Діагностика системи запалення ДВЗ

Призначення та різновиди систем запалення двигуна. Огляд методів та приладів діагностування та ремонту систем запалення. Робочі процеси в батарейних системах запалення. Розрахунок системи запалення. Процес діагностики та ремонту систем запалення.

Рубрика Транспорт
Вид дипломная работа
Язык украинский
Дата добавления 24.07.2008
Размер файла 2,6 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

5. Active Test або активація - ряд тестів, що дозволяють перевірити роботу виконавчих механізмів;

6. Адаптація різних датчиків;

7. Робота з иммобилайзером - дана функція дозволяє перевіряти статус, режими роботи й т.д. штатної протиугінної системи, у тому числі й додавання нових ключів;

8. Реєстрація в електронному блоці керування двигуном нового иммобилайзера, АКПП і ін.

9. Крім того, дилерський сканер працює з усіма іншими електронними системами автомобіля ABS, AIR BAG, ESP і т.д.

Мультимарочный сканер дозволяє працювати діагностові з автомобілями різних виробників, але, як правило, сканери даного типу мають меншу функціональність у порівнянні з дилерськими. Сканер з функціями мотор-тестера є новим щаблем в еволюції засобів діагностики. Виробники цих приладів пішли по шляху схрещування сканера й мотор-тестера, основними цілями цього були збільшення функціональності приладу, а також зниження вартості, у порівнянні з покупкою двох приладів окремо. Підставою для зниження вартості стало те, що й сканер і мотор-тестер можуть бути спроектовані на базі однієї мікропроцесорної системи.

2.1 Цифровий USB-осцилограф

Цифровий USB-осцилограф - USB Autoscope з можливостями мотор-тестера[9].

Цифровий діагностичний 8-ми канальний USB-осцилограф призначений для моніторингу, виміру й аналізу електричних сигналів автомобілів. За отриманими даними можна оцінити працездатність датчиків і виконавчих механізмів і пристроїв.

USB Autoscope призначений для пошуку несправностей у різних електронних системах автомобіля й для діагностики стану механіки бензинових двигунів. Також може знайти застосування при діагностиці дизельних двигунів, обладнаних електронною системою керування.

Прилад універсальний і не прив'язаний до якої-небудь автомобільної марки. Підключається до USB порту PC-сумісного ПК або Notebook.

Основні режими роботи

Режим аналогового осцилографа.

У режимі аналогового осцилографа можлива (рис. 2.3) робота в 8-ми 4-х 2-х або одноканальному режимах з можливістю програмного підключення будь-якого аналогового входу до будь-якого каналу осцилографа. Одночасно можна записувати осцилограму в безперервному режимі для наступного перегляду, збереження у файл або виводу на друк.

Рис. 2.3 Режим каналового осцилографа

Режим аналогового осцилографа призначений для зняття осциллограмм напруг у ланцюгах датчиків і виконавчих пристроїв системи упорскування палива й запалювання. Дозволяє виявити несправності у високовольтних і низьковольтних ланцюгах систем запалювання, несправності датчиків і виконавчих механізмів, несправності ланцюгів живлення, генератора, стартера. При використанні відповідних датчиків, можна одержати графік розрідження у впускному колекторі (датчик розрідження вхідний у базовий комплект), тиску в циліндрах двигуна (датчик тиску в циліндрі), зміни тиску в топливопроводах високого тиску ТНВД дизельних двигунів (датчик AVL і адаптер, що погодить), струму стартера, що управляють імпульсів вступників на паливні форсунки високого тиску.

Діагностика систем запалювання.

У програмне забезпечення USB Autoscope убудована підтримка зовнішніх програмних модулів, що вбудовують, для виконання специфічних тестів, у тому числі PlugIn "Діагностика запалювання" (рис. 2.4) для роботи з високовольтними ланцюгами систем запалювання.

Рис. 2.4 Режим діагностики систем запалення

У цьому режимі можна спостерігати "Парад циліндрів", крім того, програма в реальному часі відображає оберти двигуна, напруга пробою, час і напруга горіння іскри для кожного циліндра індивідуально. Вимір кута випередження запалювання, рис. 2.5.

PlugIn "Вимір УОЗ" у реальному часі обчислює кут випередження запалювання.

Рис. 2.5 Режим виміру кута випередження запалення

Точність вимірів дуже висока, тому що не залежить від правильності установки міток положення колінвала. ВМТ поршня обчислюється по осцилограмі тиску в циліндрі, на що однозначно вказує пік тиску в циліндрі. Другий канал відображає сигнал датчика першого циліндра, що вказує на момент запалювання.

Осцилограма тиску в циліндрі подає коштовну інформацію про роботу механіки двигуна і є дуже інформативної, можна зробити вивід про роботу газорозподільного механізму для кожного циліндра індивідуально.

PlugIn "Тимчасові параметри".

PlugIn "Тимчасові параметри" дозволяє програмі автоматично розраховувати й відображати поточну тривалість імпульсу, шпаруватість і частоту сигналу.

Рис. 2.6 Режим тривалість імпульсу

PlugIn "Тимчасові параметри", режим "Тривалість імпульсу", рис 2.6.

Режим "Тривалість імпульсу" дозволяє програмі в реальному часі відображати поточну тривалість імпульсу періодичного сигналу, наприклад тривалість імпульсів упорскування на паливних форсунках.

Режим "Шпаруватість, Частота" дозволяє програмі в реальному часі відображати поточну шпаруватість і частоту проходження імпульсу періодичного сигналу. Це може бути необхідним для аналізу сигналів ШИМ (Широтно-Імпульсна Модуляція) керуючих різними виконавчими механізмами, а так само для аналізу роботи датчиків із цифровим вихідним сигналом.

PlugIn "Тимчасові параметри", режим "Шпаруватість, Частота", рис. 2.7.

Рис. 2.7 Режим шпаруватість та частота

PlugIn "Тимчасові параметри", рис. 2.8, відображає параметри періодичного сигналу того каналу осцилографа, по сигналі якого обрана синхронізація. Режим Графік розрідження призначений для оцінки стану механіки двигуна методом дослідження характеру зміни розрідження у впускному колекторі, виміру рівня пульсацій тиску газів у картері й у вихлопній трубі. У режимі Відносна компресія проводиться оцінка відносної компресії в циліндрах двигуна на підставі осцилограми струму стартера, тому що відомо, що чим більше компресія в циліндрі, тим більше амплітуда пульсацій струму стартера на такті стиску в даному циліндрі. Cкрипти аналізатора.

У програмне забезпечення USB Autoscope убудована функція виконання файлів скриптів аналізатора.

