Автомобильные эксплуатационные материалы

Показатели качества, классификация и ассортимент эксплуатационных материалов: бензинов, моторных и трансмиссионных масел, пластичных смазок. Процессы, происходящие при воспламенении и сгорании в цилиндре двигателя. Технологии окраски автомобилей.

Рубрика Транспорт
Вид курсовая работа
Язык русский
Дата добавления 16.05.2011
Размер файла 7,0 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

- высокая прилипаемость (адгезия) к металлам, древесине и другим конструкционным материалам;

- способность удерживать на себе последующие слои покрытия за счет взаимопроникновения материалов;

- хорошие противокоррозионные свойства;

- по возможности быстрое высыхание.

Грунтование, заполнение и уплотнение окрашиваемой поверхности производится выпускаемым рядом грунтовок. Выбор определенного вида грунтовки зависит от обработки определенного вида поверхности. Выпускаются следующие грунтовки:

- грунтовка для чистого металла;

- грунтовка-порозаполнитель;

- грунтовка для защиты от ударов камней;

- грунтовка и порозаполнитель для пластмасс;

- средства, повышающие адгезию и др.

Шпатлевание-порозаполнение служит для выравнивания окрашиваемой поверхности заполнением имеющихся на ней углублений. Различают местный и общий шпатлевочные слои. Первый имеет целью выравнивание крупных дефектов, второй - получение гладкого покрытия по всей окрашиваемой площади. От шпатлевочных материалов требуется:

- хорошая прилипаемость к грунтам;

- достаточная механическая прочность, особенно ударо- и виброустойчивость;

- сравнительно хорошая высыхаемость;

- способность шлифоваться.

Обработанная шпатлевка, а при ее отсутствии загрунтованная поверхность, покрывается несколькими слоями краски, число и отделка которых зависят от требований, предъявляемых к внешнему виду покрытия, от условий его эксплуатации и т.д. При любом способе окраски каждый слой проходит этап сушки, а наружные слои можно дополнительно шлифовать, полировать.

От красок требуется:

- достаточная адгезия к грунтам и шпатлевкам;

- способность образовывать сплошную защитную пленку;

- высокая атмосферостойкость;

- устойчивость к воздействию технических жидкостей и других веществ, с которыми покрытие контактирует при эксплуатации машин;

- способность хорошо закрывать цвет нижележащих слоев покрытия;

- достаточная стойкость к механическим воздействиям: ударам, вибрации, изгибу и т.п.;

- способность полироваться.

Необходимо отметить, что технологические процессы нанесения лакокрасочных покрытий на заводе-изготовителе автомобилей и при ремонте автомобилей существенно отличаются друг от друга. В качестве примера на рис. и табл. представлены технологические схемы покрытия лакокрасочными материалами кузова в заводских условиях (примеры технологий и рисунки представлены из руководства по ремонту и окрашиванию автомобилей - Германия, ГМбх, 1994 г.). Технология окрашивания автомобилей при ремонте представлена в табл., рис.

При общей высококачественной ремонтной системе рекомендуются следующие материалы:

- cостав для удаления силикона;

- двухкомпонентная грунтовка на основе уретана;

- двухкомпонентная полиэфирная грунтовка;

- двухкомпонентный грунт-порозаполнитель на основе уретана;

- двухкомпонентный грунт-порозаполнитель для нанесения толстым слоем;

- двухкомпонентная покрывная эмаль на основе акрилуретана;

- эмаль-основа в двухслойной системе;

- двухкомпонентный прозрачный лак на основе акрилуретана.

Рис. Пример технологии окраски кузова автомобиля в заводских условиях: 1 - обезжиривание; 2 - промывка; 3 - фосфатирование; 4 -промывка; 5 - электрофоретическая грунтовка; 6 - промывка; 7 - горячая сушка электрофоретической грунтовки; 8 - заполнение швов; 9 - нанесение защитного покрытия на днище автомобиля; 10 - нанесения порозаполнителя; 11 - горячая сушка порозаполнителя

Рис. Лакокрасочные материалы, применяемые для ремонтного окрашивания: 1 - шлифовка; 2 - очистка; 3 - нанесение водоразбавляемой эмали-основы; 4 - промежуточная сушка эмали основы инфракрасная или теплым воздухом; 5 - контроль качества; 6 - нанесение прозрачного лака; 7 - горячая сушка прозрачного лака; 8 - контроль качества; 9 - к сборочному конвейеру

При применении лакокрасочной системы «мокрое по мокрому» рекомендуется использовать следующие материалы:

- состав для удаления силикона;

- двухкомпонентная полиэфирная шпатлевка;

- двухкомпонентный грунт-порозаполнитель;

- двухкомпонентная покрывная эмаль на основе акрилуретана;

- эмаль-основа в двухслойной системе;

- двухкомпонентный прозрачный лак на основе акрилуретана.

1.7 Опишите средства защиты от коррозии и моющие средства применяемые для мойки автомобилей; средства для ухода за лакокрасочными покрытиями. Дайте эксплуатационные требования к ним и характеристики, области и технологии их применения. Ассортимент

К факторам разрушения лакокрасочных покрытий относятся: воздействие тепла, света, кислорода воздуха, влаги и других химических агентов. В атмосферных условиях покрытие испытывает комплексное воздействие многих факторов. Покрытия также портятся от вибрации, ударов и других механических повреждений.

