Биосфера. Этапы эволюции биосферы

Совокупность всех живых организмов Земли. Восстановительный, слабоокислительный и окислительный этапы в эволюции биосферы. Выход жизни на сушу, вымирание динозавров, появление гоминид. Появление человека, овладение огнем и появление цивилизации.

Рубрика Биология и естествознание
Вид реферат
Язык русский
Дата добавления 01.02.2013
Размер файла 77,5 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

МИНОБРНАУКИ РОССИИ

федеральное государственное бюджетное образовательное учреждение

высшего профессионального образования

«ИРКУТСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

(ФГБОУ ВПО «ИГУ»)

Кафедра гидрологии и охраны водных ресурсов

РЕФЕРАТ НА ТЕМУ

БИОСФЕРА. ЭТАПЫ ЭВОЛЮЦИИ БИОСФЕРЫ

Руководитель : Ходжер Т. В.

Учебная группа: природопользование

Студент : Алексеенко С. А.

Иркутск 2013

Содержание

Введение

1.0 Основные этапы развития биосферы

1.1 Восстановительный этап в развитии биосферы

1.2 Слабоокислительный этап в развитии биосферы

1.3 Окислительный этап в эволюции биосферы

2.0 Ключевые этапы эволюции биосферы

2.1 Возникновение

2.2 Выход жизни на сушу

2.3 Вымирание динозавров

2.4 Появление гоминид

2.5 Появление человека

2.6 Овладение огнём

2.7 Цивилизация

Заключение

Литература

Введение

Биосфера (в современном понимании) - своеобразная оболочка Земли, содержащая всю совокупность живых организмов и ту часть вещества планеты, которая находится в непрерывном обмене с этими организмами. Биосфера охватывает нижнюю часть атмосферы, гидросферу и верхнюю часть литосферы.

Биосфера, как система динамическая и очень сложно устроенная, способна постоянно изменяться. И она действительно, с самого момента своего возникновения никогда не оставалась в одном и том же состоянии. Вся история биосферы - это ее непрерывное эволюционное развитие. Вы, конечно, помните, что состояние любой сложной системы определяется самым высокоразвитым компонентом в ее составе. А раз в биосфере таким является живое вещество, то и история развития биосферы - это в первую очередь история эволюции живых организмов и их сообществ.

Применение актуалистического метода позволило установить факт эволюционного развития биосферы и Земли в целом. Доказательства эволюционного развития биосферы базируются, главным образом, на палеонтологических данных, свидетельствующих о необратимом направленном развитии органического мира нашей планеты в направлении усложнения и появления всё более высокоразвитых форм.

В чём сохраняются следы процессов отдалённого прошлого, те самые результаты, которые мы сравниваем с результатами современных процессов? В горных породах. Их состав (минеральный и химический), особенности строения и являются производными тех условий, в которых происходило их формирование. Часть этих характеристик сохраняется или может быть реконструирована, несмотря на дальнейшие изменения, которым эти породы подвергались на протяжении миллионов лет. Поэтому, пока горная порода не разрушена полностью, а её вещество использовано для формирования других горных пород, мы можем реконструировать условия, существовавшие в эпоху её формирования.

Так что низкие скорости геологического и геохимического круговорота, в отличие от биологического - благо, дающее нам возможность проследить прошлое планеты достаточно строгими научными методами на многие сотни миллионов лет. Как Вам известно, из курса геологии, древнейшие сохранившиеся горные породы на Земле имеют возраст около 3,8 млрд. лет. Всё, что было раньше - строгой реконструкции не поддаётся, это область одних лишь гипотез.

«Эволюция видов, приводящая к созданию форм, устойчивых в биосфере, должна идти в направлении, увеличивающем проявление биогенной миграции атомов в биосфере», - этот биогеохимический принцип Вернадского утверждает высокую приспосабливаемость живого вещества, пластичность, изменчивость во времени. Живое вещество «приучалось» полнее использовать химические элементы, вовлекая их в круговорот биогенной миграции. Когда более полумиллиарда лет назад появились морские беспозвоночные, имеющие кальциевый наружный скелет, резко усилилась миграция атомов и некоторых соединений кальция. Скелет позвоночных стал фактором усиления миграции атомов фосфора, фтора. Наземная растительность резко активизировала в каменноугольную эпоху круговорот углерода. В земной коре сохраняются свидетельства вспышек, волн жизни в виде скоплений биогенных карбонатов, горючих сланцев, угля, нефти, писчего мела и других минеральных образований, связанных с деятельностью живого вещества, с проявлением организации биосферы.

1.0 Основные этапы развития биосферы

Если рассматривать уровни содержания кислорода в атмосфере как границы этапов развития биосферы, то с этой точки зрения биосфера прошла три этапа:

1. Восстановительный;

2. Слабоокислительный;

3. Окислительный.

1.1 Восстановительный этап в развитии биосферы

Как считают многие ученые, восстановительный этап развития биосферы начался еще в космических условиях и завершился появлением на Земле гетеротрофной биосферы. На этом этапе развития биосферы появились малые сферические анаэробы и прокариоты. Физиологические процессы этих организмов основывались не на кислородном окислении, а на дрожжевом брожении. Изначально в атмосфере Земли присутствовали лишь следы свободного кислорода. Производство свободного кислорода начали первые организмы. Но количество кислорода было незначительным и пока он приводил лишь к окислительным процессам на земной поверхности и в океане.

Поскольку первые организмы были гетеротрофами, они нуждались в питании. Пищей для них стали ранее накопленные органические соединения, растворенные в водах первичного океана, так как первичная биосфера ограничивалась водной средой. Но жизнь нуждалась в дополнительных источниках энергии. Поэтому на ранних стадиях эволюции живые организмы активно использовали различного рода радиацию. По мнению А. И. Перельмана, особенно важную роль играл радиоактивный калий, который поглощался первыми организмами. Потребность в калии впоследствии закрепилась генетически, хотя для более высокоорганизованных форм радиоактивность перестала служить источником энергии.