Рис. 2.8 Тимчасові параметри

Функція дозволяє автоматизувати аналіз осцилограм по зовнішньому алгоритмі, записаному у файлі скрипта аналізатора мовою JScript або VBScript.

Короткий технічний опис представлено в таблиці 2.1.

Таблиця 2.1

USB Autoscope II споряджений гальванічною розв'язкою вимірювальних ланцюгів і ланцюгів ПК (шини USB).

Параметри ізоляції гальванічної розв'язки USB Autoscope II

тестова напруга ізоляції

2,5k протягом 1 хвилини

ємність ізоляції

не вище 10p

опір ізоляції

не нижче 1x1014Ohm

Режим аналогового осцилографа

кількість вхідних каналів

8

кількість каналів осцилографа

1, 2, 4, 8 (на вибір)

дозвіл АЦП

12 біт

діапазон вимірюваної напруги

±15V 1-4й аналогові входу,

6й диференціальний вхід;

±150V 5й аналоговий вхід,

1-4й аналогові входу при використанні зовнішніх вхідних дільників напруги 1:10;

±1500V 5й аналоговий вхід при використанні зовнішнього вхідного дільника напруги 1:10,

1-4й аналогові входу при використанні зовнішніх вхідних дільників напруги 1:100;

±50k ємнісної датчик

максимальна частота оцифровки на канал для USB Autoscope II

500kHz в 1-но канальному режимі;

250kHz в 2-х канальному режимі;

125kHz в 4-х канальному режимі;

50kHz в 8-ми канальному режимі

максимальна частота оцифровки на канал для USB Autoscope I

250kHz в 1-но канальному режимі;

125kHz в 2-х канальному режимі;

50kHz в 4-х канальному режимі;

25kHz в 8-ми канальному режимі

режим оцифровки

безперервний потік

вхідний опір

1МОм

додаткові можливості

- вільне перемикання вхідних каналів (можливість підключення каналу Осцилографа до кожного з фізичних входів "на лету")

- підтримка зовнішніх програмних модулів, що вбудовують, PlugIn для виконання специфічних тестів

- можливість створення користувальницьких настроювань для часто використовуваних режимів

- функція відображення значення вимірюваної фізичної величини

- виконання програмою файлів скриптів аналізатора з метою автоматизації аналізу осцилограм

Режим цифрового аналізатора

кількість вхідних каналів

8

режими

4-х, 8-и канальний аналізатор

максимальна частота оцифровки на канал для USB Autoscope II

500kHz в 4-х канальному режимі;
500kHz в 8-ми канальному режимі

максимальна частота оцифровки на канал для USB Autoscope I

500kHz в 4-х канальному режимі;
250kHz в 8-ми канальному режимі

режим оцифровки

безперервний потік

вхідний опір

10kOm

Короткий опис ПЗ

підтримувані ОС

Windows 98Se/Me, Windows 2000/XP

основні можливості

режим відображення + запис + виміру в реальному масштабі часу одночасно

діапазон шкали розгорнення для USB Autoscope II

50мкс/справ. - 1з/дел.

в аналоговому режимі;

50мкс/справ. - 1з/дел.

у режимі цифрового аналізатора

діапазон шкали розгорнення для USB Autoscope I

100мкс/справ. - 1з/дел.

в аналоговому режимі;

50мкс/справ. - 1з/дел.

у режимі цифрового аналізатора

діапазон шкали напруги (тільки в режимі аналогового осцилографа)

50m/справ. - 5V/справ.;

0.5V/справ. - 50V/дел.

при використанні вхідного дільника напруги 1:10;

5V/справ. - 500V/дел.

при використанні вхідного дільника напруги 1:100;

50V/справ. - 5k/дел.

при використанні вхідного дільника напруги 1:1000;
500V/справ. - 50k/дел.

при використанні ємнісного датчика

режим синхронізації

передній/задній фронт зазначеного рівня сигналу кожного із вхідних каналів

час запису для USB Autoscope II при максимальній частоті оцифровки (за умови наявності дискового простору), хв.

Windows 2000/XP

аналоговий режим - 23*;

режим цифрового аналізатора - 71*

Windows 98Se/Me

аналоговий режим - 12*;

режим цифрового аналізатора - 35*

час запису для USB Autoscope I при максимальній частоті оцифровки (за умови наявності дискового простору), хв.

Windows 2000/XP

аналоговий режим - 47*;

режим цифрового аналізатора - 71*

Windows 98Se/Me

аналоговий режим - 23*;

режим цифрового аналізатора - 35*

максимальний розмір файлу осцилограми

Windows 2000/XP 1Гбайт

Windows 98Se/Me 512Mбайт

вимірювальний інструментарій

max / min / середня напруга, різниця напруг, час, частота, шпаруватість і фаза сигналу

підтримувані ОС

Windows 98Se/Me, Windows 2000/XP

вихідні формати

бінарний файл;

графічний файл у форматі *.jpg;

одержання твердої копії осцилограми за допомогою печатки

додаткові можливості

З метою автоматизації аналізу осцилограм, убудована можливість виконання програмою аналізу осциллограмм по зовнішньому алгоритмі, записаному у файлах скриптов аналізатора. Можливість компресії/декомпресії "на лету" при збереженні/читанні файлу.

Найпростіші функції редагування бінарного файлу.

* - зі зменшенням частоти оцифровки, час запису збільшується в пропорційну кількість разів.

Мінімальні вимоги до ПК

центральний процесор для USB Autoscope II

Pentium III - 1 000 МГц

центральний процесор для USB Autoscope I

Pentium II - 500 МГц

оперативна пам'ять

128 Мб

жорсткий диск

10 Гб UDMA 33

оптичний привод

CD-ROM для інсталяції програмного забезпечення

інтерфейс

порт USB 1.1 (USB 2.0)

відео адаптер

800x600, 256 кольорів, 4 Мб, AGP

монітор

SVGA

операційна система (ОС)

Windows 98se/Me або Windows 2000/XP

додаткові вимоги

обов'язково повинен бути включений режим DMA

Універсальні настроювання користувача.

Настроювання режимів роботи USB Autoscope подібні до роботи з аналоговим осцилографом, разом з тим, використаються всі переваги цифрової техніки. Одне зі зручностей, що дозволяє заощаджувати час, це можливість самостійно створювати або використати готові настроювання користувача для того, щоб не потрібно було щораз набудовувати USB Autoscope на ті самі режими роботи. Таким чином, можна один раз настроїти USB Autoscope на часто використовуваний режим і зберегти користувальницьке настроювання, назвавши її, наприклад "Лямбда-Зонд" або скачати універсальні настроювання користувача. І наступного разу, коли потрібно буде переглянути осцилограму вихідного сигналу лямбда-зонда, уже не потрібно буде знову набудовувати режим роботи USB Autoscope, а просто викликати настроювання користувача "Лямбда-Зонд

Нестаток полягає в тім, що струм споживання будь-якого USB пристрою не повинен перевищувати 500m. Струм споживання USB Autoscope II у робочому режимі становить 180m. Але, не дивлячись на це, було замічено, що при включенні USB Autoscope II на деяких моделях комп'ютерів типу Notebook "жовтої зборки", наприклад ASUS A6Rp, відбувається зниження напруги живлення +5V шини USB комп'ютера. Через збій у ланцюзі живлення шини USB комп'ютера, USB Autoscope II не включається й не може працювати при живленні від USB-порту таких комп'ютерів.

