Транспорт углеводородов с морских месторождений

Описание технических особенностей и характеристик средства хранения и транспортировки углеводородов с морских месторождений в арктических условиях. Общая характеристика точечных причалов, танкеров. Изучение трудопроводного транспорта углеводородов.

Рубрика Транспорт
Вид курсовая работа
Язык русский
Дата добавления 21.04.2015
Размер файла 1,7 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

У старых танкеров наружная обшивка корпуса одновременно является и стенкой прилегающих к ней грузовых танков. Поэтому при ее повреждении содержащаяся в танке нефть выливается в море, загрязняя окружающую среду. Двойное дно, которое состоит из днищевой обшивки и расположенного над ней на некотором расстоянии настила второго дна, предохраняет судно от вытекания содержимого танков в случае повреждения обшивки. А танки изолированного балласта должны защищать грузовые отсеки по всей длине бортов судна. Расположение танков изолированного балласта образует на танкерах двойной борт, имеющий то же назначение, что и двойное дно: при столкновении судов или ином повреждении наружной бортовой обшивки нефть из грузовых танков не попадает в море, а вытекший изолированный балласт не загрязняет морскую среду. Старые танкеры, не имеющие танков изолированного балласта, называют однокорпусными, а новые танкеры, имеющие их, - танкерами с двойным корпусом [1, 3].

MARPOL 73/78 одержит инструкции, нацеленные на предотвращение и уменьшение загрязнения моря с судов как вследствие инцидентов, так и вследствие эксплуатации, и в настоящее время включает два обязательных к исполнению Приложений (Приложение I и Приложение II) и четыре необязательных Приложения.

Приложение I. Инструкции по предотвращению загрязнения нефтью.

Ввод в действие 2 октября 1983 г. Эксплуатационные сбросы нефти с танкеров разрешены только при выполнения следующих условий:

1. Общее количество нефти, которое танкер может сбросить в балластном рейсе на ходу недолжно превышать 1/15,000 полной грузовместимости судна;

2. Скорость сброса не должна превышать 60 литров на милю пути;

3. Запрещен сброс нефти в любом виде из грузовых помещений танкера в пределах 50 миль от ближайшего берега.

Новой и важной особенностью Конвенции 1973 г. стала концепция "особых зон", которые считаются настолько уязвимыми к загрязнению нефтью, что сбросы в их пределах были действие - в части, касающейся предотвращения загрязнения моря нефтью. В дальнейшем полностью запрещены с небольшими и четко определенными исключениями. Конвенция 1973 г. определила Средиземное, Черное, Балтийское, Красное моря и акватории заливов как "особые зоны". Все суда, имеющие на борту нефтепродукты, должны иметь возможность сохранения нефтяных отходов на борту судна либо через систему "погрузки поверх", либо для откачки на береговые очистные сооружения [1].

Это предусматривает внедрение соответствующего оборудования: системы контроля и слежения за сбросом нефти, системы фильтрации и сепарации нефтесодержащих вод, отстойные цистерны, насосы, трубопроводы и арматура.

Новые нефтяные танкеры (те, для которых контракт на постройку был заключен после 31 декабря 1975 г.) грузовместимостью 70,000 тонн и более должны быть оснащены танками изолированного балласта достаточного объема, чтобы обеспечить соответствующую эксплуатационную нагрузку без необходимости принимать балластную воду в грузовые нефтяные танки.

Во-вторых, корпуса новых нефтяных танкеров должны делится на отсеки и удовлетворять требованиям аварийной остойчивости таким образом, чтобы при любых условиях загрузки обеспечивалась живучесть судна после столкновения.

Поправка к Приложению I направлена на постепенное сокращение однокорпусных нефтяных танкеров и предусматривает почти полное сокращение однокорпусных танкеров к 2015 году. Танкеры с двойным корпусом обеспечивают более эффективную защиту окружающей среды от загрязнения в случае аварии. Все новые танкеры, построенные с 1996 г., должны иметь двойной корпус.

В соответствии с MARPOL 73/78 определяются три категории танкеров:

"Танкер категории 1", не отвечающий требованиям защитно расположенных танков изолированного балласта, грузовместимостью 20,000 тонн и более, перевозящий сырую нефть, дизельное топливо, тяжелое топливо или смазочные материалы, а также грузовместимостью 30,000 тонн и более, перевозящий другие нефтепродукты.

"Танкер категории 2", отвечающий требованиям защитно расположенных танков изолированного балласта, грузовместимостью 20,000 тонн и более, перевозящие сырую нефть, дизельное топливо, тяжелое топливо или смазочные материалы, а также грузовместимостью 30,000 тонн и более, перевозящий другие нефтепродукты [1].

"Танкер категории 3" грузовместимостью 5,000 тонн и более, но менее чем, в категории 1 и 2.

Приложение I I. Инструкции по контролю загрязнения ядовитыми жидкими веществами.

Ввод в действие 6 апреля 1987 г.

Приложение регламентирует правила сброса и меры по контролю загрязнения ядовитыми жидкими веществами. Приблизительно 250 ядовитых веществ включены в список в конце Конвенции. Сброс их остатков разрешается только в приемные сооружения при определенных условиях и концентрациях (которые меняются скатегорией веществ). В любом случае запрещен сброс остатков, содержащих ядовитые вещества, в пределах 12 миль от ближайшего берега. Более строгие ограничения относятся к акваториям Балтийского и Черного морей.

Нефтепродукты перевозят на специализированных судах-танкерах, которые в зависимости, от дедвейта получили следующую градацию: 45-80 тыс. т (Super Tanker, танкер класса PANAMAX); 80-160 тыс. т (Mammoth Tanker, танкер класса AFRAMAX); 160-320 тыс. т VLCC (Very Large Crude Carrier); более 320 тыс. т ULCC (Ultra Large Crude Carrier) [3].

Категории танкеров -- в зависимости от дедвейта, выглядит следующим образом:

· GP (General Purpose) -- малотоннажные танкеры (6000--16499 т); используются для специальных перевозок, в том числе для перевозок битумов;

· GP -- танкеры общего назначения (16500--24999 т); используются для перевозок нефтепродуктов;

· MR (Medium Range) -- среднетоннажные танкеры (25000--44999 т); для перевозок нефти или нефтепродуктов;

· LR1 (Large/Long Range1) -- oiler -- крупнотоннажные танкеры 1 класса (45000--79 999 т); используются для перевозок тёмных нефтегрузов;

· LR2 -- крупнотоннажные танкеры 2 класса (80000--159999 т);

· VLCC (Very Large Crude Carrier) -- крупнотоннажные танкеры 3 класса (160000--320000 т);

· ULCC (Ultra Large Crude Carrier) -- супертанкеры (более 320000 т); для перевозок нефти со Среднего Востока до Мексиканского залива.