Существует несколько видов защиты кузова автомобиля:

- пассивная, состоящая в изоляции поверхности от атмосферного воздействия;

- активная, при которой защитное средство образует на поверхности металла устойчивый слой против коррозии;

- преобразующая, состоящая в переводе уже окислившегося металла в пленку, устойчивую против воздействия кислорода, влаги и растворимых солей.

К пассивным средствам защиты относятся мастики для защиты днища кузова. От краски мастика отличается тем, что она готовится на битумной, каучуковой, смоляной основе, в ее состав могут входить графит, волокнистые вещества, масла. Мастику наносят на очищенную сухую поверхность густым слоем. Это обеспечивает устойчивость покрытия к механическим воздействиям летящих из-под колес песка и гравия; снижение шума вследствие амортизирующего воздействия. Мастика защищает только открытые поверхности днища, в щели она не попадает.

Пассивная защита бесполезна, если предварительно поверхность не была очищена от грязи и воды, в этом случае возникает электрохимическая коррозия. Из активных препаратов защиты от коррозии следует назвать «Мовиль», который разработан на основе американского препарата «Tectile 309AW» фирмы «Valvoline». «Мовиль» не только физически изолирует поверхность металла от воздуха и влаги, но благодаря содержащемуся в нем ингибитору коррозии ведет активную борьбу с начавшимся ржавлением. Более того, он обладает большим поверхностным натяжением, благодаря чему попадает в узкие щели и даже способен вытеснять воду с поверхности.

Образцы препаратов для защиты кузова от коррозии (днища и внутренние полости) представлены в таблице. Составы, преобразующие ржавчину в грунт, готовят на основе ортофосфорной кислоты. Эти препараты представляют собой эффективное средство борьбы с уже начавшейся коррозией. Поверхность, покрытую ржавчиной, обработанную таким препаратом, можно окрашивать без дополнительной обработки.

Одно из прогрессивных направлений развития автомобильной химии является так называемая автокосметика. К препаратам автокосметики относят: полироли, автошампуни, средства для удаления различных пятен, для очистки стекол и покрытий и др. С каждым годом растет количество и качество разнообразных препаратов автокосметики. Покрытие, потерявшее свой первоначальный вид, для восстановления блеска рекомендуется периодически полировать. Этот процесс способствует очищению поверхности, удалению мельчайших невидимых глазом трещин, придает покрытию ровный и блестящий вид. Все это предохраняет его от дальнейшего разрушения.

Для полирования лакокрасочных покрытий применяют: полировочную воду (суспензия мягких абразивов со связующими материалами); восковые полировочные пасты (например, смесь воска, парафина, керосина или скипидара, уайт-спирита); жидкие полировочные составы (например, смесь белой сажи - окиси алюминия и восокосодержащей эмульсии); полировочные пасты (смесь тонких абразивов, масел, хозяйственного мыла и растворителя).

Для удаления глубоких трещин покрытие вначале обрабатывают шлифовочной пастой, состоящей из твердого абразива (например, алундового порошка), парафина и масла (например, вазелинового), а затем уже полируют. Дефекты покрытий из мела-миноалкидных эмалей устраняют шлифовочной пастой, представляющей собой суспензию глинозема в смеси масел, растворителей и воды. Шлифовочная паста позволяет снять слой покрытий, имеющих трещины, толщиной 15…20 мкм.

Автополироли образуют на поверхности лакокрасочного покрытия прочную, блестящую, защитную пленку. Они различаются в основном стойкостью и способом нанесения на поверхность. Автополироли в аэрозольной упаковке легче наносить и растирать, чем обычные, расходуются они более экономно, но ими надо обрабатывать автомобили в 4…5 раз чаще. Они сохраняются на поверхности кузова 2…3 недели или до первой его мойки с шампунем. Консервирующий полироль сохраняет защитную пленку в течение 2…12 месяцев.

К автокосметическим средствам относятся также автошампуни. Автошампуни состоят из концентрированного раствора или гранул из смеси растворяющих и моющих веществ, подверженных биоразложению (экологически более чистые). В настоящее время выпускаются препараты, в которых соединены свойства шампуня и полироля. Так как в автомобиле находится большое количество декоративно-отделочных материалов, то для ухода за ними выпускаются разнообразные чистящие средства.

Выпускаются средства для очистки и мойки лобового стекла и оптики автомобиля. Препараты для стекол автомобиля делятся на жидкости, используемые в бачке смывателя (низкозамерзающие) и используемые в качестве защитных (водоотталкивающих) покрытий. Для предотвращения запотевания и обледенения стекол автомобиля выпускают препараты в аэрозольной упаковке и в виде салфеток.

В табл. представлены некоторые препараты автокосметики, выпускаемой отечественными и зарубежными фирмами. Уход и бережное отношение к автомобилю могут значительно продлить его жизнь.

1.8 Опишите термопластичные и термореактивные пластмассы, клеи и герметики, технологии их использования, основные свойства и особенности применения, а также зарубежные клеи и герметики. Укажите ассортимент пластмасс, клеев и герметиков, выпускаемых в России

1.8.1 Термопластические пластмассы

Термопластические полимерные соединения при нагревании приобретают пластичность, при охлаждении возвращаются в твердое состояние, повторно и неоднократно плавятся без изменения свойств материала. К ним относятся все пластмассы класса«А» и частично класса «Б» (полистирол, полиэтилен, винилпласт и др.).

