Формирование оптимального портфеля ценных бумаг на основе моделей портфельной теории

Теоретические и прикладные аспекты экономико-математической модели Шарпа и Марковица в области оптимизации портфеля ценных бумаг. Основные положения и особенности функционирования рынка ценных бумаг, инвестиционной деятельности в области биржевых рынков.

Рубрика Банковское, биржевое дело и страхование
Вид реферат
Язык русский
Дата добавления 22.06.2013
Размер файла 121,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

11

Размещено на http://www.allbest.ru/

Введение

В последние годы в нашей стране в связи с развитием рыночной экономики существенно повысился интерес к постановке и решению задач теории инвестиций. Среди этих задач значительное место занимают задачи оптимизации портфелей активов.

Действительно, выбирая различные варианты распределения капитала между объектами, в которые инвестируется капитал, мы будем иметь различные результаты, если под результатом понимать величину дохода, полученного в течение заранее определенного периода. Очевидно, оптимальное распределение инвестируемого капитала должно обеспечивать в некотором смысле наилучший результат (приобрести недооцененные акции, чья рыночная цена на момент покупки ниже истинной, и избавиться от переоцененных бумаг и тем самым получить в перспективе максимальную прибыль). В то же время, решение о структуре распределения капитала принимается часто в условиях неопределенности, когда доходность от вложения капитала в объекты инвестирования носит случайный характер. Тем самым появляется риск вложения капитала и задача оптимизации портфеля инвестиций должна ставиться и решаться в условиях наличия риска.

Целью данного реферата является составление оптимального портфеля ценных бумаг, используя различные модели .

1. Теоретические аспекты формирования оптимального портфеля ценных бумаг

Если портфель состоит более чем из 2 ценных бумаг, то для любого заданного уровня доходности существует бесконечное число портфелей, или, иными словами, можно сформулировать бесконечное количество портфелей, имеющих одну и ту же доходность.

Тогда задача инвестора сводится к следующему: из всего бесконечного набора портфелей с ожидаемой доходностью E(rn) необходимо найти такой, который обеспечивал бы минимальный уровень риска. Иными словами, можно задачу инвестора свести к следующему: необходимо найти минимальное значение дисперсии портфеля

(1)

при заданных начальных условиях:

(2)

(3)

Для решения задачи нахождения оптимального портфеля, содержащего n ценных бумаг, необходимо первоначально вычислить:

а) n значений ожидаемой доходности E(ri), где i = 1, 2,…, n каждой ценной бумаги в портфеле;

б) n значений дисперсий уi 2 каждой ценной бумаги;

в) n (n-1)/2 значений ковариации уi 2, j, где i, j = 1, 2,…, n.

Если подставить значения E(ri), уi и уi,j в выражения (1 -3), то выясняется, что в этих уравнениях неизвестными оказываются только величины Wi - «веса» каждой ценной бумаги в портфеле. Следовательно, задача формирования оптимального портфеля из n ценных бумаг по сути дела сводится к следующему: для выбранной величины доходности Е* инвестор должен найти такие значения Wi, при которых риск инвестиционного портфеля становится минимальным. Иначе говоря, для выбранного значения Е* инвестор должен определить, какие суммы инвестиционных затрат необходимо направить на приобретение той или иной ценной бумаги, чтобы риск инвестиционного портфеля оказался минимальным.

2. Метод Шарпа

В 1963 г. американский экономист У. Шарп предложил новый метод построения границы эффективных портфелей, позволяющий существенно сократить объемы необходимых вычислений. В дальнейшем этот метод модифицировался и в настоящее время известен как одноиндексная модель Шарпа.

В основе модели Шарпа лежит метод линейного регрессионного анализа, позволяющий связать две переменные величины - независимую Х и зависимую Y линейным выражением типа Y = б + в Х. В модели Шарпа независимой считается величина какого-то рыночного индекса. Таковыми могут быть, например, темпы роста валового внутреннего продукта, уровень инфляции, индекс цен потребительских товаров и т.п. Сам Шарп в качестве независимой переменной рассматривал норму отдачи rm, вычисленную на основе индекса Standart and Poor's (S&P500). В качестве зависимой переменной берется отдача ri какой-то i-ой ценной бумаги. Поскольку зачастую индекс S&P500 рассматривается как индекс, характеризующий рынок ценных бумаг в целом, то обычно

модель Шарпа называют рыночной моделью, а норму отдачи rm - рыночной нормой отдачи.