· FSO (Floating Storage and Offloading unit) - супертанкеры (более 320000 т); для хранения и выгрузки нефти на более мелкие танкеры.

Нефтепродукты объединяют по каким-либо общим признакам в группы, каждой из которых дают соответствующее наименование. По условиям хранения и транспортировки все нефтепродукты разделяют на следующие группы: светлые нефтепродукты - бензин, керосин, лигроин и некоторые сорта дизельного топлива; темные нефтепродукты - мазут, моторное топливо, сырая нефть; масла-все сорта масел; прочие нефтепродукты - остальные нефтепродукты, не вошедшие в первые три группы [3].

Основными свойствами наливных грузов, которые важно знать в процессе их транспортировки, являются: плотность, температура вспышки, вязкость, температуры застывания и помутнения, испаряемость, теплофизические характеристики, специфические свойства (пожароопасность, вредность, коррозионность).

Подготовка танкера к перевозке нефтепродуктов включает в основном три этапа:

· подготовку грузовых танков;

· проверку непроницаемости трубопроводов грузовой системы и системы зачистки, клинкетов, механизмов, обслуживающих грузовые танки;

· проверку технической исправности систем подогрева груза, газоотводной и систем пожаротушения и орошения палубы.

Планирование работ по подготовке грузовых танков зависит от продолжительности балластного перехода. Такой план включает в себя порядок каждой операции подготовки танкера, ее трудоемкость и расчет необходимого числа людей и материалов.

Одной из трудоемких работ является мойка грузовых танков. При длительных балластных переходах танки моют даже в том случае, если предстоит погрузка однородного груза. Под зачисткой грузовых танков понимают процесс удаления с днища и слоя нефтеостатков после того, как слит основной груз. После выгрузки нефтепродуктов в танках остается около 1% груза, что зависит от грузовой системы и системы зачистки, наличия системы подогрева, конструкции судна и т.п. Мойку танков следует выполнять, руководствуясь руководящим техническим материалом РТМ 31.2006-78 "Мойка грузовых танков и топливных цистерн танкеров".

Существуют три способа очистки поверхностей грузовых танков нефтеналивных судов: ручной, механизированный и химико-механизированный. Это разделение условно, так как при каждом из этих способов используют в той или иной мере ручной труд.

Ручной способ - это низко производительный способ, требующий много времени и средств. Порядок зачистки грузовых танков при этом следующий. После прокачки холодной забортной водой каждый танк подвергается пропариванию паром в течение нескольких часов. Когда температура в танках снизится до 30-40°С, после их вентилирования мойщики скатывают горячей водой (30-45°С) все поверхности танков из шлангов под давлением не более 0,6 МПа.

Механизированный способ осуществляется водой, которая в танки подается под давлением через специальные моечные машины - гидромониторы.

Мойка осуществляется в основном забортной водой различной температуры или растворами моющих средств [8].

Химико-механизированный способ мойки танков должен удовлетворять следующим требованиям: обеспечению хорошего качества отмыва и сокращению его сроков, снижению времени нахождения судна под очисткой, исключению слива нефтепродуктов в море.

Очистка танков осуществляется теми же средствами, что и при механическом способе, но вместо воды используют различные моющие средства.

Перед постановкой танкера под погрузку опресовываются зачистная магистраль и клинкеты на рабочее давление. Прежде чем начать опресовку, все магистрали прокачивают забортной водой для удаления остатков нефтепродуктов. На герметичность проверяют также систему подогрева груза путем продувки ее острым паром.

Точное определение величины удельного веса принимаемого судном жидкого груза - одна из важнейших задач, которая должна быть решена судовой администрацией при погрузке судна. Несоответствие фактически установленной величины удельного веса данным, указанным в паспорте качества, может свидетельствовать либо о замене отправителем заявленного сорта, либо о загрязненности, обводнении или иных пороках предъявленного к перевозке груза [8].

Удельный вес груза при наливе служит основой для расчета предусматриваемых на случай его расширения пустот в танках, а по объему, занимаемому жидким грузом, и его удельному весу можно определить его весовое количество. Так же установлена нормальная температура в 20єС, к которой относятся переменные величины , определяющие свойства веществ, зависящие от температуры. Именно при этой температуре измерительныеприборы должны давать правильные показания.

Величина удельного веса жидкого груза изменяется в зависимости от его температуры. Учет этого изменения важен как для определения количества груза, поскольку в период налива его температура может отличатся от стандартной, так и для определения размеров пустот, которые должны быть оставлены в танках, исходя из предполагаемого расширения груза.

Метод непосредственного измерения плотности жидкого груза не всегда может быть использован. Например, при составлении предварительного грузового плана, когда в танках еще нет груза, следует применять расчетный метод, который дает возможность достаточно быстро и точно определить удельный вес груза при любой его температуре. Это имеет особо важное значение при расчете величин пустот, подлежащих оставлению для возможного расширения груза [8].

Загрузку танкера осуществляют на основании согласованного и утвержденного капитаном грузового плана и под руководством одного из помощников капитана. Количество принимаемого танкером груза ограничивается величиной запаса плавучести, который должно иметь судно к моменту окончания погрузки.

Поскольку наливное судно в загруженном состоянии имеет прогиб корпуса, оно погружается по грузовую марку раньше, чем использован его дедвейт, т.е. танкер оказывается недогруженным.

При неправильной загрузке судна может возникнуть перегиб, при котором танкер погружается по грузовую марку уже после того, как полностью использована его грузоподъемность.

При нормальной загрузке танкера необходимо предусматривать:

1) максимальное использование грузоподъемности и грузовместимости судна при условии обеспечения сохранности груза во время погрузки, перевозки и выгрузки;

2) наилучшую технологическую схему погрузки, позволяющую достичь сокращения продолжительности грузовых операций до минимума при условии обеспечения пожарной безопасности;

3) рациональное распределение грузов и переменных запасов по длине судна, исключающее возникновение чрезмерных напряжений корпуса;

4) обеспечение нормальной остойчивости, дифферента и осадки судна на всех этапах рейса, т.е. во время грузовых операций и на переходе.