Продолжительность существования первичной восстановительной биосферы в геологических масштабах была невелика. Причина этого заключалась в том, что первичные гетеротрофные организмы быстро размножались и, естественно, довольно быстро исчерпали свою питательную базу. Поэтому, достигнув максимальной биомассы, они должны были либо вымереть от голода, либо перейти к автотрофному (фотосинтетическому) способу питания.

1.2 Слабоокислительный этап в развитии биосферы

Слабоокислительный этап в развитии биосферы связан с появлением около 4 млрд. лет назад процесса фотосинтеза. Новый способ питания был основан на том, что некоторые простые соединения обладают способностью поглощать свет, если в их составе есть атом магния (как в хлорофилле). Уловленная таким способом световая энергия может быть использована для усиления реакций обмена, в том числе и для образования органических соединений, которые при необходимости могут расщепляться с высвобождением энергии. Именно таким путем происходило образование хлорофилла, приведшее в конечном итоге к появлению фотосинтеза, позволявшего получать энергию непосредственно от Солнца.

Но первичная поверхность Земли, лишенная свободного кислорода, облучалась ультрафиолетовой радиацией Солнца. Поэтому, возможно, первые фотохимические организмы использовали радиацию ультрафиолетовой части спектра. Только после возникновения озонового экрана (в связи с появлением свободного кислорода как побочного продукта того же фотосинтеза) автотрофные фотосинтезирующие организмы начали использовать излучение в видимой части солнечного спектра.

Новый способ питания способствовал быстрому расселению организмов нового типа у поверхности первичных водоемов. Оказавшись более приспособленными, они вытеснили первичные гетеротрофные организмы. Можно предполагать, что в раннем океане шла борьба между первичными и вторичными организмами, завершившаяся победой автотрофов. Немаловажным фактором в этой борьбе стало то, что автотрофы в качестве отходов своей жизнедеятельности выделяли свободный кислород, который стал смертельным ядом для первичных гетеротрофов.

Первыми автотрофными организмами, очевидно, были цианеи, а затем зеленые водоросли. Останки их находят в породах архейского возраста (около 3 млрд. лет назад). В то время, очевидно, существовало множество видов водорослей, как свободно плавающих в воде, так и прикрепленных ко дну. Хотя свободный кислород и был ядом для первичных аэробов, не все они погибли. Некоторые остались жить в болотах, где не было свободного кислорода. Там, питаясь, они вьщеляли метан. Некоторые же первичные организмы смогли приспособиться к кислородной атмосфере.

Параллельно с этим шел процесс формирования эукариотов. Прокариоты -- простые, выносливые и практически бессмертные организмы -- уступали место смертным эукариотам. Прокариоты, обладавшие высокой вариабельностью, способностью к быстрому размножению, легко приспосабливались к меняющимся условиям среды, существовавшим в первые периоды истории Земли. Но с формированием кислородной атмосферы условия стабилизировались, и в этих новых условиях нужны были организмы нового типа, приспособленные к ним. Нужна была не генетическая гибкость, а генетическая стабильность. Эукариоты появились к концу второго этапа развития биосферы Земли.

Рассмотренные процессы составили содержание второго этапа в истории развития биосферы Земли, продолжавшегося до завершения осадконакопления полосчатых железистых формаций докембрия примерно 1,8 млрд. лет назад. Таким образом, этот период в истории биосферы занял почти половину всей геологической истории планеты. Дело в том, что хотя свободный кислород и появлялся в значительных количествах, но он расходовался не на образование атмосферы, а на окисление железа, сернистых соединений и других поливалентных металлов. При этом окислы железа осаждались, образуя полосчатые формации. Только после освобождения океана от железа и других металлов концентрация кислорода в атмосфере стала резко возрастать.

В естествознании существует понятие «точки Пастера» -- такой концентрации свободного кислорода, при которой кислородное дыхание становится более эффективным (примерно в 50 раз) способом использования внешней энергии Солнца, чем анаэробное брожение. Этот критический уровень примерно равен 0,01 от современного показателя содержания кислорода в атмосфере. После перехода через точку Пастера преимущество в естественном отборе получают организмы, способные к кислородному дыханию. С этого момента начинается третий этап в эволюции биосферы Земли.

1.3 Окислительный этап в эволюции биосферы

Третий этап эволюции биосферы связан с развитием фотоавтотрофной биосферы Земли. С этого момента количество кислорода в атмосфере начало резко повышаться. Еще в протерозое (2,6 млрд. -- 570 млн. лет назад) эукариоты разделились на растительные и животные клетки. Большей частей растительных клеток использовался фотосинтез. Благодаря этому концентрация кислорода в атмосфере возрастала, и его уже стало хватать для процессов дыхания. Тогда же в океане появились первые многоклеточные организмы.

Около 400 млн. лет назад (конец ордовика -- начало силура), когда концентрация свободного кислорода в атмосфере достигла 10%, возник озоновый экран, предохраняющий живое вещество от жесткого излучения, и жизнь вышла из моря на сушу. Как только это случилось, резко возросла интенсивность реакций фотосинтеза, а следовательно, и поступление кислорода в атмосферу. Всего за 100 млн. лет концентрация кислорода достигла современного значения в 21%. После этого состав атмосферы практически не менялся до наших дней.

Выход жизни на сушу обусловил резкое увеличение массы живого вещества. (Масса живого вещества суши в 800 раз больше биомассы океана.) Одновременно жизнь проникала все глубже в океан, осваивая все большие глубины. Наземные растения, отмирая, положили начало образованию угля, нефти, газа, горючих сланцев. Стал меняться биогеохимический круговорот элементов. При этом снижалась роль основных пород, и в земной коре вместо магния, кальция, железа большую роль стали играть кремний, натрий, алюминий, калий. Также благодаря деятельности живых организмов резко возрос круговорот кислорода и углекислого газа. Эти процессы, а также постепенное снижение уровня радиации стимулировали и ускоряли усложнение живого вещества, вели к появлению новых, более высокоорганизованных видов.

Так, на суше появились папоротники, хвощи, семенные папоротники. Развитие наземной растительности и образование почв создали предпосылки для выхода на поверхность континента животных. В результате эволюции растительного мира в мезозойской эре (около 200 млн. лет назад) возникли леса хвойных и цветковых растений.