Подібний ефект відбувається так само у випадку, коли в настроюваннях BIOS материнської плати комп'ютера обране мале значення максимальне припустимого струму споживання для USB пристроїв, а можливість регулювання значення максимально припустимого струму споживання для USB пристроїв існує тільки в деяких BIOS материнських плат. У такому випадку, можна забезпечити живлення USB Autoscope II від стороннього джерела напруги шляхом включення його через зовнішній активний USB HUB.

2.2 Пристрій для виявлення детонацій в окремих циліндрах двигуна внутрішнього згоряння

Пристрій ставиться до діагностування двигунів внутрішнього згоряння (ДВС), зокрема до пристроїв для виявлення детонаційного згоряння палива у двигунах, і може бути використане в складі систем діагностики й керування запалюванням ДВС [10].

Метою винаходу є підвищення точності виявлення рівня детонації в Vожному циліндрі двигуна.

Схема пристрою представлена на рис. 2.9

Пристрій містить підключений входом до датчика детонації перший підсилювач 1, вихід якого через блок 2 нормування, фільтр 3 пов'язаний із входом пікового детектора 4 і інформаційним входом першого ключа 5. Вихід детектора 4 підключений до інформаційних входів другого ключа 6 і третього ключа 7, вихід якого через другий підсилювач 8 підключений до інформаційного входу четвертого ключа 9, а вихід останнього через резистор 10 пов'язаний з першим входом схеми 11 порівняння, другий вхід якої підключений до виходу детектора 4, а третій вхід виконаний для підключення до формувача сигналу дозволу (не показаний).

Вихід формувача 12 кутового сектора підключений до керуючих входів першого, третього й четвертого ключів 5, 7 і 9 і першому входу формувача 13 імпульсу запису, перший вихід якого підключений до керуючого входу другого ключа 6, а другий його вихід пов'язаний з першою групою входів першого блоку 14 двовходових елементів И, виходи якого підключені до відповідних входів першої групи входів блоку формування опорних сигналів, входи другої групи якого підключені до першого входу схеми 11 порівняння. Блок формування опорних сигналів виконаний у вигляді груп з послідовно з'єднаних комутаторів 15, постаченим інформаційним і керуючим входами, і конденсаторів 16, число яких дорівнює числу циліндрів двигуна. Інформаційні входи комутаторів 15 утворять другу групу входів блоку, першу групу входів якого утворять керуючі входи комутаторів 15. Другі виходи конденсаторів 16 і виходи ключів 5 і 6 пов'язані із загальною шиною джерела живлення (не показаний). Лічильник 17 виконаний з рахунковим входом для підключення до датчика положення колінчатого вала двигуна, настановним входом для підключення до блоку початкової установки й входом скидання, виходи лічильника 17 пов'язані із входами дешифратора 18, перший і другий виходи якого підключені відповідно до першого й другого входів формувача 12, а третій його вихід - до входу скидання лічильника 17 і входу розподільника 19 рівнів, виходи якого пов'язані з відповідними входами другої групи блоку 14 і входами першої групи другого блоку 20 двохвходових елементів И, друга група входів якого й другий вхід формувача 13 підключені до виходу схеми порівняння. Кількість елементів виходів і входів у першій і другій групах входів блоків 14 і 20 і виходів дешифратора 19 дорівнює числу циліндрів двигуна.

Пристрій працює в такий спосіб.

Сигнал з датчика детонації через підсилювач 1 надходить на вхід блоку 2 нормування.

Пронормований по амплітуді сигнал надходить у фільтр 3, на виході якого з'являються імпульси із частотою заповнення, що відповідає частоті вібрацій двигуна при детонації, які виникають при нормальному згорянні палива (імпульси фонового шуму), детонаційному згорянні (імпульси детонації) і від механічних ударів при спрацьовуванні клапанів, розподільного вала й інших вузлів двигуна (імпульси перешкоди). Ці імпульси мають, що змінюється в кожному півоберті колінвала двигуна амплітуду, тривалість і форму, причому зі збільшенням частоти обертання колінчатого вала двигуна амплітуди й частота проходження імпульсів збільшується незалежно й за довільним законом. Сигнал з виходу фільтра 3 надходить на вхід пікового детектора 4 тільки тоді, коли ключ 5, підключений до входу пікового детектора 4, перебуває в закритому стані.

Рис. 2.9 Схема пристрою для виявлення детонацій в окремих циліндрах ДВС

Керуючий сигнал для закриття ключа 5 дозволу проходження сигналу виробляється в результаті обробки кутових імпульсів і імпульсів початкової установки, що надходять на входи лічильника 17 кутових імпульсів. Імпульс початкової установки, що з'являється в момент проходження поршнем певного циліндра верхньої мертвої крапки, періодично встановлює лічильник 17 кутових імпульсів у вихідний стан. Кутові імпульси, що визначають кутове положення колінчатого вала двигуна, перетворяться лічильником 17 кутових імпульсів у цифровий код.

Дешифратор 18 виділяє кутові імпульси, які визначають початок і кінець кутового сектора, у якому виникає детонаційне згоряння палива. Імпульси початку й кінця кутового сектора надходять на входи формувача 12 імпульсу кутового сектора, що формує імпульс, що надходить на керуючі входи ключів 5, 17 і 9, і переводить їх на час дії імпульсу в закритий стан. У результаті піковий детектор 4 обробляє сигнал з фільтра 3 тільки в заданому кутовому секторі.

На виході пікового детектора 4 сигнал запам'ятовується й одночасно надходить на другий вхід схеми 11 порівняння. Одночасно імпульс кутового сектора з виходу формувача 12 надходить на перший вхід формувача 13 імпульсу запису, підготовляючи останній для видачі імпульсу запису. Із другого виходу формувача 13 цей імпульс кутового сектора без зміни тривалості надходить на об'єднані входи першої групи блоку 14. На одному із входів групи блоку 14 є присутнім розв'язний рівень, що надходить із відповідного виходу розподільника 19 рівнів, а на відповідному виході одного з елементів И блоку 14 з'являється імпульс кутового сектора, що надходить на керуючий вхід одного з відповідного комутатора 15.