При перевозке грузов I категории необходимо заполнить коффердамы водой или инертными газами; на время грузовых работ заземлить корпус судна, обеспечить присоединение гибких шлангов, исключающее их повреждение или обрыв, удостоверится в выполнении правил пожарной безопасности на время грузовых работ. При погрузке и выгрузке за правильное соединение шлангов отвечают шланговщики - береговые или судовые, каждый за соединения на своем участке. Заполнение и опорожнение танков должны производиться в последовательности, предусмотренной инструкцией. Через грузовую магистраль подают и выдают нефтепродукты I и II категорий; грузы III категории могут быть налиты через верх. Запас на расширение при нагреве груза - не менее 2% вместимости танка. При размещении разных сортов груза в соседние танки необходимо, чтобы в танке уровень груза, боящегося примеси другого груза, был выше; уровень груза, боящегося обводнения, должен быть в танке выше грузовой ватерлинии [8].

Для контроля качества принимаемого нефтепродукта и с целью защиты своих прав при возможных претензиях грузоотправителей капитан судна организует отбор проб груза.

Отбор проб из грузовых танков производят в соответствии с действующими стандартами и техническими условиями. Порядок отбора сверху вниз с трех уровней: одна часть на 200 мм ниже поверхности груза, три части с середины высоты взлива нефтепродукта, одна часть на уровне, отстоящем от днища танкера на 250 мм. Если требуется установить качество нефтепродукта на самом нижнем уровне, отбирают донную пробу, которую анализируют отдельно.

Отбор проб из берегового трубопровода (трубопроводная проба) производят из контрольного краника, расположенного в конце берегового трубопровода на причале. Пробу берут в начале погрузки (из первой струи), затем через определенные промежутки времени.

Пробы отбирает представитель инспекции по качеству с участием представителя судна. Отобранные пробы хранят на танкере до окончания погрузки под наблюдением вахтенного, после чего из них составляют смесь. Полученный таким образом средний образец наливают в две литровые бутылки, одну из которых, опечатанную сургучной печатью отправителя, передают второму помощнику капитана на хранение. Трубопроводная проба является арбитражной. Пробы хранятся 2 мес. при перевозке в малом каботаже и 6 мес. при перевозке в большом каботаже и загранперевозках [3, 8].

Кроме указанных проб, грузоотправитель отбирает резервуарные пробы, которые являются контрольными. Одна из них остается на нефтебазе, другую передают через капитана грузополучателю, а третью вручают второму помощнику на хранение.

Отбор проб оформляют актом, в котором подробно указывают место отбора, какими печатями пробы опечатаны и кому вручены.

После проверки танков на присутствие воды двумя способами определяют количество груза.

Сущность первого способа состоит в замере средней осадки танкера до погрузки и после нее. Этот метод является контрольным и служит лишь для того, чтобы приблизительно установить, сколько на танкер принято груза и сколько еще надо его погрузить.

Поскольку определить количество жидкого груза, перевозимого танкером, путем взвешивания невозможно, а по осадке - нельзя получить желаемой точности, применяют расчетный метод, предусматривающий умножение объема жидкости на ее удельный вес.

Каждый танкер снабжен Таблицами емкости грузовых танков, построенными таким образом, что показан исчисляемый в кубических метрах объем, соответствующий каждым 10-20 см высоты танка. Если в калибровочных таблицах не приведен объем танка, приходящийся на каждый сантиметр его высоты, то эту величину рассчитывают методом интерполяции.

При втором способе количество груза рассчитывают на основе определения объема и плотности нефтепродукта. Уровень груза в танке измеряют рулеткой, метроштоком, крестовиной или применяют дистанционные системы измерения уровней груза. Перед замером пустот или взлива еще раз проверяют плотность закрытия клинкетов. Если пустоты в танке меньше 1 м, то удобнее применять метрошток. Его можно быстрее, чем рулетку, опустить в замерную трубку и затем легче определить след нефтепродукта. Для измерения высоты уровня жидкости используют стальную рулетку, которая в месте предполагаемого уровня груза покрывается тонким слоем легкого масла или консистентной смазки, что дает четкую линию смачивания. При измерении ленту следует держать вертикально, поднимать точно вверх без смещения в сторону и снимать отсчет немедленно, как только смоченная поверхность ленты появится над замерной трубкой. Последнее очень важно при замерах высот светлого нефтепродукта, который быстро растекается и искажает линию смачивания. Измерение производят не менее двух раз с точностью отсчета до 1 мм. Среднее значение заносят в замерную книжку [1, 3, 8].

Крейсерская скорость современных танкеров составляет от 17 до 25 узлов (от 31 до 46 км в час).

В настоящее время для разгрузки танкеров используются насосы с расходом до нескольких тысяч тонн нефти в час.

Нефтеналивной танкер "Batillus" был построен в 1976 году на французской судостроительной верфи "Chantiers de l'Atlantique" в городе Saint Nazaire.

Нефтяные танкеры успешно выполняли свои функции, но международные требования взяли верх над гигантами. Грузовые суда через десять лет уже не соответствовали им, и владелец был вынужден модернизировать танкеры. Но все корабли за исключением одного были сданы на слом в период с 1985 по 1986 года, а нефтеналивной танкер "Prairial" прослужил до 2003 года и тоже был порезан на металл.

Вместимость всех двадцати трех грузовых танков танкера "Batillus" составляет 67,3 тыс. куб. м. Длина одного резервуара достигала 40 м, а ширина 21 м. Толщина наружной обшивки корпуса танкера, выполненная из стали повышенной прочности, равнялась 27,5 мм. Для отгрузки нефти на судне было предусмотрено четыренасоса общей подачей 24000 куб. м в час, они приводились в действие паровыми турбинами суммарной мощностью 86000 л. с., что составляет 30 процентов мощности. Четыре главных турбозубчатых агрегата приводили во вращение два пятилопастных гребных винта диаметром 8,5 м.

Суточный расход топлива танкера составлял 330 тонн. Из-за огнеопасного груза главный двигатель на танкере был расположен в кормовой части. От грузового отсека его отделяло две переборки, между которыми пространство было заполнено водой. На нефтеналивном танкере огромные цистерны ограничены продольными поперечными переборками. Они ставятся для того, чтобы жидкий груз в пути не раскачивался и не затруднял движение. Данная конструктивная особенность к тому же дает возможность одновременно перевозить сразу несколько сортов различных нефтепродуктов.

Нефтеналивные танкеры серии "Batillus" являются величайшими морскими судами в истории судостроения.

Технические характеристики танкера "Batillus";

Длина - 414,2 м;

Ширина - 63 м;

Осадка - 28,5 м;

Дедвейт - 655000 тонн;

Водоизмещение - 275276 тонн;

Силовая установка - четыре паровые турбины "Stal Laval" мощность каждой 64800 л. с.;

Скорость - 16 узлов;

Экипаж - 26 человек.