Формирование и развитие биосферы предстает как чередование этапов эволюции, прерываемых скачкообразными переходами в качественно новые состояния, в результате чего образовывались все более сложные и упорядоченные формы живого вещества. В истории биосферы бывали временные остановки прогрессивного развития, но они никогда не переходили в стадию деградации, поворота развития вспять. Чтобы убедиться в этом, достаточно посмотреть на основные вехи в истории развития биосферы:

· появление простейших клеток-прокариотов;

· появление значительно более организованных клеток-эукариотов;

· объединение клеток-эукариотов с образованием многоклеточных организмов, функциональная дифференциация клеток в организме;

· появление организмов с твердыми скелетами и формирование высших животных;

· возникновение у высших животных развитой нервной системы и формирование мозга как органа сбора, систематизации, хранения информации и управления на ее основе поведением организмов;

· формирование разума как высшей формы деятельности мозга;

· образование социальной общности людей -- носителей разума.

Вершиной направленного развития биосферы стало появление в ней человека. В ходе эволюции Земли на смену геолого-биологической эволюции пришел период социальной эволюции, который принес самые крупные изменения в биосфере Земли, во всем облике нашей планеты.

2.0 Ключевые этапы эволюции биосферы

В истории нашей планеты, как и в жизни любого человека, существуют различные этапы самосовершенствования, от возникновения к нечто современному и совершенному иными словами эволюция. С эволюционной точки зрения биосфера прошла восемь этапов эволюции и это число отнюдь не конечное.

Около 600 млн. лет назад жизнь овладела мелководья и относительно быстро после этого вышла на сушу. Царство млекопитающих и покрытосеменных растений наступило 60 млн. лет назад, т.е., биосфера приобрела облик близкий современному. 6 млн. лет назад возникла группа приматов, являющихся прямыми и непосредственными предками современного человека, - гоминиды. 600 тыс. лет назад появился человек разумный, примерно 60 тыс. лет назад он овладел огнем и, таким образом резко выделившись из природы. Возникновение современной цивилизации можно отнести к периоду примерно 6 тыс. лет тому назад, а зарождение современного способа производства и начало Нового времени - 6 веков тому назад. Глобальных масштабов антропогенное воздействие на окружающую среду достигло, пожалуй, к середине XX века.

Исходя, из выше перечисленного биосфера прошла следующие ключевые этапы эволюции:

· Возникновение;

· Выход жизни на сушу;

· Вымирание динозавров;

· Появление гоминид;

· Появление человека;

· Овладение огнём;

· Цивилизация;

· Современный этап (наши дни).

2.1 Возникновение

земля живой организм биосфера

Возникновение биосферы относят к самым ранним периодам развития планеты. Первые известные окаменелые остатки живых организмов (возраст - 3,55 млрд. лет), были обнаружены в Западной Австралии Уильямом Шопфом. Они чрезвычайно похожи по структуре на современных цианобактерий (иначе называемые сине-зелёные водоросли), достаточно высокоразвитых фотосинтетиков. Геохимические данные свидетельствуют о том, что фотоавтотфная жизнь на планете существовала 4 млрд. лет тому назад. С биологической точки зрения её должна была бы предшествовать жизнь гетеротрофная. Но, как и, главное, когда она успела возникнуть?

Многовековая борьба за доказательство невозможности возникновения живого из неживого, завершилась триумфальными экспериментами Л. Пастера, которые поставили, казалось бы, точку в этом споре. Но, тогда оказалось, что жизнь могла быть сотворена лишь Богом. С этим не могла смериться материалистическая наука XX в. А. И. Опарин в 1924 г., а затем Дж. Холдейн в 1929 г. Выдвинули гипотезы биогенеза - возможности самопроизвольного зарождения жизни на Земле. Вообще говоря, было создано множество гипотез зарождения жизни, экспериментальной базой которых послужила, главным образом возможность синтеза простейших органических соединений в условиях древней Земли, как мы их себе сейчас представляем. Толчком к этому послужило открытие Миллером легкости образования аминокислот из неорганических предшественников.

Сама белковая молекула состоит из более простых частей - соединений углерода, водорода, азота и кислорода, связанных между собой определенным образом и образующих так называемые аминокислоты. Эти кислоты входят в состав любого организма, но можно ли назвать их самих «живыми»? Ученым удалось образовать аминокислоты из соединений, которые предположительно входили в состав первичной атмосферы Земли, - газообразной смеси водорода (), метана (), аммиака () и водяного пара (). Эту смесь подвергали сильным электрическим разрядам, а затем конденсировали. В полученной жидкости были обнаружены аминокислоты и другие углеводородные кислоты. В других экспериментах из неорганических составных частей были получены многие компоненты живой материи.

Результаты этих экспериментов приводят нас к выводу о том, что организмы развились путем длительной химической эволюции из неорганического вещества, состоявшего из сочетаний химических элементов и неорганических соединений. Эти соединения, наиболее вероятно, находились в морской воде, которую биологи называют «теплым питательным бульоном», хотя это должен быть довольно жидкий суп. Но так или иначе морская вода была жидкой средой, в которой легче всего могли происходить химические реакции. Вода является растворителем и превосходной средой для реакций органических соединений, которые и сами представляют собой жидкие системы. Более того, атомы углерода обладают исключительной способностью соединяться друг с другом самыми различными способами. Поэтому все эти обстоятельства обеспечивали наиболее благоприятные условия для возникновения в высшей степени разнообразных соединений.

Первичная атмосфера и гидросфера (включая упоминавшийся «питательный бульон») не содержали свободного кислорода. Весь кислород существовал только в форме соединений с другими элементами.

Кислород не только необходим для жизнедеятельности животных; в верхних слоях теперешней атмосферы он создает экран, защищающий Землю от ультрафиолетового излучения Солнца, которое в противном случае убило бы все живые организмы (В атмосфере Земли под действием ультрафиолетового излучения Солнца молекулы кислорода () превращается в молекулы озона (). Озон, скапливаясь в верхних слоях атмосферы, образует экран, защищающий Землю от ультрафиолетовых лучей. Сейчас мы живем как бы под зонтиком, который образует свободный кислород, а на ранних этапах истории Земли этой защиты не существовало. Поэтому в безжизненном первобытном мире, даже если бы каким-то образом возник какой-нибудь современный организм, он не мог бы выжить, потому что тогда не было этого защитного экрана.