Опорний рівень для певного циліндра з відповідного накопичувального конденсатора 16 надходить на перший вхід схеми 11 порівняння, що видає логічний імпульс детонації тільки при наявності сигналу дозволу на третьому вході й при перевищенні поточним значенням сигналу в кутовому секторі опорного рівня даного циліндра. Сигнал дозволу надходить на третій вхід схеми 11 порівняння тоді, коли ДВС працює в детонаціонно- небезпечній зоні, тобто при певних значеннях навантаження на валу двигуна й частоти обертання колінвала. По зрізі імпульсу кутового сектора ключі 5, 7 і 9 відкриваються. Формувач 13 імпульсу запису при відсутності детонації в даному циліндрі (відсутній логічний імпульс детонації з виходу схеми 11 порівняння) виробляє імпульс запису постійної тривалості, що по ланцюзі проходження імпульсу кутового сектора надходить на керуючий вхід комутатора 15 накопичувального конденсатора даного циліндра й утримує його у відкритому стані. Збережене в піковому детекторі 4 поточне значення фонового шуму даного циліндра через відкритий перший ключ 7, підсилювач 8, відкритий другий ключ 9, резистор 10, відкритий комутатор 15 даного циліндра протягом дії імпульсу запису надходить у накопичувальний конденсатор 16 даного циліндра для уточнення величини опорного рівня. По зрізі імпульсу запису комутатор 15 накопичувального конденсатора даного циліндра закривається, а формувач 13 імпульсу запису виробляє імпульс скидання, що надходить на керуючий вихід ключа 6 і переводить його у відкритий стан до початку формування наступного імпульсу кутового сектора, при цьому забезпечується розряд накопичувальної ємності пікового детектора.

Наприкінці такту робочого ходу даного циліндра, коли поршень наступного циліндра, у якому починається такт робочого ходу, перебувати у верхній мертвій крапці, дешифратор 18 імпульсів початку й кінця кутового сектора виробляє імпульс, що надходить на вихід початкової установки лічильника 17 кутових імпульсів, установлюючи останній у вихідний стан, і на рахунковий вихід розподільника 19 рівнів, що виробляє розв'язний рівень для керування комутатором 15 накопичувального конденсатора наступного один по одному роботи циліндра двигуна. Процес формування імпульсів керування ключами повторюється.

При наявності детонації в певному циліндрі схема 11 порівняння видає логічний імпульс детонації, що одночасно надходить на об'єднані виходи другої групи блоку 20 і другий вихід формувача 13 імпульсу запису. На одному з виходів першої групи двохходових елементів і, підключених до відповідних виходів розподільника 19 рівнів, є присутнім розв'язний рівень для даного циліндра. У результаті детонації з'являється на відповідному виході блоку 20, що ідентифікований з даним циліндром.

При надходженні логічного імпульсу детонації на другий вихід формувача 13 імпульсу запису останній не виробляє імпульс запису, а відразу формує імпульс для розряду накопичувальної ємності пікового детонатора 4, крім цього участь імпульсу детонації у формуванні опорного рівня для даного циліндра.

Пристрій для виявлення детонацій в окремих циліндрах двигуна внутрішнього згоряння, що містить перший підсилювач із входом для підключення до датчика детонації, фільтр, схему порівняння, другий підсилювач, резистор, блок формування опорних сигналів, виконаний у вигляді груп по числу циліндрів з послідовно з'єднаних комутатора й конденсатора кожна, причому інформаційні входи комутаторів утворять другу групу входів, а керуючі входи комутаторів утворять першу групу входів блоку формування опорних сигналів, розподільник рівнів із числом виходів по числу циліндрів і джерело живлення, вихід першого підсилювача через фільтр з'єднаний із другим входом схеми порівняння, резистор одним виводом з'єднаний із другою групою входів блоку формування опорних сигналів, входи першої групи блоку формування опорних сигналів пов'язані з відповідними виходами розподільника рівнів, а другі виводи конденсаторів кожної групи блоку формування опорних сигналів підключені до загальної шини джерела живлення, що відрізняється тим, що, з метою підвищення точності визначення рівня детонації в кожному циліндрі, у пристрій додатково уведені перший - четвертий ключі, кожний з яких має інформаційний і керуючі входи, блок нормування, піковий детектор, формувач кутового сектора із двома входами, формувач імпульсу запису із двома виходами, перший і другий блоки двохходових елементів И, що мають першу й другу групи входів із числом входів у групі й виходів по числу циліндрів двигуна, лічильник з рахунковим входом для підключення до датчика положення колінвала, входом початкової установки для підключення до блоку початкової установки й входом скидання, і дешифратор із трьома виходами, схема порівняння виконана із третім входом для підключення до формувача сигналу дозволу, причому блок нормування встановлений у лінію зв'язку між виходом першого підсилювача й входом фільтра, піковий детектор установлений у лінію зв'язку між виходом фільтра й другим входом схеми порівняння, перший вхід який з'єднаний із другою групою входів блоку формування опорних сигналів, вихід фільтра додатково підключений до інформаційного входу першого ключа, а вихід пікового детектора додатково з'єднаний з інформаційними входами другого й третього ключів, вихід останнього підключений до входу другого підсилювача , вихід якого через четвертий ключ з'єднаний із другим виводом резистора, вихід формувача кутового сектора підключений до керуючих входів першого, третього й четвертого ключів і першому входу формувача імпульсу запису, перший вихід якого підключений до керуючого входу другого ключа, а другий його вихід з'єднаний з першою групою входів першого блоку двохходових елементів И, установленого в лінію зв'язку між розподільником рівнів і блоком формування опорних сигналів, причому входи другої групи входів блоку двохходових елементів И підключені до відповідних виходів розподільника рівнів, а виходи блоку двохходових елементів И з'єднані з відповідними входами першої групи входів блоку формування опорних сигналів, виходи лічильника з'єднані із входами дешифратора, перший і другий виходи якого підключені відповідно до першого й другого входів формувача кутового сектора, а третій а вихід дешифратора з'єднаний із входом скидання лічильника й входом розподільника рівнів, виходи якого додатково підключені до відповідних входів першої групи входів другого блоку двохходових елементів И, друга група входів якого й другий вхід формувача імпульсу записи з'єднані з виходом схеми порівняння, виходи першого й другого ключів підключені до загальної шини джерела живлення, а виходи другого блоку двохходових елементів И є виходами пристрою.

Недоліки: необхідність у датчиках детонації, великий вплив різних факторів і перешкод, що виникають при роботі двигуна на показання приладу, можливість застосування тільки для ДВС датчики, що має, положення колінвала.

