работ по сооружению участка контактной сети. Расчет потребности в технологических "окнах" в графике движения поездов. Составление и расчет сетевых графиков выполнения работ.

    курсовая работа [583,3 K], добавлен 18.03.2015

  • Определение максимально допустимых длин пролетов подстанции контактной сети. Монтажная схема питания и секционирования, монтажный план станции. Характеристика секционных разъединителей и приводов к ним. Расчет нагрузки на провода контактной подвески.

    курсовая работа [751,4 K], добавлен 24.04.2014

  • Расчет нагрузок на провода цепной подвески и длин пролетов. Расчет станционного анкерного участка полукомпенсированной рессорной подвески. Определение нормативных нагрузок, действующих на опору, порядок составления и подготовка плана станции и перегона.

    курсовая работа [272,3 K], добавлен 22.09.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.