Как мы уже говорили, ископаемые остатки, найденные в породах, показывают, что приблизительно 3,2 миллиарда лет назад в море уже существовали как простейшие, так и очень примитивные растения. Так как литосфера образовалась около 4,5 миллиарда лет назад, мы имеем промежуток времени продолжительностью около 1,3 миллиарда лет, в течение которого образовалось и развивалось живое вещество. Этот промежуток времени вдвое длиннее всего фанерозоя, со всей его долгой и сложной историей развития биосферы, что само по себе более чем достаточно. В течение этих 1,3 миллиарда лет в среде, лишенной свободного кислорода, должно было возникнуть и затем развиться до уровня простейших и примитивных растений живое вещество. Рассматривая эти события, мы должны также учитывать, что позднее кислород появился в атмосфере в больших количествах, потому что без этого не могли бы возникнуть животные.

Эти события, последовательность которых может быть на звана химической эволюцией, теоретически могут быть объяснены логично, но насколько истинна эта теория - покажет будущее.

Компоненты, необходимые для образования живого вещества, присутствовали в первичном океане, этом органическом «бульоне». Без наличия свободного кислорода ультрафиолетовое излучение Солнца свободно достигало поверхности суши и океана. Это облучение или разряды молний могли создать высокую энергию, необходимую для образования аминокислот, подобно тому, как это наблюдалось в лабораторных экспериментах. Аминокислоты могли объединяться, образуя белковые молекулы, которые, реагируя и легко вступая в соединения, способствовали дальнейшим изменениям, создавая более сложные углеводороды.

Где-то в этой последовательности находится звено, с которого мы могли бы считать начало возникновения жизни. Но какой момент считать началом жизни, зависит от того, как определить жизнь. Возможно, первый живой организм состоял из одной клетки. Возможно, это была очень простая бактерия или что-то напоминающее бактерию. Но что бы это ни было, оно нуждалось в питании. Источником питания для него могли служить молекулы углеводородов, составлявшие ил на дне мелкого моря. От этого способа питания оставался один шаг до усвоения или «поедания» сначала продуктов жизнедеятельности, а затем и мертвых тел таких же организмов. Следующим шагом логично должно было явиться поедание живого органического вещества.

В этой предполагаемой последовательности событий мы видим начало раздела живых организмов на две группы. Одна группа живет, поглощая отходы жизнедеятельности и мертвое вещество других организмов; другая группа, в некотором отношении более сложная, предпочитает питание живыми организмами. Это основное различие, положившее начало отдельным линиям развития, могло привести к разделению на растения и животных, хотя эта идея, видимо, чрезмерно упрощена.

Изменения, имевшие место в ходе этой и других ранних стадий эволюции, лучше всего выражаются в терминах биохимических реакций. Среди наиболее ранних изменений, вероятно, было одно, которое сделало возможной реакцию, получившую название ферментации. В том виде, как мы наблюдаем ее сейчас, ферментация осуществляется примитивными организмами, в том числе некоторыми бактериями, живущими в бескислородной среде. Поскольку эти организмы живут в такой среде, они дают нам ключ к пониманию жизни, которую вели организмы в первичном океане. При ферментации углеводороды расщепляются и перестраиваются, небольшое количество энергии высвобождается в виде тепла, а одним из образующихся продуктов является углекислый газ.

Этот продукт, безразлично, был ли он результатом ферментации или других химических реакций, теоретически имел большое значение для дальнейшего развития вновь образовавшейся жизни, потому что добавление большого объема углекислого газа к тому его небольшому количеству, которое уже могло содержаться в море, должно было придавать среде новые свойства. Оно создавало возможность для процесса фотосинтеза. Свойственный многим растениям, этот процесс создает различные органические соединения из воды, углекислого газа и энергии солнечных лучей, поглощенной растениями. Если углекислый газ постоянно поступал в море, растения, которые ранее не могли существовать в океане, обладавшем менее сложным химическим составом, могли теперь развиваться, «строя» свои ткани из углекислого газа.

Отсюда вытекает еще одно важное следствие. Одним из продуктов фотосинтеза является свободный кислород (). Поэтому при достаточном количестве растений, производящих кислород, он тоже должен был в свою очередь накапливаться в море. В этих новых условиях в присутствии свободного кислорода становится возможным процесс дыхания. Дыхание - процесс, обратный фотосинтезу, - не только производит углекислый газ, необходимый для растений, но также высвобождает большое количество энергии - приблизительно в тридцать пять раз больше, чем ферментация. Эта энергия имеет такую форму, которая может использоваться для роста и движения организмов. При этих очевидных преимуществах дыхание должно было сделать возможным существование животных. Животные с пользой употребили избыток энергии, образующейся при дыхании. Они научились свободно перемещаться, некоторые очень быстро, в поисках пищи. Движение требовало координации частей тела, точного контроля и способности быстро принимать сложные решения. Для этого нужен был мозг, еще одно имеющее большую ценность отличие животных от растений.

Таким образом, возникновение биосферы начинается с химических процессов, которые позднее приобретают характер биохимических. Последовательность этих процессов в схематизированном виде представляется в следующем виде:

Такова химически обоснованная последовательность событий в образовании жизни в самом простейшем виде. Она выглядит логичной, но нельзя забывать, что это все еще не более чем гипотеза. Зарождение процессов жизни могло происходить и несколько отличным от описанного путем. Большинство ученых считает, что причиной возникновения этих процессов был длинный ряд случайных химических соединений, чисто случайных событий, таких, например, как столкновение молекул в «питательном бульоне».