2.3 Спосіб виявлення детонації у двигуні внутрішнього згоряння з

іскровим запалюванням

Використання: випробування двигунів внутрішнього згоряння. Сутність винаходу: при роботі ДВС на заданій частоті обертання за допомогою датчика реєструють у заданому інтервалі часу робочого циклу вібросигнали, наприклад коливання стінок блоку циліндрів, здійснюють фільтрацію цих сигналів, визначають фактичне значення параметра вібросигналу, а потім порівнюють фактичне його значення з еталонним і на основі порівняння роблять вивід про наявність або відсутність детонації у ДВС, як параметр вібросигналу використають середню його потужність для заданого інтервалу часу в робочому циклі, еталонне значення формують як суму величин, складовими якої, щонайменше, є величина, що характеризує поточне мінімальне значення середньої потужності вібросигналу, і величина дисперсії середньої потужності вібросигналу, попередньо певна при роботі двигуна на згаданій частоті обертання при відсутності детонації, а порівнюють еталонне значення з фактичним значенням середньої потужності вібросигналу в робочому циклі [12].

Недолік метода у великій залежності від фізичного стану елементів які використовуються як датчик і введенні додаткових елементів і впливу на них роботи двигуна.

2.4 Спосіб комп'ютерного аналізу вторинної напруги системи

запалювання двигуна внутрішнього згоряння

Винахід ставиться до технічної діагностики, а саме до діагностики систем запалювання двигунів внутрішнього згоряння, і може бути використане для діагностування систем запалювання автомобілів, пускових двигунів тракторів і мобільних сільськогосподарських машин [11]. Спосіб комп'ютерного аналізу вторинної напруги системи запалювання двигуна внутрішнього згоряння здійснюється шляхом порівняння з еталонними значеннями середньої напруги горіння дуги, тривалості іскрового розряду й відносного часу замкнутого стану контактів. При цьому крапкою початку іскрового розряду вважається момент досягнення напруги -600 В, крапкою закінчення іскрового розряду вважається момент, що передує зниженню вторинної напруги до 0, за умови, що іскровий розряд почався, крапкою розмикання контактів переривника вважається момент початку іскрового розряду, а крапкою замикання контактів уважається найближчий попередньому іскровому розряду момент перевищення напругою рівня +50 В, за умови, що між цією крапкою й початком іскрового розряду напруга досягає +180 В. Отримані за кілька сотень циклів результати по кожному циліндрі засереднюються. Технічним результатом є підвищення вірогідності діагнозу.

3 РОБОЧІ ПРОЦЕСИ В БАТАРЕЙНЫХСИСТЕМАХ ЗАПАЛЮВАННЯ

3.1 Основні робочі процеси

Нормальним робочим режимом будь-якої системи батарейного запалювання, що використає індукційну котушку як джерело високої напруги, є перехідний режим, у результаті чого утвориться іскровий розряд у свічі запалювання. Робочий процес може бути розбитий на три етапи [5].

1. Замикання контактів переривника. На цьому етапі відбувається підключення первинної обмотки котушки запалювання (накопичувача) до джерела струму. Етап характеризується наростанням первинного струму й, як наслідок цього, накопиченням електромагнітної енергії, що запасає в магнітному полі котушки.

2. Розмикання контактів переривника. Джерело струму відключається від котушки запалювання. Первинний струм зникає, у результаті чого накопичена електромагнітна енергія перетворюється в електростатичну. Виникає ЭДС високої напруги у вторинній обмотці.

3. Пробій іскрового проміжку свічі. У робочих умовах при певнім значенні напруги відбувається пробій іскрового проміжку свічі з наступним розрядним процесом.

3.1.1 Замикання контактів переривника

На 1-му етапі вторинний ланцюг практично не впливає на процес наростання первинного струму. Струми й напруги у вторинному ланцюзі при відносно малій швидкості наростання первинного струму незначні. Вторинний ланцюг можна вважати розімкнутої. Первинний конденсатор замкнуть накоротко контактами К. Схема заміщення для даного робочого етапу наведена на мал. 3.1 [8].

Процес наростання первинного струму відповідно до другого закону Кирхгофа описується диференціальним рівнянням [8]

, (3.1)

де -- індуктивність первинної обмотки; -- швидкість наростання первинного струму; -- повний опір первинного ланцюга, що представляє собою суму активного опору первинної обмотки, опорів додаткового резистора й проводів.

Рис. 3.1. Схема заміщення класичної системи запалювання після замикання контактів переривника.

Рішенням цього рівняння є вираження

або (3.2.)

де -- постійна часу первинного контуру; .

У початковий момент часу при t=0 струм i=0, при цьому швидкість наростання первинного струму максимальна й не залежить від опору ,. При струм досягає сталого значення , а швидкість його зміни дорівнює нулю . Для сучасних автомобільних котушок запалювання первинний струм досягає свого максимального значення приблизно за 0,02 с.

Під час наростання струму в первинній обмотці наводиться ЭДС самоіндукції

, (3.3)

ЭДС самоіндукції убуває за експонентним законом. При , , при

У вторинній обмотці індукується ЭДС взаємоіндукції

, (3.4)

де М -- взаємоіндукція.

ЭДС взаємоіндукції мала по1 величині й також змінюється за експонентним законом.

У деякий момент часу контакти розмикаються. Струм розриву за інших рівних умов залежить від часу замкнутого стану контактів :

, (3.5)

Час : залежить від частоти обертання колінчатого вала двигуна й, числа циліндрів z, профілю кулачка, тобто співвідношення між кутом замкнутого й розімкнутого станів контактів.

Частота розмикання контактів при чотиритактному двигуні або число іскор у секунду f=zn/(2- 60).

Час повного періоду роботи переривника

, (3.6)

де tp -- час розімкнутого стану контактів.

Якщо позначити відносний час замкнутого й розімкнутого станів контактів відповідно через 3 = t3 / Т и р = tp / Т, то час замкнутого стану контактів

, (3.7)

Аналітичне вираження струму розриву прийме вид

, (3.8)

Таким чином, струм розриву зменшується зі збільшенням частоти обертання вала й числа циліндрів і збільшується зі збільшенням відносного часу замкнутого стану контактів, що визначається геометрією кулачка й від частоти обертання вала не залежить. Струм розриву залежить також від параметрів первинного ланцюга: він прямо пропорційний напрузі батареї U6, зростає зі зменшенням R1, і зменшується зі збільшенням індуктивності L1.

Електромагнітна енергія, що запасає в магнітному полі котушки запалювання до моменту розмикання контактів,

, (3.9)

Показник .