Рис. 7. Нефтеналивной танкер "Batillus".

3.9 Трубопроводный транспорт

Трубопроводы в зависимости от перекачиваемого углеводорода называют нефтепроводами или газопроводами. В условиях шельфа будем рассматривать только нефте- и газопроводы.

Трубопроводы по своему назначению делятся на следующие группы:

· внутренние - соединяют различные объекты обустройства на промыслах;

· местные - по сравнению с внутренними имеют большую протяженность и соединяют промыслы с головной станцией магистрального трубопровода;

· магистральные - характеризуются большой протяженностью (сотни и тысячи километров), поэтому перекачка ведется не одной, а несколькими станциями, расположенными на трассе.

Согласно нормативным документам магистральные нефтепроводы подразделяются на четыре класса в зависимости от условного диаметра труб (в мм):

1 класс - 1000-1200 мм;

2 класс - 500-1000 мм;

3 класс - 300-500 мм;

4 класс - <300 мм.

Магистральные газопроводы подразделяются на два класса в зависимости от рабочего давления в газопроводе:

1 класс - 2,5-10 МПа;

2 класс - 1,2-2,5 МПа.

Принципиальное отличие проектирования морских нефте- и газопроводов заключается в том, что сухопутные трубопроводы рассчитываются в основном на воздействие внутренних давлений перекачиваемых углеводородных продуктов, а морские трубопроводы рассчитываются как на внутренние, так и на внешние давления. В глубоководных условиях внешние давления могут быть соизмеримы с внутренними. Кроме того, наличие отрицательных температур в газопроводах может привести к обледенению трубопроводов, что создаст дополнительные силы их выталкивания за счет силы Архимеда и т.д. [4]

3.9.1 Проектирование морских трубопроводов. Нормативное обеспечение

В настоящий момент проектирования морских трубопроводов систематизирован в виде ряда всемирно признанных нормативных документов, таких как:

· американский национальный стандарт ASME В31.8-1995 "Газотранспортные и распределительные трубопроводные системы";

· рекомендуемая практика API 1111 "проектирование, строительство, эксплуатация и техническое обслуживание морских трубопроводов для углеводородов";

· британский стандарт BS 8010, часть 3/1993 "Нормы практики для трубопроводов. Подводные трубопроводы: проектирование, строительство и монтаж";

· норвежские "Правила для систем подводных трубопроводов" DNV96.

В 2002 г. в ОАО "Газпромом" был разработан Стандарт организации по проектированию и строительству морских трубопроводов (СТО 2-3.7-050-2006), основанный на положениях норвежских Правил DNV OS-F101 (2000).

Особенностью норвежских Правил является их относительная "мягкость" по сравнению, например, российскими строительными нормами и правилами (СНиП). Многие требования и положения, в том числе и ключевые, как уже было сказано, носят не обязательный, а рекомендательный характер [3].

В нащей стране нормативное обеспечение строительства магистральных трубопроводов, в том числе морских, на федеральном, административно-территориальном и производственно-отраслевом уровнях в настоящее время определяется в соответствии с Федеральным законом "О техническом регулировании" (№184 - ФЗ от 27 декабря 2002 г., вступил в силу с 1 июля 2003 г.), который заменяет раннее действовавшие законы "О стандартизации" и "О сертификации продукции и услуг".

Первый вид документов - технические регламенты, которые утверждаются на уровне федерального закона, в частности, это градостроительный кодекс, Земельный кодекс (прежде всего, в части береговых сооружений), Водный кодекс, в части, касающейся вопросов строительства. Среди этих законов особенно важное место при проведении проектных исследований магистральных трубопроводов занимает Федеральный закон №384-ФЗ от 30 декабря 2009 г. "Технический регламент о безопасности зданий и сооружений".

Второй вид документов - национальные стандарты. В отличие, например, от ГОСТа, который рассматривался как нормативный документ наивысшего уровня, обязательный для исполнения, по требованиям нового федерального закона все национальные стандарты становятся рекомендательными. К таким документам относятся также СП (своды правил), СНиП и др.

Третий уровень технического регулирования - это стандарты предприятий (СТО), которые являются наиболее привычными видами нормативных документов.

В настоящее время в России приняты национальный стандарт ГОСТ Р 54382-2011 "Подводные трубопроводные системы. Общие технические условия", который устанавливает требования и правила на проектирование, изготовление, строительство, испытания, ввод в эксплуатацию, эксплуатацию, техническое обслуживание, переосвидетельствование и ликвидацию подводных морских трубопроводных систем, а также требования к материалам для их изготовления [3].

Национальный стандарт распространяется на жесткие трубопроводные системы, предназначенные для использования в нефтяной и газовой промышленности, и на однониточные трубопроводные системы, комплексы трубопроводов, размещенные один поверх другого и заключенные внутри несущей трубы. Национальный стандарт не распространяется на гибкие трубы, на динамические или податливые райзеры.

Стандарт распространяется на монтаж методами S-укладки, J-укладки, буксировки и укладки с использованием пластических деформаций. Стандарт также содержит требования к монтажу райзеров, защитных и анкерных конструкций.

Стандарт ГОСТ Р 54382-2011 согласуется со стандартом ИСО 13623, который устанавливает функциональные требования для морских трубопроводов и райзеров.

3.9.2 Основы проектирования подводных трубопроводов

Ключевым фактором в проектировании морских нефтегазопроводов являются основные данные, определяющие требования, которым должна удовлетворять транспортная система, а также условия окружающей среды, в которой система должна надежно работать в течение своего расчетного срока эксплуатации [4].

Процесс проектирования можно разделить на три стадии:

· предварительная стадия проектирования;

· технико-экономическое обоснование (проект);

· детальное проектирование (рабочий проект).

Основная цель предварительной стадии проектирования состоит обычно в следующем:

· установить техническую возможность и ограничения на проектирование транспортной системы и ее монтаж;

· исключить неосуществимые варианты;

· разработать требования для сбора данных в качестве основы для предстоящего проектирования и строительно-монтажных работ;

· определить возможности сопряжения и сочетания с другими транспортными системами, которые планируются или уже существуют;

· оценить стоимость и сроки выполнения проекта.

Ценность таких ранних стадий проектирования состоит в том, что они привлекают внимание к потенциальным трудностям и областям, где потребуются дополнительные усилия в отношении сбора данных и определения направлений проектирования. Принятые технико-экономические решения могут быть уточнены по мере получения фактических данных, относящихся к району строительства морских нефтегазопроводов.