Слово «случайный» не должно наводить нас на мысль о том, что вся эта последовательность событий была чисто «случайной», выражение, под которым обычно имеется в виду «маловероятный» или даже «почти невероятный». «Случайность» здесь означает только «вероятность». Когда мы говорим о случайности события (такого, как соударение молекул), мы имеем дело со статистической закономерностью. Каждое случайное событие, каким бы маловероятным оно ни было, если рассматривать его изолированно, становится более и более вероятным по мере увеличения числа проб. Если вероятность события составляет 1 из 1000 в одном эксперименте, то при 10 000 экспериментов вероятность того, что оно произойдет хотя бы однажды, будет равной 19 999 из 20 000; такая вероятность обычно уже не считается «случайностью», это почти уверенность.

Теперь посмотрим, сколько раз за данный промежуток времени могло произойти 10 000 попыток? Мы рассматриваем промежуток времени длиной около 1,3 миллиарда лет, с возникновения Земли до появления растений, плюс 2 миллиарда лет или около того до момента, о котором известно, что животные уже существовали. Сколько раз могли произойти 10 000 попыток для каждого из таких неупорядоченных событий за период протяженностью 3,2 миллиарда лет? Воображение человека заходит в тупик при попытке вычислить такое огромное число. Ни один человек, знакомый со статистикой, не отвергнет возможность возникновения химических соединений просто на том основании, что для них могло не хватить времени. Времени было более чем достаточно.

2.2 Выход жизни на сушу

Очень важным событием, способствовавшим резкому ускорению темпов эволюции всего живого населения нашей планеты, был выход растений из морской среды на сушу. Выход растений на поверхность континентов можно считать подлинной революцией в истории биосферы. Развитие наземной растительности создало предпосылку для выхода на сушу животных. Однако массовому переходу растений на сушу предшествовал длительный подготовительный период. Можно предполагать, что растительная жизнь на суше появилась очень давно, во всяком случае локально - во влажном климате на побережьях мелководных заливов и лагун, где при изменениях уровня воды периодически происходило поступление водной растительности на сушу. Советский натуралист Л. С. Берг впервые высказал мысль, что поверхность суши не представляла собой безжизненной пустыни ни в кембрии, ни в докембрии. Видный советский палеонтолог Л. Ш. Давиташвили также допускал, что в докембрии на материках, вероятно, уже было какое-то население, состоящее из низкоорганизованных растений и, возможно, даже животных. Однако их общая биомасса была ничтожной.

Чтобы жить на суше, растения должны были не терять воду. Следует при этом иметь в виду, что у высших растений - мхов, папоротникообразных, голосеменных и цветковых, составляющих в настоящее время главную массу земной растительности, соприкасаются с водой только корни, корневые волоски и ризоиды, остальные же их органы находятся в атмосфере и испаряют воду всей поверхностью.

Наиболее расцвела растительная жизнь на берегах лагунных озер и болот. Здесь появился тип растения, нижняя часть которого находилась в воде, а верхняя - в воздушной среде, под прямыми лучами солнца. Несколько позже, с проникновением растений на незатопляемую сушу, самые первые их представители развили корневую систему и получили возможность потреблять грунтовые воды. Это способствовало их выживанию в засушливые периоды. Таким образом, новые обстоятельства привели к расчленению клеток растений на ткани и выработке защитных приспособлений, каких не было у обитавших в воде предков.

Массовое завоевание континентов растениями произошло в силурийский период палеозойской эры. Прежде всего это были псилофиты - своеобразные споровые растения, напоминающие плауны. Часть извилистых стеблей псилофитов была покрыта щетинистыми листьями. Псилофиты были лишены корней, а в основном и листьев. Они состояли из ветвившихся зеленых стеблей высотой до 23 см и горизонтально тянувшегося в почве корневища. Псилофиты, как первые достоверные растения суши, создавали целые зеленые ковры на влажной почве

Вероятно, продукция органического вещества первых растительных покровов суши была незначительной. Растительность силурийского периода, несомненно, произошла от водорослей моря и сама породила растительность последующего периода.

После завоевания суши развитие растительности привело к образованию многочисленных и разнообразных форм. Интенсивное разделение растительных групп началось в девоне и продолжалось в последующее геологическое время.

Мхи произошли от водорослей. Их ранняя стадия развития очень сходна с некоторыми зелеными водорослями. Однако существует предположение, что мхи произошли от более простых представителей бурых водорослей, приспособившихся к жизни на сырых скалах или вообще в почвах.

На поверхности раннепалеозойских континентов век водорослей сменился веком псилофитов, давших растительность, напоминавшую по своему внешнему виду и размерам современные заросли крупных мхов. Господство псилофитов сменилось в каменноугольный период господством папоротникообразных растений, образовавших довольно обширные леса на болотистых почвах. Развитие этих растений способствовало тому, что состав атмосферного воздуха изменился. Добавилось существенное количество свободного кислорода и накопилась масса пищевых веществ, необходимых для возникновения и развития сухопутных позвоночных животных. В то же время были накоплены огромные массы каменного угля. Каменноугольный период характеризовался исключительным расцветом наземной растительности. Возникли древовидные плауны, достигавшие в высоту 30 м, огромные хвощи, папоротники, начали появляться хвойные. В пермский период продолжалось развитие наземной растительности, которая значительно расширила места своего обитания.

Период господства папоротникообразных сменился периодом шишконосных хвойных растений. Поверхность материков стала приобретать современный облик. В начале мезозойской эры большое распространение получили хвойные, цикадовые, а в меловой период появляются цветковые растения. В самом начале раннемеловой эпохи еще существовали юрские формы растений, но затем состав растительности сильно изменился. В конце раннемеловой эпохи встречается много покрытосеменных растений. С самого же начала позднемеловой эпохи они оттесняют голосеменные и занимают господствующее положение на суше. В целом в наземной флоре происходит постепенная смена мезозойской растительности голосеменных (хвойных, цикадовых) растительностью кайнозойского облика. Растительность позднемеловой эпохи уже характеризуется присутствием значительного количества таких современных цветковых растений, как бук, ива, береза, платан, лавр, магнолия. Эта перестройка растительности подготовила хорошую кормовую базу для развития высших наземных позвоночных животных - млекопитающих и птиц. Развитие цветковых растений было связано с расцветом многочисленных насекомых, которые играли важную роль в опылении.