Якщо рівняння (3.9) продіфференцирувати по L1, і дорівняти до нуля, то можна визначити значення а для одержання найбільшої електромагнітної енергії, що запасає, від джерела постійного струму з напругою U6:

(3.10)

Умова (3.10) для звичайної класичної системи запалювання не може бути дотримано, тому що t3 -- показник змінний і залежно від частоти обертання двигуна змінюється в широких межах. Тому на більшості режимів роботи котушки запалювання в діапазоні малих (холостий хід) і середніх частот обертання двигуна внаслідок більших значень t3 струм у первинній обмотці, досягши сталого значення, даремно нагріває котушку й додатковий опір.

Щоб знайти втрати в первинному ланцюзі, необхідно обчислити дійсне значення струму

(3.11)

Визначивши по формулі (3.11) струм , знаходять потужність втрат Р1піт, що розсіюється в первинній обмотці котушки запалювання, на додатковому опорі й у проводах:

(3.12)

3.1.2 Розмикання контактів переривника.

Після закінчення процесу накопичення в момент запалювання контакти переривника розмикають ланцюг і тим самим переривають первинний струм. У цей момент магнітне поле зникає й у первинній і вторинній обмотках котушки індукується напруга. За законом індукції напруга, индуцируемое у вторинній обмотці, тим вище, чим більше коефіцієнт трансформації й первинний струм у момент його переривання [8].

При виводі розрахункових формул для підрахунку первинної й вторинної напруг скористаємося спрощеною схемою заміщення (мал. 3.2). Відповідно до цієї схеми маємо два магнітозв'язаних контури, кожний з яких містить ємність (З1 -- конденсатор первинного ланцюга; З2 -- розподілена ємність вторинного ланцюга), індуктивність (LI, L2 -- індуктивності відповідно первинної й вторинної обмоток котушки запалювання), еквівалентний активний опір (Rl, R2 -- сумарні активні опори відповідно первинного й вторинного ланцюгів). У вторинний контур включений шунтуюче опір і опір втрат Rn, що імітують витоки струму на свічі й магнітні втрати.

У момент розмикання контактів переривника електромагнітна енергія, запасена в котушці, перетвориться в енергію електричного поля конденсаторів CI і З2 і частково перетворюється в теплоту. Значення максимальної вторинної напруги можна одержати з рівняння електричного балансу в контурах первинного й вторинного ланцюгів, зневажаючи втратами в них,

(3.13)

де U1m, U2m, -- максимальні значення відповідно первинної й вторинної напруг.

Заміняючи (де Wl і W2 -- число витків відповідно первинної й вторинної обмоток котушки запалювання), одержимо аналітичне вираження для розрахунку максимальної вторинної напруги

(3.14)

Вираження (3.14) не враховує втрати енергії в опорі нагару, шунтуючого іскровий проміжок свічі, магнітні втрати в сталі, електричні втрати в іскровому проміжку розподільника й у дузі на контактах переривника. Зазначені втрати приводять до зниження вторинної напруги. На практиці для обліку втрат у контурах уводять у вигляді множника коефіцієнт , що виражає зменшення максимуму напруги через втрати енергії:

(3.15)

де -- коефіцієнт трансформації котушки запалювання;

-- коефіцієнт загасання, що становить для контактних систем 0,75...0,85.

Рис. 3.2. Спрощена схема заміщення класичної системи запалювання після розмикання контактів переривника

Рис. 3.3. Перехідні процеси в системі запалювання:

а -- зміна первинного струму; б -- зміна вторинної напруги.

Зміна первинного струму , і вторинної напруги U2 у процесі роботи переривника показане на мал. 3.3. При розмиканні контактів переривника первинний струм, робить кілька періодів загасаючих коливань (мал. 3.3, а) доти, поки енергія, запасена в магнітному полі котушки, не витратиться на нагрівання опору , контуру. Якщо іскровий проміжок вторинного ланцюга зробити настільки більшим, щоб пробою не відбувся (режим холостого ходу або відкритого ланцюга), то вторинна напруга U2, так само як первинний струм, зробить кілька загасаючих коливань (мал. 3.3, б).

3.1.3 Пробій іскрового проміжку свічі

Для запалювання робочої суміші електричним способом необхідне утворення електричного розряду між двома електродами свічі, які перебувають у камері згоряння. Протікання електричного розряду в газовому проміжку може бути представлено вольамперної характеристикою (мал. 3.4) [8].

Ділянка Оаb відповідає несамостійному розряду. Напруга зростає, струм залишається практично незмінним і по силі мізерно мала. При подальшому збільшенні напруги швидкість руху іонів у напрямку до електродів збільшується. При початковій напрузі починається ударна іонізація, тобто такий розряд, що, один раз виникнувши, не вимагає для своєї підтримки впливу стороннього іонізатора. Якщо поле рівномірне, то процес поляризації відразу переростає в пробій газового проміжку. Якщо поле нерівномірне, то спочатку виникає місцевий пробій газу біля електродів у місцях з найбільшою напруженістю електричного поля, що досягла критичного значення. Цей тип розряду називається короною й відповідає стійкій частині вольамперної характеристики bс.

При подальшому підвищенні напруги корона захоплює нові області міжелектродного простору, поки не відбудеться пробій (крапка с), коли між електродами проскакує іскра. Це відбувається при досягненні напругою значення пробивної напруги Unp.

Спалахнувши іскра створює між електродами сильно нагрітий і іонізований канал. Температура в каналі розряду радіусом 0,2...0,6 мм перевищує 10000 ДО. Опір каналу залежить від сили струму, що протікає по ньому. Подальше протікання процесу залежить від параметрів газового проміжку ланцюга джерела енергії. Можливий або тліючий розряд (ділянка de), коли струми малі, або дуговий розряд (ділянка тп), коли струми великі внаслідок великої потужності джерела струму й малого опору ланцюга. Обоє ці розряду є самостійними й відповідають стійким ділянкам вольамперної характеристики. Тліючий розряд характеризується струмами 10-5...10-1 і практично незмінною напругою розряду. Дуговий розряд характеризується значними струмами при відносно низьких напругах на електродах.

Рис. 3.4. Вольтамперна характеристика розряду в повітряному проміжку.

На 2-м етапі розглянемо процес формування вторинної напруги при відсутності електричного розряду у свічі. У дійсності пробивна напруга Uпр нижче максимальної вторинної напруги U2m, що розвиває системою запалювання, і тому, що як тільки зростає напруга досягає значення Uпр, у свічі відбувається іскровий розряд, і коливальний процес обривається (мал. 3.5).

Електричний розряд має дві складові: ємнісну й індуктивну. Ємнісна складова іскрового розряду являє собою розряд енергії, накопиченої у вторинному ланцюзі, обумовленим її ємністю З2. Ємнісний розряд характеризується різким спаданням напруги й різких сплесків струмів, по своїй силі сягаючих десятків ампер (див. мал. 3.5).