Термопластические пластмассы (термопласты) получают полимеризацией низкомолекулярных органических веществ. Термопласты выпускаются с наполнителем и без наполнителя.

Для улучшения антифрикционных свойств, повышения теплопроводности, износоустойчивости в полиамиды и фторопласты вводят наполнители: графит, молотый кокс, свинец, бронзу, дисульфид молибдена, стекловолокно и др.

Ненаполненные товарные термопласты бывают пластифицированные и непластифицированные. Различные синтетические органические и неорганические вещества применяются как стабилизаторы и противостарители. Причем каждый полимер стабилизируется определенными веществами. Большинство термопластов обладает высокой ударной вязкостью, водостойкостью и хорошими диэлектрическими свойствами и в то же время низкой теплостойкостью и значительной хладотекучестью. Поэтому многие из термопластичных пластмасс могут быть использованы при температуре не выше 60…80°С. Для некоторых из этих пластмасс она может доходить до 150…160 и даже 250°С (например, для фторопласта). Термопластичные пластмассы (особенно фторопласты) подвержены значительному изменению линейных размеров и объема с изменением температуры.

Среди пластмасс на основе термопластичных смол наиболее широкое применение в автомобилестроении получили: полиамиды, акрилопласты (полиметилметакрилат), поливинилхлорид (винилпласты), фторопласты, полиэтилен, полистирол, этролы (термопластические эфиры целлюлозы).

Из полиамидов, и в том числе капрона (поликапролактам), может изготовляться большое количество разнообразных автомобильных деталей: втулки (педалей, дверных петель, рессор и др.), подшипники (дверей автобусов, педалей сцепления и др.), вкладыши, корпуса сальников, шестерни (привода спидометра и др.), манжеты, стеклодержатели, патроны ламп, выключатели, корпуса и крышки карбюратора и др.

Из полиэтилена ВД изготовляют крышки, кнопки, осветительные плафоны, трубки, прокладки и другие детали, а также пленку, на основе которой получают драпировочные и обивочные ткани для сидений и спинок.

Поливинилхлорид (винилпласт) применяют для изготовления банок аккумуляторных батарей, прокладок, уплотнителей, внутренней обшивки кузова. Пластифицированный поливинилхлорид используется для получения обивочных материалов путем нанесения пленки на хлопчатобумажную ткань, изготовления трубок масло- и топливопроводов и других деталей.

Фторопласты используют для деталей, работающих в химических средах и при повышенной температуре.

Из акрилопластов изготовляют пылезащитные линзы, внутренние плафоны, стекла габаритных фонарей, оконные стекла и другие детали.

Из этола методом литья под давлением изготовляют: щиток панели для приборов, облицовку рулевого колеса и другие профильные детали.

1.8.2 Термореактивные пластмассы

Термореактивные пластмассы (реактопласты) при повторном нагревании вследствие протекания необратимых химических реакций превращаются в твердые труднорастворимые и неразмягчающиеся (неплавкие) вещества. Поэтому формирование деталей из термореактивных пластмасс должно опережать процесс образования самой пластмассы, так как в противном случае оно будет затруднено или невозможно. Термореактивные пластмассы получают поликонденсацией низкотемпературных веществ при повышенной температуре, сопровождающейся отщеплением побочных продуктов (воды, спирта и др.).

Термореактивная смола переходит в термостабильное состояние при температуре 160…200 °С. Из числа термореактивных смол наиболее u1095 часто применяют в качестве связующих фенольно-формальдегидные, полиэфирные, эпоксидные, кремний-органические (полисилоксановые), меламино-формальдегидные и др.

В отверждением состоянии большинство термореактивных смол, по сравнению с термопластичными меньше изменяют физические и механические свойства при нагреве, обладают малой хладотекучестью, т.е. ползучестью под влиянием постоянно действующей нагрузки.

К термореактивным пластмассам относят фенопласты, аминопласты, пресс-композиции на основе кремнийорганических и полиэфирных смол.

Фенопласты - давно известный и широко распространенный вид пластических масс. В чистом виде фенолоальдегидные пластики (литой резит) используют очень редко из-за повышенной хрупкости; их усиливают наполнителями, а также модифицируют совмещением с синтетическим каучуком и некоторыми термопластами. Классифицируют фенопласты по наполнителю. При изготовлении автомобильных деталей из фенопластов наиболее часто применяют так называемые слоистые пластики: асботекстолит, текстолит, карболит.

Накладки дисков сцепления и тормозов могут быть изготовлены из асботекстолита с добавкой каолина.

Из специального текстолита изготовляют шестерни распределительного вала двигателей, опорные шайбы крыльчатки водяных насосов двигателей, опорные шайбы распределительных валов и другие детали.

Из карболита изготовляют крышку и ротор прерывателяраспределителя, изоляторы катушки зажигания и другие детали. В автомобилестроении из стеклопластиков изготовляют кузова и другие крупногабаритные и высоконагруженные детали.

На основе термопластичных и термореактивных смол изготовляют пенопласты и поропласты, обладающие высокой эластичностью. Пенопласты, например, пенополиуретан ПУ-101, используются для изготовления автомобильных подушек и спинок. Пластические массы используют при ремонте автомобилей.