Следует иметь в виду, что главные соображения при проектировании состоят в обеспечении безопасности трубопроводной транспортной системы относительно нагрузок, вызываемых следующими факторами [3]:

· рабочими условиями;

· условиями окружающей среды;

· условиями укладки.

Выбор трассы трубопровода

Принципы трассировки устанавливаются в процессе предварительного проектирования с тем, чтобы подтвердить основной вариант трассы для выполнения последующих изыскательских работ.

Выбор трассы является сложной и многофакторной процедурой. В типовом случае выбор трассы должен зависеть:

· от расположения конечных точек;

· глубины воды;

· рельефа дна:

· присутствия неблагоприятных факторов на морском дне, таких как волнообразная поверхность песка, неустойчивые склоны, слабый (мягкий) грунт, валуны и т.д.;

· присутствия неблагоприятных факторов окружающей среды, таких как сильные течения, групповые волны на мелководье и т.д.;

· присутствия других месторождений, трубопроводов, конструкций, запрещенных зон (например, области военно-морских учений, стрельбища и т.д.);

· существования неблагоприятных для трубопроводов условий судоходства или рыболовства;

· пригодности мест подходов к берегу, если таковые предусматриваются на трассе.

Проектирование с точки зрения условий эксплуатации.

Данная процедура связана с определением потенциальных возможностей, которые трубопроводная транспортная система может выдерживать при эксплуатации, а также с установлением пригодности и безопасности системы при таких эксплуатационных нагрузках.

Например, если главный магистральный трубопровод, отходит от платформы, при его проектировании в отношении условий эксплуатации необходимо учитывать следующее:

· тип транспортируемой продукции;

· требуемую пропускную способность при полной производительности;

· рабочие давления;

· рабочие температуры.

Пропуская способность трубопроводной транспортной системы.

Пропускная способность трубопроводов определяется природой транспортируемой продукции, темпом отбора добываемой на месторождении продукции, степенью ее подготовки, выполняемой на платформе. Например, оборудование для добычи сырой нефти с небольшими количествами попутного газа может потребовать одного трубопровода нефти, а газ может сжигаться на факеле или использоваться для энергетического обеспечения на платформе. Второй пример - газовое месторождение, на котором добывается газоконденсатная жидкая смесь. Жидкость в этом случае может транспортироваться с газом в двухфазном потоке или разделяться на платформе и транспортироваться по второму трубопроводу. Выбор соответствующей транспортной системы должен выполняться на основе рассмотрения конкретных случаев с полным учетом вопросов обеспечения безопасности эксплуатации [4].

Выбор геометрических характеристик трубопроводов

Выбор геометрических характеристик трубопроводов основывается в основном на получении необходимой (требуемой) пропускной способности, хотя другие факторы могут оказывать ограничивающее влияние на размеры труб.

Оценка пропускной способности и размеров трубопровода может быть простой процедурой для линий, транспортирующих нефтяную продукцию одного вида, однако эта оценка может быть сложной в случае многофазного потока. Назначение размеров трубопроводов может быть выполнено при теоретическом расчете потока. Точность результатов оказывается непосредственно связанной со сложностью течения, т.е. решения для смешанных фазовых течений менее надежны [6].

Толщина стенок трубопроводов.

Толщина стенок трубопроводов определяется с учетом рабочих давлений. Размеры толщины стенки выбираются из условия обеспечения способности трубы противостоять внутренним давлениям с достаточной степенью безопасности, и этот выбор толщины основывается на величинах окружных или кольцевых напряжений. Перед расчетом толщины стенок определяются сорт стали, из которой изготавливаются трубы, а также коэффициент безопасности. Необходимо иметь в виду, что при расчете глубоководных трубопроводов внешние давления иногда превышают внутренние. Поэтому при расчетах толщины стенок труб этот момент также должен быть учтен [4, 7].

Сорта стали, применяемые на морских нефтегазовых промыслах, находятся в пределах от сорта "В" американской трубопроводной промышленности (API) до сорта "Х70" и выше. Общая тенденция состоит в выборе более высоких сортов сталей. Выбор сорта стали осуществляется с учетом:

· весовых требований:

· стоимости;

· свариваемости:

· сопротивляемости коррозии.

Применение повышенных сортов стали позволяет уменьшить толщину стенки и массу трубопровода и обеспечить возможные улучшения в отношении требований при укладке трубопроводов.

Однако эти стали более подвержены коррозии в среде H2S, они хуже свариваются, и вследствие из-за меньшей толщины стенки такие трубы могут подвергаться продолжительному изгибу.

На основе выбранного сорта стали, расчетного коэффициента и условий проведения работ размер трубопровода можно установить по соответствующим формулам, приведенным в многочисленных учебниках и монографиях. На этой стадии часто рассматривается дальнейшее ухудшение условий проведения работ, которое связано с коррозионностью транспортируемой продукции. Мировая практика показывает, что для этого требуется увеличение толщины стенки трубы, обычно на 3-4 мм, в качестве запаса на коррозию. В конкретных проектах эти запасы определяются расчетным путем и не должны учитываться при расчете напряженного состояния сечений трубопроводов [4, 6].

Влияние факторов окружающей среды.

Окружающая среда, в которой должны прокладываться морские трубопроводы, описывается следующими условиями:

· батиметрией трассы;

· характером местности на дне и свойствами грунта;

· волнами и течениями, вызываемыми волнами;

· устойчивыми течениями;

· характеристикой морской воды;

· ледовыми условиями (толщиной льда, торосами и т.д.);

· продолжительностью межледового периода.

В частных условиях должны также учитываться сейсмическая активность дна, морское обрастание и др.

Конечная цель сбора данных об окружающей среде и их обработки состоит в получении основы для проектирования, которая обычно представляется в следующем виде:

· полное статистическое описание волнового режима; высота, периоды и продолжительность существования ветрового волнения;

· полное статистическое описание течений у морского дна, включая все сопутствующие факторы;

· полное статистическое описание ледовых условий вдоль трacc, включая продолжительность ледового периода;

· полное статистическое описание профиля дна и грунтов на поверхности и вблизи поверхности дна вдоль трассы трубопровода и в пределах коридора, осью которого является трасса трубопровода;

· сводка данных о свойствах морской воды сейсмических условиях и потенциальной возможности морского обрастания.

На основании исходных данных об окружающей среде определяются три основных момента для расчета:

· прочность и устойчивость трубопровода с учетом наружного давления воды;

· устойчивость трубопровода при воздействии волн, течений и льда;

· прочность и устойчивость трубопровода при учете неравномерности поверхности морского дна.