Рис. 3.5. Зміна напруги й струму іскрового розряду:

а й б -- відповідно ємнісна й індуктивна фази розряду; tпр -- час індуктивної складової розряду; iпр - амплітудне значення струму індуктивної фази розряду; Uпр -- напруга індуктивної фази розряду.

Незважаючи на незначну енергію ємнісної іскри (З2/2), потужність, що розвиває іскрою, завдяки короткочасності процесу може досягати десятків і навіть сотень кіловатів. Ємнісна іскра має яскравий блакитнуватий колір і супроводжується специфічним тріском.

Високочастотні коливання (106...107 Гц) і великий струм ємнісного розряду викликають сильні радіоперешкоди й ерозію електродів свічі. Для зменшення ерозії електродів свічі (а в неекранованих системах і для зменшення радіоперешкод) у вторинний ланцюг (у кришку розподільника, у бігунок, у наконечники свічі, у проводи) включається помехоподавляющий резистор. Оскільки іскровий розряд відбувається раніше, ніж вторинна напруга досягає свого максимального значення U2m, а саме при напрузі Uпp, на ємнісний розряд витрачається лише невелика частина магнітної енергії, накопиченої в сердечнику котушки запалювання.

Частина, що залишилася, енергії виділяється у вигляді індуктивного розряду. При умовах, властивих роботі розподільників і розрядників, і при звичайних параметрах котушок запалювання індуктивний розряд завжди відбувається на стійкій частині вольтамперної характеристики, що відповідає тліючому розряду. Струм індуктивного розряду 20.. .40 ма. Напруга між електродами свічі сильно знижується й складається в основному з катодного спадання напруги UK і спадання напруги в позитивному стовпі Ed:

(3.16)

де Uпр -- напруга іскрового розряду; Е -- напруженість поля в позитивному стовпі; В/мм; d -- відстань між електродами.

Спадання напруги =220...330 У.

Тривалість індуктивної складової розряду на 2...3 порядку вище ємнісної й досягає залежно від типу котушки запалювання, зазору між електродами свічі й режиму роботи двигуна (пробивної напруги) 1...1.5 мс. Іскра має бліді фіолетово-жовті кольори. Ця частина розряду одержала назву хвоста іскри.

За час індуктивного розряду в іскровому проміжку свічі виділяється енергія, що може бути визначена аналітично:

(3.17)

На практиці широко використається наближена формула для підрахунку енергії іскрового розряду

Розрахунки й експерименти показують, що при низьких частотах обертання двигуна енергія індуктивного розряду Wиp=15...20 мДж для звичайних класичних автомобільних систем запалювання.

3.2. Електронні системи запалювання

3.2.1. Основні напрямки створення перспективних систем

запалювання.

Розвиток сучасного двигунобудування відбувається в напрямку підвищення економічності й зниження питомої ваги при одночасному збільшенні частоти обертання колінчатого вала двигуна й ступеня стиску. Ступінь стиску становить 7,0...8,5, але на перспективних автомобілях установлюються двигуни зі ступенем стиску 9,0...10 і більше. Таке підвищення ступеня стиску вимагає значного збільшення вторинної напруги, необхідного для пробою іскрового проміжку свічі [5].

Частота обертання колінчатого вала автомобільних двигунів також неухильно зростає й у цей час досягає 5000...8000 хв-1, діапазон робочих температур двигуна лежить у межах --40...+100 °С. Прагнення підвищити паливну економічність двигуна змушує використати збіднену суміш, для надійного запалення якої потрібна більша довжина іскрового проміжку свічі, тобто потрібна більша енергія розряду. Іскровий проміжок свічі лежить у межах 0,8...1,2 мм [3]. Таким чином, до сучасної системи запалювання пред'являються більше високі вимоги: збільшення вторинної напруги при одночасному підвищенні надійності; енергія іскрового розряду повинна бути достатньої для запалення суміші на всіх режимах роботи двигуна (15....50 мдж і більше); стійке іскроутворювання в різних експлуатаційних умовах (забруднення свіч, коливання температури, коливання напруги бортової мережі й т.д.); усталена робота при значних механічних навантаженнях; простота обслуговування системи; мінімальне споживання енергії джерел живлення; мінімальні маса, габарити й низька вартість. Крім того, необхідно враховувати, які показники двигуна є найбільш важливими: потужність, паливна економічність, мала токсичність газів, що відробили.

Такі вимоги не можуть бути задоволені при використанні класичної (батарейної) системи запалювання, тому що в цьому випадку практично єдиним реальним способом збільшення вторинної напруги є збільшення сили струму розриву. Однак збільшення сили струму розриву понад певне значення (3,5...4,0 А при 12 У) приводить до ненадійної роботи контактів переривника й різкому скороченню їхнього терміну служби.

Перераховані вимоги до системи запалювання викликали необхідність створення нових пристроїв, що дозволяють поліпшити умови запалення робочої суміші в циліндрах.

Одним зі шляхів підвищення запалювання вторинної напруги, що розвиває системою, є застосування напівпровідникових приладів, що працюють як керовані ключі, що служать для переривання струму в первинній обмотці котушки запалювання. Найбільш широке використання в якості напівпровідникових реле знайшли потужні транзистори, здатні комутирувати струми амплітудою до 10 А в індуктивному навантаженню без якого-небудь іскріння й механічного ушкодження, характерних для контактів переривника. Функцію електронного реле можуть виконувати також і силові тиристори, але широкої промислової реалізації в системах запалювання з накопиченням енергії в індуктивності вони не мали.

Таким чином, застосування транзисторів у системі запалювання дозволило принципово усунути основний недолік класичної системи запалювання. Сила струму розриву вже не обмежується стійкістю контактів переривника, а залежить лише від параметрів транзистора.

По конструктивному виконанню контактно-транзисторні системи різні й можуть містити від одного до декількох напівпровідникових підсилювальних елементів. Таким чином, у системах з контактним керуванням режим роботи контактів переривника значно полегшений і тому їхній термін служби більше. Однак цим системам як і раніше властиві недоліки класичної системи запалювання (механічне зношування контактів переривника й обмежений швидкісний режим через вібрацію контактів переривника й т.п.).

Системами, що не мають перерахованих недоліків, є системи з безконтактним керуванням моментом іскроутворювання (безконтактні системи запалювання - БСЗ) - системи запалювання I покоління. У БСЗ контакти переривника замінені безконтактним датчиком, що виробляє електричні імпульси в строго задані моменти часу. Ці імпульси надходять у схему керування струмом (імпульсний підсилювач) первинної обмотки котушки запалювання. Безконтактні датчики не мають механічного контакту й тому практично не піддані зношування.