Для выравнивания поверхности кузовов применяют пластмассы в виде паст и порошков.

Эпоксидные пасты применяют для выравнивания поверхности кузовов. Они обладают высокой адгезией к металлам, значительной механической прочностью, эластичностью, малой усадкой, химической стойкостью к нефтепродуктам, воде, растворам солей, щелочам, кислотам, некоторым растворителям.

Эпоксидные смолы используют также как конструкционный, электроизоляционный материал и как связующее при изготовлении стеклопластиков и пресс-композиций. Они применяются в качестве клеев холодного и горячего отверждения, а также используются для противокоррозионных и водостойких покрытий, обладающих хорошей атмосферо- и светостойкостью, взамен сварки при ремонте кузовов, трещин на рубашке охлаждения и в клапанной коробке блока цилиндров, пробоин (до 25 мм) стенок рубашки охлаждения блока цилиндров, трещин головки цилиндров, обломов в головке цилиндров в месте крепления датчика и указателя температуры воды, пробоин до 70 мм в поддоне картера двигателя и др. Отремонтированные детали надежно работают при температуре, не превышающей 100...120 °С.

Пластмассовые порошки (ПФН-12 и ТПФ-37) применяются для выравнивания поверхности кузовов и кабин путем газопламенного напыления при температуре 210…220 °С. Покрытия из порошков ПФН-12 и ТПФ-37 стойки к действию органических кислот, масел, имеют высокий предел прочности на разрыв.

Полиамидные (капроновые) порошки используют для получения антифрикционных слоев подшипников скольжения. Капрон, особенно в сочетании с закаленной сталью, обладает исключительной износостойкостью и практически исключает износ сопряженной детали, он имеет незначительный коэффициент трения и поэтому частично допускает работу без смазки. Капроновое покрытие защищает металл от коррозии и действия щелочей, слабых кислот, бензина, ацетона. Обладает низкой температурной стойкостью (температура в узле трения с капроном должна быть от -30° до +80°С). Более жестко ограничиваются и удельное давление, и скорость скольжения.

Полиамидную массу - капрон - используют при ремонте автомобилей для изготовления методом литья под давлением декоративных и конструкционных деталей. Номенклатура изготовляемых деталей широка, назовем втулки рессор, крестовин карданного шарнира и шкворня поворотной цапфы; шестерню привода спидометра; масленки подшипника выключения сцепления; сливные краники; кнопки сигнала; рукоятки рычага переключения передач и др.

1.8.3 Клеи и герметики

Клеями называют жидкие или пастообразные многокомпонентные системы, основой (связующим) которых являются высокомолекулярные вещества, обладающие высокой адгезией к твердым поверхностям.

Клеевые и клеесварные соединения деталей, как известно, давно уже стали важной составной частью технологии изготовления автомобильной техники и ее ремонта. В частности, используют для приклеивания ветровых стекол, некоторых панелей и т.п.

Клеевые соединения не только весьма технологичны, но и обеспечивают высокие потребительские качества автомобильной техники.

Клеевые соединения не лишены и недостатков. Многие из них имеют низкую теплостойкость, а некоторые u1089 со временем ухудшают свойства вследствие старения клеевой прослойки.

Процесс склеивания сводится в общем виде к следующим операциям: подготовке склеиваемых поверхностей, нанесению на них клея, спрессовыванию и отверждению клеевого слоя.

Основным показателем качества клея является механическая прочность клеевого шва. Клеевой шов испытывают на разрыв и скалывание и определяют удельную нагрузку, при которой шов разрушается. Прочность клеевого соединения зависит от сил адгезии и когезии. Кроме того, клей в жидком состоянии должен хорошо растекаться и смачивать склеиваемые поверхности, а при отверждении давать минимальную усадку. Прочность отвержденного клея должна быть по возможности не менее прочности материала склеиваемых поверхностей и не уменьшаться с течением времени и при изменении температуры. Клеевой слой не должен оказывать коррозионного воздействия на склеиваемые поверхности, взаимодействовать с продуктами, с которыми склеиваемое изделие соприкасается при эксплуатации, и разрушаться под их действием.

По назначению клеи подразделяют на универсальные и специальные. Универсальные клеи предназначены для склеивания разнородных твердых и эластических материалов в различных сочетаниях: металл-металл, металл-дерево, металл-резина, пластмасса-стекло и т.п. Специальные клеи служат для склеивания определенных материалов.

Классификационным признаком клеев является вид связующего, в соответствии с чем различают клеи карбинольные, фенольные, эпоксидные, полиамидные. Кроме того, каждый тип клея, в свою очередь, подразделяется на ряд марок. В связи с этим современный ассортимент синтетических клеев чрезвычайно обширен.

Основным видом универсальных клеев являются синтетические клеи, используемые во всех отраслях техники. При помощи синтетических клеев можно создать высокопрочные, эластичные, водо-, масло- и топливостойкие соединения, выдерживающие вибрацию и динамические нагрузки. Синтетический клей в наиболее общем виде представляет собой композицию, в которую входят: связующее (или их сочетание), растворитель, наполнитель, отвердитель и ускоритель отверждения.