Наступление нового периода в развитии растений не приводило к полному уничтожению древних растительных форм. Часть организмов биосферы сохранялась. Бактерии с появлением цветковых растений не только не исчезли, но продолжали существовать, найдя новые источники питания в почве и в органическом веществе растений и животных. Водоросли разных групп изменялись и развивались наряду с высшими растениями.

Хвойные леса, появившиеся в мезозое, произрастают и сейчас наряду с лиственными. Они дают приют папоротникообразным растениям, так как эти древние обитатели туманного и влажного климата каменноугольного периода боятся открытых мест, освещенных солнцем.

Наконец, следует отметить наличие персистентных форм в составе современной флоры. Наиболее персистентными оказались отдельные группы бактерий, практически не изменившиеся со времени раннего докембрия. Но и из более высокоорганизованных форм растений также образовались роды и виды, которые мало изменились к настоящему времени.

Следует отметить несомненное присутствие в составе современной флоры относительно высокоорганизованных многоклеточных родов растений. Позднепалеозойские и мезозойские формы растений, которые без изменений прожили десятки и сотни миллионов лет, безусловно, относятся к персистентным. Таким образом, в настоящее время среди растительного мира сохранились ''живые ископаемые'' из групп папоротников, голосеменных и плаунов. Термин ''живое ископаемое'' впервые употребил Ч. Дарвин, указав в качестве примера восточноазиатское дерево из голосеменных Ginkgo biloba. Из мира наземных растений к живым ископаемым относятся наиболее известные папоротниковые пальмы, гинкговое дерево, араукарии, мамонтово дерево, или секвойя.

Многие роды растений, владыки древних лесов, также существовали чрезвычайно долго, особенно в палеозое; например, Sigillaria, Lepidodendron, Calamites - не менее 100-130 млн лет. Столько же мезозойские папоротники 11 хвойные Metasequoia. Род Ginkgo насчитывает более 150 млн лет, а современный вид Ginkgo biloba, если включать в него, по существу, неотличимую форму Ginkgo adiantoides, - около 100 млн лет.

Живые ископаемые современного растительного мира иначе можно назвать филогенетически законсервированными типами. Хорошо изученные в палеоботаническом отношении растения, относимые к живым ископаемым, являются консервативными группами. Они совсем не изменились или изменились очень мало по сравнению с родственными формами геологического прошлого.

Естественно, что наличие живых ископаемых в современной флоре ставит проблему их образования в истории биосферы. Консервативные организации присутствуют во всех крупных филогенетических ветвях и существуют в самых различных условиях: в глубоководных и мелководных зонах моря, в древних тропических лесах, на открытых степных просторах и во всех без исключения водоемах. Важнейшее условие для существования консервативных в эволюционном отношении организмов - наличие мест обитания с постоянной средой жизни. Однако стабильные условия обитания не являются решающими. Присутствие только отдельных форм, а не всех сообществ флоры и фауны указывает на другие факторы сохранности живых ископаемых. Изучение их географического распространения свидетельствует о том, что они приурочены к строго определенным территориям, при этом характерна географическая изоляция. Так, Австралия, острова Мадагаскар и Новая Зеландия - это типичные области распространения наземных живых ископаемых.

В своей эволюции растительный мир создает общий облик древних ландшафтов, в которых происходило развитие животного мира. Поэтому подразделение геологического времени может быть проведено на основании смены различных растительных форм. Немецкий палеоботаник В. Циммерман еще в 1930 г. подразделил все геологическое прошлое с точки зрения развития растительного мира на шесть эр. Он дал им буквенное обозначение и расположил в последовательности от древних эр к более молодым.

2.3 Вымирание динозавров

Динозавры вымерли в конце мелового периода, в пределах 65 млн. лет назад. Нет общей стороны медали, было ли это вымирание постепенным либо неожиданным, что считается сегодня предметом споров.

Вымирание динозавров явилось только частью так называемого «великого вымирания», имевшего место в тот момент: сообща с динозаврами вымерли морские рептилии (мозазавры и плезиозавры) и летающие ящеры, почти все моллюски, даже аммониты, белемниты и большое количество небольших водорослей. Всего погибло 16 % родов морских животных (47 % родов морских животных) и 18 % родов сухопутных позвоночных.

Однако немалая часть растений и животных протянула этот период. К примеру, не вымерли сухопутные пресмыкающиеся, эти как змеи, черепахи, ящерицы и водные пресмыкающиеся, эти как крокодилы. Вынесли все тяготы обозримые родственники аммонитов -- наутилусы, и еще птицы, млекопитающие, кораллы и наземные растения.

Предположительно некоторые динозавры (трицератопсы, тероподы и др.) присутствовали на западе Северной Америки и в Индии ещё некоторое количество млн. лет в первых числах палеогена, впоследствии их вымирания в иных местах.

Более знаменитые версии вымирания динозавров:

I. Внеземные:

1. Снижение астероида -- 1 из самых популярных версий (т.н. «гипотеза Альвареса»). Она базируется основным образом на приблизительном соответствии времени образования кратера Чикшулуб, который считается отпечатком от падения астероида объемом около 10 км в пределах 65 млн. лет назад на полуострове Юкатан в Мексике и временем вымирания основной массы из исчезнувших видов динозавров. Также, астрофизические расчёты, основанные на наблюдениях ныне имеющих место быть астероидов, демонстрируют, что астероиды объемом наиболее 10 км сталкиваются с территорией примерно в пределах одного раза в 100 млн. лет, что по порядку величины соответствует, вроде как, датировкам знаменитых кратеров, оставленных этими метеоритами, а с иной - зазорам времени меж пиками вымираний биологических видов в фанерозое. Нужно обнаружить, что авторы и союзники данной гипотезы в научной среде, практически в ста процентах случаев, считаются не палеонтологами, а адептами иных научных направлений (физиками, астрономами, геологами и пр.) Теорию одобряет увеличенное содержание платиноидов в слое на границе мела и палеогена. Увеличенное содержание платиноидов отмечается на границе мезозоя и кайнозоя везде где только можно в земной коре. Эти составляющие, например изотоп Os-187, в такой сосредоточения не имели возможности образоваться по неким иным причинам и имеют явно метеоритный генезис;

2. Версия «многократного падения» ("multiple impact event"), допускающая некоторое количество последовательных ударов. Она привлекается, например, для обоснования того, что вымирание состоялось не одномоментно (см. раздел Дефекты гипотез) Косвенно в её пользу говорит тот прецедент, что астероид, создавший кратер Чикшулуб, был одним из кусков наиболее солидного небесного тела. Некоторые геологи считают, что «кратер Шива» на дне Индийского океана, датируемый приблизительно таким же временем, считается отпечатком падения второго огромного метеорита, хотя эта сторона медали считается дискуссионной;

3. Взрыв сверхновой звездные небеса или ближайший гамма-всплеск;

4. Конфликт Территории с кометой.