Відзначений недолік не дозволяє в рамках БСЗ із постійним кутом включеного стану вихідного транзистора вести подальшу інтенсифікацію вихідних характеристик. Тому наступним етапом у розвитку БСЗ з'явилося створення систем запалювання з нормованим часом накопичення енергії. У таких системах у всьому діапазоні частот обертання вала двигуна й значень живлячої напруги визначається мінімальний час, за яке струм розриву досягає сили, необхідної для індукування необхідного значення вторинної напруги.

Нормування часу накопичення енергії дозволяє знизити потужність втрат у котушці й комутаторі при низьких і середніх частотах обертання вала двигуна при одночасному збільшенні струму розриву й відповідно енергії іскрового розряду, забезпечити оптимальний закон зміни вторинної напруги й енергії іскри залежно від частоти обертання вала двигуна, стабілізувати вихідна напруга системи при коливаннях напруги живлення.

Безконтактні системи з нормуванням часу накопичення енергії реалізуються шляхом введення в комутатор спеціального електронного регулятора часу накопичення.

Основними недоліками БСЗ є механічний спосіб розподілу енергії по циліндрах двигуна, недосконалість механічних автоматів кута випередження запалювання, погрішності моменту іскроутворювання через механічну передачу від колінчатого вала двигуна до розподільника.

Найбільше повно відповідають всім вимогам, пропонованим до сучасних систем запалювання, системи з електронним регулюванням кута випередження запалювання. Серед способів реалізації цих систем можна виділити два основних: аналоговий і цифровий. Аналоговий спосіб ставиться до електронних систем запалювання більше раннього покоління, коли елементна база, використовувана для їхньої побудови, мала малий ступінь інтеграції (системи запалювання II покоління). Цифрові системи запалювання (системи запалювання III покоління) є більше зробленими. В основу їхньої роботи покладені принципи, широко застосовувані в обчислювальній техніці. Цифрові регулятори являють собою невеликі, різні по складності обчислювачі, порядок роботи яких задається спеціальним алгоритмом. Під час роботи двигуна датчики передають інформацію про частоту обертання й навантаженню двигуна, про положення колінчатого вала, про температуру двигуна й температурі навколишнього середовища. На підставі цієї інформації, обробленої в інтерфейсі, обчислювальний пристрій визначає оптимальний для даного режиму кут випередження запалювання. У рамках цифрової системи запалювання можливе застосування як традиційного механічного розподільника, у функції якого залишається лише високовольтний розподіл енергії по циліндрах 1Ц... 4Ц двигуна, так і електронного розподілу. У цьому випадку для чотирициліндрового двигуна, наприклад, застосовується двохканальний комутатор, два вихідних транзистори якого поперемінно комутирують струм у первинних обмотках двохвыводних або однієї чотирьохвиводний котушці запалювання. При цьому блок керування формує два сигнали, керуючих роботою комутатора.

3.2.2 Мікропроцесорні системи запалення

І все-таки цифрові системи запалювання з'явилися перехідним етапом. Останнім досягненням у цій області стали мікропроцесорні системи (системи IV покоління). Вони практично не відрізняються від керуючих ЕОМ, широко застосовуваних у цей час у багатьох галузях науки й техніки. Мікропроцесорні системи керування автомобільним двигуном умовно можна віднести до систем запалювання, тому що функція безпосереднього запалювання є в них частиною рішення питання про оптимізацію характеристик двигуна, однак саме в комплексних системах керування двигуном і укладений прогрес системи запалювання [15].


Подобные документы

  • Будова та принципи роботи основних електроприладів на автомобілі ЗАЗ-1102: акумуляторна батарея; генератор; стартер; система запалення. Технічне обслуговування основних приладів електрообладнання. Охорона праці при проведенні технічного обслуговування.

    курсовая работа [3,6 M], добавлен 12.06.2011

  • Перелік обладнання та інструментів, необхідних для перевірки систем охолодження та мащення двигуна. Діагностування систем охолодження та мащення, ознаки та причини несправностей, способи їх виявлення та усунення. Дільниця діагностування систем двигуна.

    курсовая работа [3,7 M], добавлен 21.05.2010

  • Будова, призначення та принцип дії системи змащення двигуна ГАЗ-3110. Основні несправності системи і рекомендації по їх ремонту та усуненню. Розрахунок і правила по техніці безпеки під час ремонту та ТО. Основні технічні характеристики автомобіля.

    курсовая работа [4,3 M], добавлен 28.04.2011

  • Основні вимоги, які необхідно виконувати при експлуатації судового двигуна. Методи реалізації ремонту та порядок його проведення. Системи та методики діагностування вузлів двигуна. Розробка пристрою для обміру втулки, технологічний процес її виготовлення.

    дипломная работа [817,3 K], добавлен 27.02.2014

  • Використання рідинної та повітряної систем охолодження в двигунах автомобілів. Рідинні системи охолодження, закритий та відкритий види. Принципові схеми систем охолодження двигунів. Види охолодних рідин. Будова системи охолодження двигуна ВАЗ-2109.

    реферат [3,2 M], добавлен 22.09.2010

  • Описання будови, призначення та принципу дії системи змащення ВАЗ 21-08. Вказані основні несправності системи та рекомендації по ремонту та усуненню цих несправностей. Робота включає в себе розрахунок і правила по техніці безпеки під час ремонту.

    курсовая работа [1,4 M], добавлен 26.04.2011

  • Вивчення особливостей будови, ремонту та обслуговування автомобілю на прикладі Audi-100 1982-1990 р.в. Призначення системи освіти і сигналізації. Будова приладів освітлення. Принцип роботи та технічне обслуговування. Діагностика несправностей та ремонт.

    курсовая работа [1,7 M], добавлен 18.01.2011

  • Технічна характеристика двигуна. Розрахунок виробничої річної програми трудомісткості для автомобіля ЗАЗ-1105. Технологія поточного ремонту двигуна МеМЗ-3011. Дефекти рульового механізму і способи їх усунення. Методи боротьби з шумом та вібрацією.

    дипломная работа [581,2 K], добавлен 06.06.2012

  • Способи забезпечення надійності і працездатності машин, введених в експлуатацію. Основні положення системи технічного обслуговування та ремонту машин, дорожніх транспортних засобів, принципи її організації. Технічний огляд і діагностування машин.

    реферат [1,3 M], добавлен 05.09.2010

  • Побудова навантажувальної, гвинтової, зовнішньої характеристики та розрахунок залежності дизеля з газотурбінним надуванням. Аналіз системи змащування двигуна. Прийом та зберігання масла на судні. Засоби очистки мастила, класифікація систем змащення.

    курсовая работа [1,5 M], добавлен 21.01.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.