Если в результате расчетов получатся какие-то отклонения от допустимых нормативных величин (напряжения, прогиба и др.) принимаются конкретные конструкционные решения, позволяющие обеспечить нормативные параметры проекта. Следует отметить, что методы расчета трубопроводов, апробированные в многочисленных проектах, реализованных на суше, применимы и в проектах по строительству морских трубопроводов. Вопросы технологии прокладки (строительства) морских трубопроводов не имеют аналогов на суше [4, 6, 7].

3.9.3 Проектирование трубопроводов для арктических условий

Существующие методы проектирования различают мелководные участки и глубоководные участки, где дно вне досягаемости плавающего льда и свободно от вечной мерзлоты. В Арктике глубокими считаются воды от 50 м.

В мировой практике известны случае повреждения трубопроводов торосами. Дрейфующие торосы смещают, повреждают, разрушают подводные трубопроводы, а также порывают кабели дистанционной связи, что в свою очередь создают угрозу загрязнения экологии, серьезные экономические убытки [2].

Проектирование в глубоких водах, как правило, аналогично проектированию в умеренных широтах. Исключение составляет неровное морское дно с бороздами, проделанные айсбергами. Трубопровод может нуждаться в теплоизоляции для предотвращения образования гидратов и обеспечения свободной перекачки сырой нефти (парафины).

На мелководье основная проблема - "царапание" дна льдом. Интенсивность повреждения морского дна зависит от района, она наиболее значительна при глубинах воды между 20 и 30 м. Повреждения менее серьёзны в мелкой воде, потому что большие ледовые массы оседают на дно далеко от берега и глубина борозд может достигать нескольких (обычно не более 8) метров.

Возникающая при таком контакте нагрузка оценивается по крайней мере на два порядка выше, чем от донных рыболовных тралов, на сопротивление воздействия которых трубопроводы обычно рассчитываются. Кроме того, нагрузка распределяется по ширине ледовых борозд и углублений, имеющей порядка нескольких десятков метров.

Защита трубопровода, проложенного ниже глубины возможного повреждения, вряд ли осуществима, по крайней мере на значительную протяжённость, так как стоимость таких мероприятий бывает экономически невыгодной. Поэтому одним из вариантов защиты может быть создание над трубопроводом каменной бермы (каменного уступа), которая принимает на себя сдвиговые нагрузки. Этот вариант применим только на коротких мелководных участках близко от берега, и едва ли осуществим на большие расстояния. Имеются существенные возражения и с точки зрения защиты окружающей сред, поскольку в Арктике скальные породы не всегда легкодоступны, к тому же сброс камней (скалистой породы) может повлиять на морскую экосистему [2].

Даже если ледовое образование движется над заглубленным в грунт трубопроводом, последний не всегда защищён, поскольку воздействие от ледовых образований на трубопровод может быть передано через грунт. Здесь следует различать три зоны:

· поверхностная зона 1 - выше уровня основания льда (днища стамухи);

· зона 2 - где происходят большие пластические деформации грунта;

· более глубокая зона 3, в которой грунт испытывает относительно низкое давление, и деформация его относительно мала.

Протяжённость зоны 2 зависит от геотехнических характеристик грунта; она меньше в слабых грунтах и наибольшая в илах и песках, где может достигать нескольких метров.

Таким образом, трубопровод должен заглубляться в грунт по крайней мере на глубину возможного повреждения или на несколько метров глубже. В настоящее время разработано несколько методов расчёта системы "лёд - грунт - трубопровод" для оценки напряжённо-деформированного состояния трубы и оценки уровня его вероятности с учётом явления пропахивания дна ледовыми образованиями.

Рис. 8. Схема ледовых нагрузок (пропахивание)

По заданным распределениям вероятностей и ширин ледовых борозд и углублений, с помощью метода Монте-Карло с использованием расчётно-теоретических моделей воздействия ледового образования на донное основание определяется вероятность того, что деформация трубы превысит критический уровень для данного диапазона заглублений.

Это приводит к тому, что определяется зависимость вероятности повреждения трубы за каждое пересечение торосом трубопровода от величины его заглубления. На основании этой процедуры определяется глубина заглубления прокладки трубопровода для приемлемых нормативных уровней вероятности [3].

3.9.4 Пересечение береговой линии арктического шельфа

Проблема пересечения прибрежной полосы и береговой линии требует особого внимания при проектировании морских трубопроводов. Сложность задачи объясняется сложностью взаимодействия геологических, гидродинамических и биологических факторов, сформировавших геоморфологию берега [2].

Учёт этих факторов объясняет необходимость удовлетворения следующих требований при пересечении береговой линии в точках входа:

· минимально возможное расстояние и удобная сухопутная трасса (дорога) до точки подключения;

· наилучшие условия подхода для ТУС (трубоукладочного судна) при минимальном объёме земляных работ;

· пересечение береговой линии должно быть по возможности близким к перпендикулярному;

· по возможности абразия берега в местах предполагаемого пересечения должна быть минимальной или устойчивой.

Повреждения дна ото льда в месте пересечения больше, чем в более глубокой воде. Лёд, движимый ветрами, наползает на берег и может нагромождаться на существенную высоту, сильно повреждая берег. Вечная мерзлота располагается близко ко дну. Тепло от трубопровода, эксплуатирующегося при положительной температуре, передаётся вглубь морского дна и может вызвать протаивание грунта, его просадку и, как следствие, существенные изгибные напряжения. Трубопровод чувствителен также к волнам и передвижению донных осадков, что осложняет выбор оптимальных решений при проектирования подхода к берегу [2].

Всё это означает, что трубопровод почти всегда должен быть сильно заглублен в прибрежной зоне - так, чтобы имелся достаточный слой грунта, защищающий его от повреждений и ледовых нагрузок. В этом случае он будет ниже границы вечной мерзлоты, по крайней мере в части подхода к берегу, на берегу и, возможно, в мелководной зоне. Для участка вечной мерзлоты рекомендуется поддерживать температурный режим трубопровода, чтобы температура потока транспортируемого флюида была бы близка к температуре окружающей вечной мерзлоты и не происходили бы такие геокриологические процессы, как морозное пучение, вызываемое резким охлаждением грунтов, или их осадка, вызванная таянием. В большинстве случаев этот участок трубопровода необходимо надёжно теплоизолировать, чтобы избегать гидрато- и парафиноотложения.

В настоящее время существую несколько вариантов пересечения береговой линии.