II. Земные абиотические :

1. Ужесточение вулканической активности, с коей связывают ряд эффектов, которые имели возможность бы повлиять на биосферу:

· перемена газового состава атмосферы;

· парниковый эффект, стимулированный выбросом углекислого газа при извержениях;

· перемена освещённости Территории в связи выбросов вулканического пепла (вулканическая зима). В пользу данной гипотезы заявляют геологические свидетельства о огромном излиянии магмы меж 68 и 60 млн. лет назад на земли Индостана, в - следствии которого возникли деканские траппы;

2. Внезапное снижение значения моря, произошедшее в последней (Маастрихтской) фазе мелового периода («Маастрихтская регрессия»);

3. Перемена среднегодовых и сезонных температур, при том, что инерциальная гомойотермия солидных динозавров, настоятельно просит ровного тёплого климата. Вымирание, впрочем, не совпадает по времени с солидной переменой климата;

4. Внезапный скачок магнитного поля Земли;

5. Переизбыток воздуха в атмосфере Земли;

6. Внезапное замораживание океана;

7. Перемена состава морской воды.

III. Земные биотические:

1. Эпизоотия;

2. Динозавры не сумели приспособиться к изменению вида растительности и получили отравление алкалоидами, содержащимися в появившихся цветковых растениях;

3. Динозавров истребили первые хищные млекопитающие, уничтожая кладки яиц и детёнышей;

4. Версия взаимозависимости биологических видов от региона обитания. Очень вероятно, что наиболее солидная по количестве категория травоядных динозавров(диплодоков) не соблюла равновесие экосистемы, поедая зеленую массу в грандиозных числах, что привело в первую очередь к инверсии в растительном мире и выходу в свет покрытосеменных, а так же к сокращению популяции диплодоков, коим просто-напросто стало нечего есть. Настолько же биогеоценотическим образом имели возможность закончить свое существование и прочие виды.

Вышеперечисленные гипотезы имеют все шансы дополнять друг друга, что некоторыми исследователями применяется для выдвижения различного семейства комбинированных гипотез. К примеру, удар огромного метеорита имел возможность спровоцировать ужесточение вулканической активности и выброс немаленький массы пыли и пепла, что в совокупности могло стать причиной перемена климата, а это, к тому же -- перемена вида растительности и пищевых цепочек, и т.д.; перемена климата кроме того могло мотивироваться снижением значения Крупного океана.

Ни одна из перечисленных гипотез не имеет возможности гарантированно пояснить весь ансамбль явлений, связанных с вымиранием динозавров и прочих видов в конце мелового периода.

Говоря о причинах вымирания непосредственно динозавров, нужно отметить некоторые актуальные отличительные черты этого вымирания:

· Вымирание возможно назвать «быстрым» лишь по геологическим меркам, вместе с тем основная масса палеонтологов считают, что в реальности оно заняло минимум нескольких сотен тыс. лет;

· Как говорится, заявлять о «быстром вымирании динозавров» не абсолютно адекватно. В каждый группе живых существ неустанно идёт образование свежих видов и вымирание раньше имеющих место быть. Эти процессы идут в одно и тоже время, и при равенстве скоростей вымирания и образования свежих видов категория присутствует. С данной стороны медали во время «великого вымирания» скорость непосредственно вымирания динозавров (именно динозавров, с морскими рептилиями картина смотрится иначе), т.е. пропадания раньше существовавших видов, не выше скорости вымирания в прошедшее время. Хотя на смену вымиравшим видам динозавров не приходили свежие, вследствие чего категория, в конечном итоге, всецело вымерла;

· Гипотезы фокусируются непосредственно на вымирании, которое, как думает часть изыскателей, шло теми же темпами, что и в предшествующее время;

· Часть гипотез имеют недостаточно фактических подтверждений. Так, не найдено практически никаких отпечатков того, что инверсии магнитного поля Территории оказывают большое влияние на биосферу; нет убедительных доказательств того, что маастрихтская регрессия значения Крупного океана имела возможность вызвать групповое вымирание этих масштабов; нет доказательств внезапных скачков температуры океана непосредственно в этот период; кроме того не доказано, что ужасающий вулканизм, вследствие которого возникли деканские траппы, был повсеместным, либо что его интенсивность была необходимой для массовых перемен климата и биосферы;

· Все импактные гипотезы (гипотезы ударного воздействия), даже астрономические, не поясняют избирательности вымирания (почему какие-нибудь организмы вынесли все тяготы, как скоро иные были убиты) и вовсе не отвечают допускаемой продолжительности его периода (многие категории животных начали вымирать еще до конца мела) Переход таких же аммонитов к гетероморфным формам также говорит о некой нестабильности. Довольно быть может, что практически все виды уже были подточены некими долговременными процессами и стояли на пути вымирания, а катастрофа просто ускорила процесс;

С иной стороны, надлежит подразумевать, что продолжительность периода вымирания не быть может наверняка оценена в связи эффекта Синьора-Липпса, связанного с неполнотой палеонтологических данных (время захоронения последнего найденного ископаемого имеет возможность не соответствовали времени пропадания таксона).

«Биосферная» версия:

В российской палеонтологии востребована биосферная версия «великого вымирания», даже вымирания динозавров. Нужно отметить, что основная масса палеонтологов, специализируются не на изучении динозавров, а иных животных: млекопитающих, насекомых, и т.д. Сообразно ей, ключевыми исходными факторами, предопределившими пропадание динозавров, стали:

· Выход в свет цветковых растений;

· Постепенная перемена климата, вызванная дрейфом материков.