В качестве связующего используются термопластичные и термореактивные полимеры (смолы). Из термопластичных наибольшее распространение получили производные акриловой и метакриловой кислот, поливинилацетата, полиизобутилена, каучука и резины, а из термореактивных - фенолоформальдегидные, эпоксидные и кремнийорганические соединения. Клеи на базе термопластичных полимеров образуют обратимую пленку, размягчающуюся при нагревании. Для придания определенной вязкости в клей вводят ацетон, спирт, смеси бензина с этилацетатом, бутилацетат с ацетоном или бензином, а также другие растворители в зависимости от марки клея.

Для уменьшения усадки клея при отверждении и предотвращения появления трещин и разрушения клеевой пленки в клей добавляют порошкообразные наполнители (металлы, стекло, фарфор, цемент, камень и др.).

Отвердитель и ускоритель отверждения добавляют к клеям, содержащим термореактивные полимеры, для протекания процессов, связанных с образованием клеевой пленки.

Широкое применение получили клеи на основе эпоксидных смол. Эти клеи отверждаются как при обычных, так и при повышенных температурах, обладают хорошими физико-механическими характеристиками и высокой адгезией к металлам и многим неметаллическим материалам. Для них характерна орошая водо-, масло-, бензостойкость. При ремонте используют леи ЭПО (ТУ 38-10972-82), ЭДП (ТУ 6-15-1070-82), эпоксидную патлевку (ТУ 6-15-662-85) и др.

При производстве автомобилей применяют эпоксидный лей горячего отверждения УП-5-207 (ТУ 6-05-241-221-83). Клей бладает очень хорошим свойством склеивать замасленные поверхности. Он применяется для соединения внутренней и наружной панелей двери и проклейки зафланцовок капота и багажника.

Неотвержденный клей не вымывается моющими растворами при одготовке кузова под окраску. Отверждение клея происходит в красочных камерах. Кроме того, широко применяют клеи бутвароформальдегидный (БФ) и карбонильный.

Широкое применение нашли клеи БФ-2, БФ-4 и БФ-6 (бутварофенолоальдегидные) - спиртовые растворы термореактивно оформальдегидной смолы, модифицированной (для повышения эластичности швов) бутваром. Первые два служат для соединения твердых материалов, а третий (БФ-6) - для склеивания каней между собой и для прикрепления их к металлам, пластмассам и т.д. Все клеи серии БФ поставляются потребителям в отовом виде. Клеевое соединение из них сушат при температуре 0…100°С в течение 1…3 ч.

При ремонте автомобилей клей нашел применение для соединения фрикционных накладок с тормозными колодками и непригоден для склеивания эластичных и гибких материалов, таких ак резины, ткани и т.д.

Клей применяется также при ремонте пластмассовых деталей. Детали из термореактивных пластмасс склеиваются смоляными клеями (ВИАМ-Б-3, БФ-2, БФ-4, К-17 и др.) на основе фенолоформальдегидных, эпоксидных и других смол. Для склеивания органического стекла применяется дихлорэтан или клей, редставляющий собой раствор опилок органического стекла в уравьиной кислоте или в дихлорэтане.

Необходимо отметить, что несмотря на хорошо известные дстоинства клеевых соединений, широкого применения в автомобилестроении они не получили, особенно при изготовлении узовов автомобилей. Основная причина - длительность процесса тверждения клеевых швов, который не укладывается в ритм онвейерной сборки. Автомобили с конвейера сходят через минуты, а большинство самых совершенных клеев твердеют в течение нескольких часов, а некоторые - в течение суток. Однако положение уже начало меняться: появились клеи нового околения, способные полимеризоваться за 3…30 с. В настоящее время клеи ультрафиолетового отверждения применяют чаще всего для крепления автомобильного остекления (силикатное стекло прозрачно в диапазоне 365…420 нм) и прозрачных в диапазоне 420 нм пластмассовых изделий. Используемые при этом клеи - акриловые.

Кроме акриловых клеев и герметиков со вспомогательными системами полимеризации все шире применяются такие же анаэробные материалы (твердеющие при отсутствии контакта с кислородом воздуха). Их применяют для фиксации, стопорения и герметизации резьбовых и нерезьбовых соединений.

Для автомобилестроения, как уже отмечалось, очень важной является освоение клеевой технологии. Не случайно ею, в частности, клеями (и вообще адгезивами) с ультрафиолетовым отверждением, занимаются очень многие фирмы.

Наиболее известная из них - австрийская «Локтайт». Она выпускает более сотни марок клеев и герметиков различной химической природы, назначения (сборка двигателя, трансмиссии, подвески, рулевого управления, тормозов и кузовов легковых автомобилей) и систем полимеризации. В качестве примера некоторые клеи фирмы «Локтайт» представлены в табл.