Один из вариантов пересечения береговой линии - туннельный. Проложить тоннель достаточно глубоко, чтобы трубопровод был полностью защищен от повреждений, несложно, но если берег достаточно крут, выход туннеля необходимо расположить ниже глубины, на которой возможны повреждения. Существуют несколько методов соединения трубопровода в туннеле с трубопроводом на дне: сваркой под высоким давлением или поверхностным присоединением. Основным недостатком этого варианта пересечения береговой линии является его дороговизна.

В качестве примера туннельного способа пересечения берега можно отнести техническое решение на месторождении Тролль в Северном море [3].

Тоннель начинается на глубине 165 м ниже морского дна (на расстоянии 3,6 км от ГПЗ в г. Kollsnes на западном побережье Норвегии) и связан с пятью трубопроводами, уложенными на морском дне, с помощью трёх вертикальных шахт. Общая длина участков тоннеля составляет до 7500 м, поперечное сечение тоннеля на разных участках составляет 110 и 50 м2.

Многофазная смесь (газ, конденсат и МЭГ), которые транспортируются от месторождения по трём 36- дюймовым трубопроводам (914,4 мм), через соединительные трубопроводы поступает по внутришахтным трубопроводам одной из шахт в три тоннельных трубопровода и по ним на завод по подготовке газа и конденсата.

По двум тоннельным газопроводам и по внутришахтным трубопроводам двух других шахт подготовленный на заводе природный газ поднимается вертикально вверх и через соединительные трубопроводы поступает в два экспортных газопровода из труб диаметром 40" (1016 мм) и по ним поступает в г. Emden (ГТС Norpipe) и в г. Zeebrugge (ГТС Europipe).

Другой распространённый вариант берегового примыкания трубопровода - наклонное бурение, при котором трубопровод протаскивается через предварительно пробуренную скважину на прибрежном участке, и которое бурно развивается последние десятилетия.

В России в 2000 г. компания КТК завершила сооружение самого большого в мире (на тот период) трубопровода, построенного с использованием технологии наклонно-направленного бурения (ННБ) на водном переходе через Волгу.

Переход через Волгу был осуществлен горизонтально-наклонным бурением (иными словами, наклонно-направленным бурением). После прохода в прорытом проходе (канале) был протащен трубопровод большего диаметра, чем основной диаметр нефтепровода - 1016 мм. Затем внутри прорытого канала была установлена основная труба по технологии "труба в трубе". Прорытый туннель располагается под дном реки на глубине 17-20 м. Общая протяженность подводного участка 1200 м, причем он углубляется с проектной глубины укладки (перед рекой) и выходит на проектную глубину укладки (после реки) на расстояниях порядка 250-300 м от уреза реки.

В настоящее время метод наклонно-направленного бурения широко применяется для трубопроводных участков при пересечении береговой линии и предлагается для строительства в Арктике. Наклонно-направленное бурение может использоваться на расстояниях до 1,5 км для трубопроводов до 48 дюймов в диаметре [2].

Среди преимуществ наклонно-направленного бурения для пересечения арктического берега можно отметить следующие:

· Этот метод не зависит от времени года, может применяться независимо от ледовой и волновой обстановки. Конструкция сооружается в любое время, оборудование и обученный персонал могут работать все 12 месяцев.

· Трубопровод располагается значительно ниже морского дна, так что полностью обеспечивается его безопасность от повреждений ледовыми образованиями.

· Этот метод по существу тот же, что и на южных акваториях, так что южный опыт и оборудование могут быть полностью применимы в арктических условиях и подрядчику нет необходимости изучать новые решения (в отличие от связанных, например, со льдом).

· Конечный участок трубопровода может быть достаточно удалён от берега. Место бурения выбирается на благоприятных грунтах, далеко от прерывистой или сплошной мерзлоты или болота. На трубопровод не будет воздействовать эрозия берега.

· Воздействие на окружающую среду минимально. Обломки и бентонитная смесь, используемая при бурении для поддержания скважины (канала), могут быть в случае необходимости собраны и удалены.

· Воздействие на окружающую среду ограничивается некоторым шумом во время бурения.

· Опыт наклонно-направленного бурения используют многие компании - подрядчики, что в свою очередь в сфере конкуренции снижаются цены на проведение работ.

Горизонтальный трубопровод может обойтись без теплоизоляции, поскольку минимальная температура окружающего грунта относительно высока, не ниже минус 2°С, за исключением первого (со стороны берега) участка, который может проходить через поверхностную вечную мерзлоту.

Широкое применение метода наклонного бурения для прокладки участков трубопроводов, пересекающих береговую линию, ограничивается тем обстоятельством, что его длина не может превышать 1-2 км для труб большого диаметра [2].

Третий используемый вариант трубного прохождения береговой линии - открытые земляные работы, когда эта секция трубопровода укладывается в предварительно разработанную драглайном или экскаватором землю - траншею. Траншея засыпается гравием или дроблённой скальной породой, насыпь армируется. В результате формируется насыпь щебня с трубопроводом под ним, которая противодействует воздействию волн и льда.

В качестве примера такого метода, можно привести раздел проектного решения по пересечению береговой линии экспортного газопровода Киринского месторождения.

Каждая трубопроводная нитка двухниточного экспортного трубопровода, по которому транспортируется пластовая продукция месторождения, имеет протяжённость 44 км, в том числе подводный участок длиной 29 км.

В этом районе на глубинах моря 10-15 м глубина пропахивания дна может составлять 2,0 м. Для защиты трубопроводов от стамух, могущих привести к повреждению трубопроводов, а также учитывая деформации морского дна вследствие литодинамических процессов, на участках трассы с глубинами моря от 0 до 30 м принимается прокладка морских трубопроводов с заглублением в грунт на величину от 4 м до 1,1 м. Далее - на всём подводной участке величина заглубления в грунт составляет 1,1 м.

3.9.5 Монтаж морских трубопроводов

Укладку морских трубопроводов можно осуществлять несколькими методами. Выбор метода для данной глубины воды обычно определяется сочетанием характеристик оборудования, возможностью его приобретения или аренды, условиями окружающей среды, стоимостью и другими факторами [2].

1. Наиболее распространенными являются следующие методы:

Для участков укладки трубопровода в траншею при пересечении береговой линии:

ь протаскивание на берег с баржи, стоящей на якорях в море, по предварительно разработанной траншее с использованием береговых лебедок.

ь монтаж плетей на берегу и протаскивание трубопровода в море по разработанной траншее с использованием лебедок рабочей баржи или буксиров.