Пусть норма отдачи rm принимает случайные значения и в течение N шагов расчета наблюдались величины rm1, r,…, rmN. При этом доходность ri какой-то i-ой ценной бумаги имела значения ri1, ri2,…, riN. В таком случае линейная регрессионная модель позволяет представить взаимосвязь между величинами rm и ri в любой наблюдаемый момент времени в виде:

ri,t = бi + вirm,t + еi,t (4)

где: ri,t - доходность i-ой ценной бумаги в момент времени t;

бi - параметр, постоянная составляющая линейной регрессии, показывающая, какая часть доходности i-ой ценной бумаги не связана с изменениями доходности рынка ценных бумаг rm;

вi - параметр линейной регрессии, называемый «бета», показывающий чувствительность доходности i-ой ценной бумаги к изменениям рыночной доходности;

rm,t - доходность рыночного портфеля в момент t;

еi,t - случайная ошибка, свидетельствующая о том, что реальные, действующие значения ri,t и rm,t порою отклоняются от линейной зависимости.

Особое значение необходимо уделить параметру вi, поскольку он определяет чувствительность доходности i-ой ценной бумаги к изменениям рыночной доходности. Ожидаемая доходность портфеля, состоящего из n ценных бумаг, вычисляется по формуле:

(5)

где Wi - вес каждой ценной бумаги в портфеле

Дисперсия портфеля в модели Шарпа представляется в виде:

(6)

Цели инвестора сводятся к следующему:

- необходимо найти минимальное значение дисперсии портфеля при следующих начальных условиях

(7)

(8)

(9)

Итак, отметим основные этапы, которые необходимо выполнить для построения границы эффективных портфелей в модели Шарпа:

1) Выбрать n ценных бумаг, из которых формируется портфель, и определить исторический промежуток в N шагов расчета, за который будут наблюдаться значения доходности ri,t каждой ценной бумаги.

2) По рыночному индексу вычислить рыночные доходности rm,t для того же промежутка времени.

3) Определить величину дисперсии рыночного показателя уm, а также значения ковариаций уi,m доходностей каждой ценной бумаги с рыночной нормой отдачи и найти величины вi:

(10)

4) Найти ожидаемые доходности каждой ценной бумаги E(ri) и рыночной доходности E(rm) и вычислить параметр бi:

бi = E(ri) - вiE(rm) (11)

5) Вычислить дисперсии у2е,i ошибок регрессионной модели

6) Подставить эти значения в соответствующие уравнения

После такой подстановки выяснится, что неизвестными величинами являются веса Wi ценных бумаг. Выбрав определенную величину ожидаемой доходности портфеля E*, можно найти веса ценных бумаг в портфеле, построить границу эффективных портфелей и определить оптимальный портфель. [1]

3.Портфельная теория Марковица

Портфель Марковица минимального риска

Задача оптимизации портфеля активов с вектором средней доходности ковариационной матрицей может быть сформулирована следующим образом

К этим условиям в задаче оптимизации портфеля активов следует добавить условие положительности портфеля (долей). Однако, в общем случае финансовых инструментов предполагается возможность открытия коротких позиций (отрицательных долей инструментов в портфеле). Тогда можно найти общее аналитическое решение задачи. Если обозначить,

то решение задачи имеет вид

Тогда зависимость дисперсии оптимизированного (эффективного) портфеля от требуемой доходности будет иметь вид

где -- минимально возможная дисперсия доходности портфеля и соответствующая ему средняя доходность

-- доходность портфеля, с соотношением риск-доходность таким же как и портфель минимального риска (графически это единственная точка пересечения с параболой прямой, проходящей через начало координат и вершину параболы)

4.Портфель Тобина минимального риска

При наличии безрискового актива (с нулевой дисперсией доходности) с доходностью формулировка задачи меняется

Решение этой задачи имеет вид

Вектор структуры рискового портфеля (доли рисковых активов не во всем портфеле, а в общей стоимости рискового портфеля) будет равен

Видно, что структура рисковой части портфеля не зависит от требуемой доходности. Требуемая доходность определяет лишь соотношение рискового портфеля и безрискового актива.

Средняя доходность рискового портфеля будет равна

Стандартное отклонение оптимального (эффективного) портфеля зависит от требуемой доходности линейно, а именно следующим образом

Нетрудно также определить связь средней доходности отдельных инструментов от средней доходностью портфеля. Для этого определим вектор коэффициентов

Отсюда получаем, что если инвесторы рациональны, то рыночный портфель условно можно считать эффективным, следовательно на рынке средняя доходность инструмента связана с доходностью рыночного портфеля следующим линейным образом

Это модель оценки финансовых активов -- CAPM

5 Инструменты Microsoft Excel

В ходе выполнения работы использование Microsoft Excel позволило быстро произвести необходимые расчеты с помощью набора встроенных функций.

С помощью функции «ДИСП» была рассчитана дисперсия показателя доходности, функция «КОВАР» позволила рассчитать значения ковариаций доходностей каждой ценной бумаги с рыночной нормой отдачи.