Клеи «Локтайт» обладают рядом уникальных свойств. Вчастности, они обеспечивают клеевому шву 99 %-ю оптическую прозрачность и регулируемое (1,4…1,55) значение показателя преломления, что позволяет использовать их для склеивания прозрачных материалов и получать невидимый клеевой шов. Некоторые (например, анаэробный «Локтайт 661») могут работать в интервале рабочих температур от -55 до +230°С, с пределом прочности при сдвиге 35 МПа (350 кгс/см2), при отрыве 37…42 МПа (370…420 кгс/см2), временем схватывания 3 с. Поэтому данный клей применяют при установке подшипников в корпуса и на валы, для фиксации роторов, шестерен, звездочек и шкивов на валах, для крепления втулок, гильз, стаканов в корпуса, герметизации заглушек на блоках двигателей и корпусах редукторов. Применение такого клея позволяет упростить конструкцию (за счет ликвидации шпоночных канавок и штифтов) и, благодаря мгновенному его частичному отверждению, во много раз ускорить процесс сборки узлов и агрегатов. Кроме того, при монтаже подшипников слой адгезива, например, компенсирует неточности центрирования деталей узла. Валы же и подшипники, смонтированные без нарушения центрирования, но с натягом, служат дольше, их можно многократно использовать после демонтажа и очистки.

Для полимеризации клеев фирмы «Локтайт» (для их полимеризации) можно использовать лампы ультрафиолетового излучения типа ДРТ-400 и специально разработанную установку, которая обеспечивает не только регулирование интенсивности излучения ламп, но и защиту оператора от ультрафиолета.

Необходимо отметить, что производственники часто ориентируются на зарубежные клеевые материалы, в то время как есть отечественные, которые по своим показателям нередко превосходят их и обходятся значительно дешевле. Так, одно из основных предприятий - ОАО «Снежинка» (бывший НИТХИБ) - производит множество клеев различного назначения. Некоторые из них представлены ниже.

Клей 88КР (ТУ 201-951-10-96). Это модификация в серии хлоропреновых клеев, отличающаяся от своих предшественников (88НП, 88СА) повышенными прочностью, термостойкостью, скоростью схватывания, водостойкостью и стабильностью параметров при длительной эксплуатации клеевых швов. Основа клея- полихлоропрен. Растворяется он в таких малотоксичных растворителях как бензин, этилацетат, гексан. Применяется для склеивания резины, резины и металлов (алюминиевых сплавов и сплавов на основе железа), металлов между собой, синтетических пленок, полиуретана, поливинилхлорида, кожезаменителей, кожи, АБС-пластиков, слоистых пластиков, ДСП, дерева, обивочных тканей и т.д. То есть он универсален. Он вибростоек, полностью сохраняет свою работоспособность в диапазоне температур от -30 до +90 °С. Технология его применения простейшая: швы выполняют при комнатной температуре и небольшом контактном давлении. Наиболее рациональная область применения данного клея - соединение и ремонт деталей внутренней отделки кабин грузовых автомобилей, салонов легковых автомобилей и автобусов.

Клей «УР-Моно» (ТУ 201-951-1-96) - универсальный полиуретановый клей, предназначенный для соединения кожи, резины, полиуретана, ПВХ, жестких пластиков типа АБС, металлов, ДСП. Он бесцветный, прозрачный, одноупаковочный, водо-, вибро-, морозо- и термостойкий, малотоксичный. Прочность при расслаивании ПВХ-кожи превышает 50 Н/см (5 кгс/см). Работает без введения изоцианитных отвердителей, что значительно упрощает технологию его применения.

Клей 75М (ТУ 201-28-72-96). Изготовляется на основе термо-эластопластов (срок хранения - один-полтора года). Наряду с такими подложками как кожа, резина, полиуретан, дерево и металл, способен склеивать полиэтилен (жесткий и пленочный), полиамид, ТЭП и другие полимерные материалы без предварительной химической обработки. Прочностные характеристики шва в 1,5…2 раза превышают нормативные показатели. Например, прочность при расслаивании соединений типа ТЭП-кожа, кожа-уретан превышает 50 Н/см2 (5 кгс/см2). Способен к быстрому (10…15 мин.) склеиванию, водо- и теплостоек, малотоксичен.

Используется при отделочных и ремонтных работах. В последнее время его начали применять в качестве клеящей основы при нанесении так называемого флока на текстиль, пластики, металл, что позволяет быстро получать бархатистую поверхность на этих материалах.

Клей «Ропид-5» (ТУ 201-196-90). Предназначен для склеивания изделий из кожи, мягких подложек из текстильных материалов, резины, пласткожи. Состоит из импортного мерканторегулируемого хлоропренового каучука «Скайпрен», реакционноспособных смол и оксидов металлов. Представляет собой вязкую (60-200 с по ВЗ-246) жидкость бело-желтого цвета.

Клей «Крол» (ТУ 201-28-78-83) - модифицированный полистирольный клей для производства и ремонта изделий из ударопрочного и блочного полистирола. Обеспечивает быстрое, в течение 15…20 мин., склеивание этих материалов при комнатной температуре и контактном давлении, большую долговечность швов. Гарантирует отсутствие микротрещин, которые, как известно, неизбежны при склеивании полистирола активными растворителями. Вибро- и водостоек, прочен (адгезионная прочность к полистирольным подложкам до 14,8 МПа, или 148 кгс/см2), малотоксичен. Рекомендуется применять при креплении и ремонте деталей из полистирола (корпусов магнитол, приемников, деталей панели приборов и др.), а также внутренних (облицовочных) деталей кузовов-рефрижераторов.

Клеящий карандаш ЭРК-1 (ТУ 201-28-18-96) представляет собой сложную эпоксидную клеящую композицию, оформленную в виде твердого прутка, предназначенную для экспресс-ремонта (заделки) микротрещин и вырывов металла на трубопроводах и корпусах из различных металлов и сплавов (алюминия, меди, стали, чугуна). Масло-, бензо-, вибро- и термостоек.