ь монтаж трубопровода на барже и протаскивание на берег с баржи по предварительно разработанной траншее. Тяговое усилие передается от установленной на барже лебедки через канат, проходящий через блок на берегу, и обратно на лебедку баржи.

Последний метод является оптимальным с точки зрения минимализации подготовительных работ и затрат на организацию и эксплуатацию береговых сооружений.

2. Для укладки трубопровода в глубоководных зонах:

ь обычный S-метод;

ь метод укладки при вертикальном положении труб (J-метод);

ь укладка трубопровода с барабана (G-метод);

ь буксировка над дном;

ь протаскивание по дну;

ь буксировка на заданной глубине;

ь буксировка на поверхности.

Методы буксировки обычно применяются только при работе с очень короткими трубопроводами.

Для строительства подводных магистральных нефте- и газопроводов, протяженность которых может достигать десятков и сотен километров, в настоящее время применяют технологию наращивания трубопроводав море при использовании специальных трубоукладочных судов (ТУС). При этом все сварочные операции, неразрушаюший контроль и нанесение изоляции на монтажные стыки производятся на борту судна на нескольких рабочих постах одновременно. По мере наращивания трубопровода на одну трубу или секцию судно-трубоукладчик перемещается вперед, а трубопровод сходит на дно путем свободного погружения. Для плавного схода трубопровода с кормы и снижения возникающих напряжений судно оборудуют специальным поддерживающим устройством - стингером. Контроль напряженно- деформированного состояния трубопровода на стингере и свободно провисающем участке между стингером и морским дном осуществляется путем приложения продольного растягивающего усилия на ТУС. Удержание самого судна в стационарном положении осуществляется с помощью системы якорей или динамического позиционирования [2, 6, 9].

Современная технология строительства морских трубопроводов больших диаметров с использованием судов-трубоукладчиков основана на применении двух основных способов проихводства укладочных работ - S методе и J- методе укладки трубопровода. На практике используют сочетание обеих технологий, а именно строят прибрежные участки с помощью судов, реализующих S- метод, а продолжают монтаж в глубь моря J- методом.

Укладки трубопровода в глубоководных зонах можно классифицировать следующим образом:

1. протаскивание по дну моря;

2. погружение с поверхности моря;

3. спуск на морское дно с трубоукладочных судов (ТУС).

Способ укладки протаскиванием по дну

Этот способ широко используется при сооружении трубопроводов в прибрежных зонах.

Кроме того, способ протаскивания используют при сооружении трубопроводов к пунктам беспричального налива танкеров, прибрежным платформам или между двумя нефтедобывающими платформами в море [3].

В настоящее время делаются усилия для разработки технологии протаскивания трубопроводов на большие расстояния со стыковкой под водой в гипербарических камерах. Главной проблемой при этом остаётся проблема обеспечения необходимой точности укладки и стыковки каждой новой прибуксированной плети трубопроводов с уже лежащей на грунте.

Технологический процесс строительства трубопроводов включает в себя изготовление на берегу плетей (длиной 500-2000 м), спуск их на воду и протаскивание по дну с применением мощных лебёдок или буксиров. Спусковая дорожка для транспортировки плетей трубопровода к урезу воды может иметь различную конструкцию (узкоколейная рельсовая дорога с тележками, спусковой путь из отдельных роликоопор, ледовая спусковая дорожка, спусковая дорожка в виде траншеи, заполненной водой и др.). При этом особое внимание обращается на защиту изоляционного покрытия от механических повреждений. Для создания необходимой тяги используют лебёдки, установленные на буксирах или баржах, которые удерживаются на якорях.


Подобные документы

  • Способы прокладки, заглубления в грунт морских трубопроводов при их строительстве и эксплуатации в условиях арктического шельфа. Анализ условий среды, в которой происходит укладка, опасные явления, расчёты прочности, ледовой нагрузки при эксплуатации.

    дипломная работа [2,3 M], добавлен 28.05.2013

  • Транспортная структура Приморского края. Классификация транспортной системы России, место в ней морского транспорта. Характеристика морского транспорта Приморского края и грузооборот морских портов. Перспективы развития морских портов Приморья.

    реферат [99,9 K], добавлен 30.11.2007

  • Продукция транспорта — грузооборот и пассажирооборот. Грузоперевозки, совершаемые при помощи морских контейнеров. Основные преимущества доставки и перемещения груза железнодорожным транспортом. Изменения в структуре грузооборота мирового транспорта.

    презентация [1,4 M], добавлен 04.11.2015

  • История создания и современная организация мореплавания и морского транспорта. Правовые основы регулирования перевозок пассажиров морским транспортом. Обязанности сторон при организации морских круизов. Круизы на паромах - паромные линии и переплавы.

    курсовая работа [47,2 K], добавлен 16.04.2008

  • Индивидуальные и коллективные спасательные средства морских судов и требования к ним. Описание действия экипажа при оставлении и покидании аварийного судна. Принципы обеспечения безопасности при спуске плотов и выживания на нем. Борьба за живучесть.

    курсовая работа [1,8 M], добавлен 02.01.2016

  • Понятие и классификация технологических процессов предприятий морского транспорта. Принципы грузовой обработки транспортных средств в порту. Характеристика морских перевозок грузов. Сущность экономической и эксплуатационной работы морского транспорта.

    реферат [28,9 K], добавлен 01.12.2009

  • Место водного транспорта в системе мирового хозяйства страны, его природные и технико-экономические преимущества. Главные типы морских торговых портов. Современное состояние отечественного водного транспорта, перспективы развития в Российской Федерации.

    реферат [27,6 K], добавлен 28.03.2013

  • Транспорт как одна из важнейших отраслей экономики различных стран. Разновидности водного транспорта. Крупнейшие порты и каналы. История развития морского флота России. Состав торгового флота. Основные грузопотоки морских портов ведущих государств мира.

    реферат [24,5 K], добавлен 12.11.2010

  • Сущность, понятие и назначение морского транспорта. Карта морских сообщений Республики Казахстан. Значение для отрасли и инфраструктура порта Актау. Статистика перевозки товаров и грузов в регионе. Транспортная стратегия развития в страны до 2020 года.

    презентация [849,3 K], добавлен 13.10.2014

  • Окружающая среда Арктического шельфа. Способы прокладки морских трубопроводов. Особенности их строительства в ледовых условиях. Расчет стенки подводного трубопровода при избыточном внутреннем давлении и его устойчивости при воздействии волн и течений.

    дипломная работа [4,2 M], добавлен 20.05.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.