Так же использовалась надстройка «Поиск решения», которая предназначена для решения определенных систем уравнений, линейных и нелинейных задач оптимизации. С ее помощью можно определить, при каких значениях указанных влияющих ячеек формула в целевой ячейке принимает нужное значение (минимальное, максимальное или равное какой-либо величине). Для процедуры поиска решения можно задать ограничения, причем не обязательно, чтобы при этом использовались те же влияющие ячейки. Для расчета заданного значения применяются различные математические методы поиска. Кроме того, результаты работы программы могут быть оформлены в виде отчета.

В окне задания начальных условий можно указать целевую ячейку, ячейку в которой содержится целевая функция, указать направление оптимизации, изменяющиеся ячейки и ограничения [2].

Заключение

портфель ценный бумага

Рассмотрены теоретические и прикладные аспекты экономико-математической модели Шарпа и Марковица в области оптимизации портфеля ценных бумаг. В ходе проведенного исследования были изучены основные положения функционирования рынка ценных бумаг, инвестиционной деятельности в области биржевых рынков.

Концепция Шарпа, как и модель Марковица позволяет оптимизировать структуру портфеля ценных бумаг, используя линейную регрессионную модель, что в свою очередь добавляет возможности анализировать колебания цен, прогнозировать их значения. Все поставленные задачи были успешно реализованы.

Библиографический список

1. Аскинадзи В.М., Максимова В.Ф. Портфельные инвестиции / Московская финансово-промышленная академия. - М., - 2005. - с. 62 Орлова И.В.,

2. Поиск решений, Задачи оптимизации Excel. URL: http://www.exsolver.narod.ru/solver.html. 24.05.2012.

3. МФД-ИнфоЦентр, Информационное агентство. URL: http://mfd.ru/.24.04.2012

4. RTS, биржа. URL:http://rts.micex.ru/s75.24.05.2012

Размещено на Allbest.ru


Подобные документы

  • Понятие портфеля ценных бумаг и основные принципы его формирования. Модели оптимального портфеля ценных бумаг и возможности их практического применения. Типы инвесторов, работающих на российском фондовом рынке. Недостатки российского фондового рынка.

    контрольная работа [34,0 K], добавлен 25.07.2010

  • Обзор понятия портфеля ценных бумаг, позволяющего придать совокупности ценных бумаг такие инвестиционные характеристики, которые недостижимы для отдельно взятой ценной бумаги и возможны только при их комбинации. Модели оптимизации портфеля ценных бумаг.

    курсовая работа [563,0 K], добавлен 05.02.2013

  • Основные типы портфелей ценных бумаг. Анализ влияния типа инвестиционной стратегии на формирование портфеля ценных бумаг. Стили управления портфелей. Характеристика причин и вариантов диверсификации портфеля ценных бумаг, его современная концепция.

    курсовая работа [72,2 K], добавлен 19.12.2015

  • Определение инвестиционной политики, ее главная цель. Анализ ценных бумаг некоторых компаний, формирование инвестиционного портфеля на их основе, расчет текущей доходности. Особенности реструктуризации портфеля. Оценка инвестиционной деятельности.

    контрольная работа [21,7 K], добавлен 26.11.2010

  • Сущность рынка ценных бумаг. Характеристика рынка ценных бумаг. Субъекты рынка ценных бумаг. Задачи и функции рынка ценных бумаг. Система управления рынком ценных бумаг. Формирование рынка ценных бумаг в России. Состояние рынка ценных бумаг в РФ.

    курсовая работа [40,3 K], добавлен 22.05.2006

  • Анализ состояния современного рынка ценных бумаг в Украине, перспективы его развития. Обоснование выбора финансовых инструментов. Характеристика объектов инвестирования. Расчёт основных характеристик портфеля ценных бумаг. Характеристика риска портфеля.

    курсовая работа [152,3 K], добавлен 07.06.2010

  • Общая характеристика фондового рынка Украины. Характеристика предприятий, акции которых использовались при формировании портфеля ценных бумаг. Формирование портфеля ценных бумаг. Оптимизация портфеля ценных бумаг при наличии безрискового актива.

    курсовая работа [423,4 K], добавлен 04.05.2011

  • Виды и доходность ценных бумаг, принципы формирования и оптимизации их портфеля. Финансово-экономическая характеристика ОАО КБ "Севергазбанк", анализ его портфеля ценных бумаг, экономическое обоснование внедрения мероприятий по его совершенствованию.

    дипломная работа [488,8 K], добавлен 07.11.2010

  • Понятие финансового рынка. Оценка финансовой привлекательности акций. Управление портфелем ценных бумаг. Методы оценки инвестиционной привлекательности финансовых проектов. Специфика российского рынка ценных бумаг.

    дипломная работа [85,6 K], добавлен 14.03.2003

  • Сущность, виды и цели формирования портфелей ценных бумаг коммерческого банка; их функции: прирост стоимости, создание резерва ликвидности. Оценка рисков на рынке ценных бумаг. Анализ структуры и доходности портфеля ценных бумаг ОАО "Сбербанк Россия".

    реферат [32,9 K], добавлен 04.09.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.