Клеи для резины. Клеи для приклеивания резины подразделяют на клеи для приклеивания с вулканизацией и для приклеивания «на холоду». Промышленность производит клеи резиновые (для соединения резиновых деталей друг с другом) и специальные (для приклеивания резины к металлам, стеклу, пластмассам и другим твердым материалам).

Из специальных клеев можно назвать два образца: № 61 и 88Н. Первый готовится растворением резиновой смеси № 61 в бензине «Калоша». Клей № 88Н представляет собой раствор в смеси этилацетата с бензином сырой резины № 31-Н, к которой добавлена бутилфенолоформальдегидная смола.

эксплуатационный материал двигатель масло моторный

Для приклеивания резиновых деталей к металлическим применяют клей № 88, 88Н, 61 или термопреновый. Приклеивание резиновых деталей к деревянным производят с помощью резинового клея НК.

Клей № 200 (раствор резиновой смеси в бензине) применяют для приклеивания к металлу обивки, резины, картона и кожи. Из-за токсичности составляющих с ними следует обращаться осторожно.

Модифицированный резиновый клей ТУ 2385-004-05281725-97 (ОАО «Снежинка»), у которого прочность шва в 2 раза превышает прочность, обеспечиваемую традиционными резиновыми клеями, пригоден для склеивания не только резины, но и кожи, текстильных материалов.

1.9 Опишите резины, обивочные, уплотнительные и изоляционные материалы. Ассортимент

Резина представляет собой дорогой и к тому же дефицитный материал, широко применяющийся в автомобилях. Это пневматические и массивные шины, гибкие шланги, амортизаторы, приводные ремни, угоютнительные прокладки, сальниковые устройства, муфты, транспортерные ленты и др. Широко используется резина и в качестве электрической изоляции при изготовлении кабелей, проводов, электрических машин и приборов.

При ремонте автомобилей применяют специальные сорта сырой резины, из которых важнейшими являются прослоечная, протекторная и камерная. Все они предназначены для ремонта пневматических шин методом горячей вулканизации.

Современный грузовой автомобиль включает от 200 и до 500 резиновых деталей, на изготовление которых расходуется 250…400 кг каучука, что составляет в переводе на резину порядка 500…800 кг. Стоимость резиновых изделий составляет от 10 до 40% общей стоимости автомобиля.

Натуральный каучук. Резина представляет собой сложный по составу материал, включающий несколько компонентов, основным из которых является каучук, от типа и особенностей которого зависят в основном свойства резины.

Натуральный каучук (НК) получают из так называемых каучуконосов - растений, преимущественно культивируемых в странах тропического пояса. Причем в основном его добывают из млечного сока (латекса) каучуконосного дерева - бразильской гевеи. Он не способен растворяться в воде, но растворим в нефтепродуктах. На этом основано приготовление резиновых клеев. В химическом отношении натуральный каучук - полимер непредельного углеводорода изопрена:

СН2 С

СН3

СН СН2

Большая степень ненасыщенности молекулы НК обусловливает довольно высокую способность его к химическим превращениям. В частности, по месту разрыва валентной связи между третичным и четвертичным атомами углерода может присоединяться сера (процесс вулканизации), кислород (старение резины) и т.д.

Синтетические каучуки. В 1932 г. впервые в нашей стране был синтезирован синтетический каучук, который стал основным сырьем для отечественной резиновой промышленности. Сейчас выпускаются десятки разновидностей синтетических каучуков (СК).

При изготовлении автомобильных резиновых деталей широко применяются продукты совместной полимеризации различных мономеров. Важнейшему представителю из них - сополимеру бутадиена со стиролом - присвоено обозначение СКС (стирольный). Он принадлежит к самым распространенным СК (доля его в мировом производстве всех СК и НК, взятых вместе, достигает 30 %). Наиболее массовый сорт СКС, содержащий 30% стирола, имеет марку СКС-30. Резины на его базе хотя и уступают по эластичности, тепло- и морозостойкости резинам из НК, но зато превосходят их по износостойкости.

Кроме того, применяют стирольные каучуки СКМС (бутадиен-метилстирольный). Стирольные каучуки превосходят натуральные по износостойкости, но уступают по эластичности, тепло- и морозостойкости. При изготовлении автомобильных шин используют изопреновый (СКИ-3), который по своим свойствам близок к натуральному каучуку, и бутадиеновый (СКВ), отличающийся высокой износостойкостью. Высокой маслобензостойкостью отличаются хлорпреновый (наприт) и нитрильный (СКН) каучуки. Из этих каучуков изготавливают детали, контактирующие с нефтепродуктами. Бутилкаучук (сополимер изобутилена с изопреном) используют для изготовления камер и герметизирующего слоя бескамерных шин.

Вулканизирующие вещества. В чистом виде натуральный и синтетический каучуки находят ограниченное применение (изготовление клеев, изолировочной ленты, медицинского пластыря, уплотнительных прокладок). С целью увеличения прочности каучуков применяют процесс вулканизации - химическое связывание молекул каучука с атомами серы.

В результате вулканизации, например, НК, которая идет наиболее эффективно при температуре 140...150°С, получается вулканизированный каучук (вулканизат) с прочностью на разрыв около 25 МПа.

В состав резины вводят определенное количество серы, чтобы получить изделие с возможно большей прочностью и требуемой эластичностью. Например, в резинах, идущих для изготовления автомобильных камер и покрышек, ее содержится 1…3 % от доли имеющихся в них каучуков. С увеличением содержания серы прочность резины увеличивается, но одновременно уменьшается ее эластичность.

Ускорители и наполнители. Для ускорения процесса вулканизации в состав любой смеси каучука с вулканизующим веществом добавляются ускорители (тиурам, каптакс и др.), а для повышения прочности вулканизаторов активные наполнители (усилители). Самым массовым усилителем является сажа - порошкообразный углерод с размерами частиц от 0,003 до 0,25 мкм. Сажа, как и другие усилители, вводится в современные резиновые материалы в значительных дозах - от 20 до 70 % по отношению к содержащемуся в них каучуку, повышая прочность резины более чем на порядок.

Кроме названных добавок, в состав резины в небольших количествах можно вводить красители (для придания окраски), пластификаторы (для облегчения формования), антиокислители (для замедления процессов старения), порообразователи (при изготовлении пористых или губчатых резин) и т.д.

Армирование резиновых изделий. Для увеличения прочности деталей из резины ее совмещают с арматурой (проволочными каркасами, металлической оплеткой и т.д.). Прочность резинотканевых изделий в основном определяется прочностью вводимой в них арматуры. Эластичность таких изделий при растяжении по сравнению с чисто резиновыми значительно уменьшается, но она сохраняется при изгибе и сжатии вполне достаточной для того, чтобы не происходило разрушения деталей. К важнейшим армированным резиновым изделиям, применяющимся для автомобилей, относятся: резинотканевые шланги, приводные ремни и т.д.

Особенно ответственными и дорогими армированными изделиями являются автомобильные u1087 покрышки, для изготовления которых используются специальные ткани - корд, чефер и др.

Одним из основных этапов технологического процесса при приготовлении резины является полное и равномерное смешение всех ингредиентов в каучуке, число которых может доходить до 15. Этот процесс выполняется в резиносмесителях в две стадии.

Первая стадия - изготавливается вспомогательная смесь без серы и ускорителей; вторая стадия - введение серы и ускорителей. Получаемые резиновые смеси используют для изготовления резиновых деталей и для обрезинивания корда шин, которые для усиления связи между кордом и резиной пропитываются латексами и смолами. Последней операцией после смешения всех ингредиентов является вулканизация, после чего резинотехническое изделие пригодно для применения. Сырая резина (прослоечная, протекторная, камерная) применяется при ремонте автомобильных шин и камер методом горячей вулканизации под определенным давлением, создаваемым различными приспособлениями.

Широкое применение резины вызвано тем, что она обладает:

- способностью к исключительно большим обратимым деформациям, которые являются одним из проявлений высокоэластических свойств материала (относительное удлинение при растяжении для высококачественных резин может достигать 100 %);

- небольшой по сравнению с металлами и деревом жесткостью, т.е. способностью сильно деформироваться под действием очень малых сил, которые в тысячи и десятки тысяч раз меньше сил, вызывающих такие же деформации у металлов;

- достаточно высокой прочностью (у лучших сортов резины прочность при разрыве достигает 40 МПа);

- слабой газопроницаемостью и полной водонепроницаемостью;

- высокими диэлектрическими свойствами.

Прочностные свойства резинового материала характеризуются пределом прочности, представляющим собой напряжение, возникающее в момент разрыва. Для оценки предела прочности определяют на специальной машине нагрузку, при которой происходит разрыв образца резинотехнического материала строго определенного размера. Предел прочности - это число, получаемое при делении нагрузки, при которой произошел разрыв образца, на первоначальную (до испытаний) площадь сечения, выражаемый в МПа.

Механические свойства вулканизованной резины характеризуются рядом показателей, важнейшие из которых получают при испытании на растяжение и на сжатие. Совокупность относительного и остаточного удлинений характеризует эластичность резинового материала. Чем больше разность между первым и вторым, тем лучше эластические свойства материала. Величина эластичности устанавливается соответственно назначению детали и оценивается величинами относительного и остаточного удлинения при разрыве и относительного сжатия при предельной нагрузке, выражаемых в процентах к начальной длине образца.

Мягкая резина характеризуется пределом прочности 15…20 МПа при относительном удлинении при разрыве 500…1000 %. Так, например, резина, используемая для изготовления камер автомобильных шин, имеет предел прочности 9…14 МПа, относительное удлинение 550…600 %.

С повышением содержания серы в резинах прочность резины на разрыв увеличивается, а эластичность снижается.

Список литературы

1. В.А. Лиханов, О.П. Лопатин «Конструкционно-ремонтные материалы». Киров 2005

2. В.А. Лиханов, Р.Р. Деветьяров, А.В. Россохин «Методическое пособие для выполнения курсовой работы по эксплуатационным материалам». ВГСХА Киров 2008

3. Л.С. Васильева «Автомобильные эксплуатационные материалы» 2003

4. http://sofia-color.ru/prays-list.html

5. http://www.aga-automag.ru/

6. http://www.toplivka.ru/

7. http://www.tnk-oil.ru/about

8. http://www.promexport-nn.ru/

Размещено на Allbest.ru


Подобные документы

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.