Последовательность событий, приведшая к вымиранию, видится грядущим образом:

· Цветковые растения, имеющие наиболее развитую корневую систему и лучше использующие плодородие основы, довольно резко, везде, где только можно выдавили многие другие виды растительности. При всем при этом были замечены насекомые, специальные на питании цветковыми, а насекомые, «привязанные» к раньше существовавшим видам растительности, начали вымирать;

· Цветковые растения образуют дернину, которую являются наилучшим из природных подавителей эрозии. Вследствие их распространения уменьшилось размывание плоскости суши и, в соответствии с этим, поступление в океаны сытных препаратов. «Обеднение» океана едой привело к гибели солидной части водорослей, являвшихся ключевым изначальным изготовителем биомассы в океане. По цепочке такое положение вещей способствовало абсолютному нарушению всей морской экосистемы и повлекло за собой групповых вымираний в море. Это же вымирание затронуло и солидных летающих ящеров, какие, по имеющимся представлениям, были трофически связаны с морем. Часть солидных морских рептилий, также, имела возможность не выдержать конкуренции с появившимися непосредственно в это время акулами передового типа;

· На суше животные энергично приспосабливались к питанию зелёной массой (кстати, и травоядные динозавры также) В небольшом размерном классе были замечены небольшие фитофаги-млекопитающие (типа крыс) Их выход в свет привело к выходу в свет и надлежащих хищников, коими также стали млекопитающие. Малоразмерные хищники-млекопитающие были неопасны для совершеннолетних динозавров, хотя питались их яйцами и детёнышами, создавая динозаврам вспомогательные проблемы в воспроизводстве. При всем при этом служба охраны потомства для динозавра фактически неосуществима в связи очень немаленькой разности в объемах совершеннолетних особей и детёнышей;

· Вследствие дрейфа материков в конце мелового периода поменялась система невесомых и морских течений, что привело к некоторому похолоданию на солидной части суши и ужесточению сезонного температурного градиента. Инерциальная гомойотермия, обеспечивавшая динозаврам эволюционное превосходство в прошедшее время, в этих условиях уже мешала эффекта.

В итоге всех перечисленных причин для динозавров создались негативные условия, какие и дали почву остановке выходы в свет свежих видов. «Старые» виды динозавров ещё некоторое время присутствовали, хотя со временем вымерли всецело. По всей видимости, твердой прямой конкуренции динозавров и млекопитающих не было, они занимали различные размерные классы, существуя вдоль. Только впоследствии пропадания динозавров млекопитающие захватили освободившуюся экологическую нишу, и то не сразу.

2.4 Появление гоминид

Первые гоминиды появились в конце миоцена (5-6 млн лет назад) на территории Восточной Африки. В прежние годы полагали, что гоминиды обособились среди прочих человекообразных обезьян много раньше, в среднем миоцене (12-15 млн лет назад), и не в Африке, а в Азии (тогда среди прямых предков человека числили индийского рамапитека ). Сейчас, однако, полагают, что многие крупные миоценовые приматы приобрели "человеческие черты" строения параллельно с гоминидами; очевидно, мы в очередной раз имеем дело с процессом, который (по аналогии) можно назвать гоминизацией приматов.

Первые гоминиды - австралопитеки - были небольшими прямоходящими существами (весом 25-50 кг); Около 2,5-3 млн лет назад среди австралопитеков обособились две ветви - робустная (с массивным скелетом, крупными зубами и сильно выступающей челюстью) и грацильная (с легким сложением и относительно большим объемом черепной коробки). Среди грацильных австралопитеков обособился 2,5 млн лет назад первый представитель рода Homo - Homo habilis, "человек умелый ", названный так за способность к изготовлению каменных орудий (первые гальки со следами обработки найдены в слоях возраста 2,5- 2,7 млн лет). Он отличался от австралопитеков увеличением объема черепной коробки и строением таза, обеспечивавшим более совершенную бипедальность и рождение более "головастых" детенышей. Итак, человек появился в плиоценовой африканской саванне с ее сухим жарким климатом и с изобилием как копытных и хоботных, так и питающихся ими крупных хищников. От обезьян (и от прочих животных) человека отличает кожа, практически лишенная волосяного покрова, но снабженная огромным количеством потовых желез. Уровень потоотделения у человека во много раз превосходит все, что известно в животном мире, и служит чрезвычайно эффективным механизмом тепло сброса (за что, правда, приходится платить жесткой связью с источниками воды). По мнению Фоули (1990) , именно этот терморегуляторный механизм плюс прямохождение (вертикально стоящий человек получает на треть меньше энергии от солнечных лучей, чем четвероногое животное) позволили первым людям занять в сообществе саванны совершенно уникальную экологическую нишу "полуденного хищника", избавившись от безнадежной конкуренции с крупными кошками, которые активны в сумерках, а днем спят. Первые люди были, судя по всему, не столько охотниками, сколько падалеядами , вроде гиен. Впервые появившиеся каменные орудия были наиболее полезны именно для разделки туш очень крупных толстокожих млекопитающих. "Такие звери, обычно неуязвимые для хищников, часто лежат нетронутыми некоторое время после смерти, так как другие животные не могут разорвать их кожу и добраться до мяса. Вполне вероятно, что при помощи каменных орудий гоминиды могли первыми начать разделку таких туш и, таким образом, одерживали верх в конкуренции с другими животными, питавшимися падалью" (Фоули, 1990). Каменные орудия, возможно, выполняли ту же функциональную роль, что и огромные клыки саблезубых кошек - их многие палеонтологи тоже считают трупоедами.


Подобные документы

  • Биосфера как область обитания живых организмов. Оболочка Земли: состав, структура и энергетика которой определяется совокупной деятельностью живых организмов. Абиотические компоненты биосферы. Связь биосферы с космосом и взаимодействие с человеком.

    реферат [27,7 K], добавлен 13.05.2009

  • Образование экосистем живыми существами. Образование планетарной экосистемы. Совокупность живых организмов планеты. Состав и строение биосферы. Вмешательство человека в природные процессы. Свойство саморегуляции биосферы. Основная масса живого вещества.

    презентация [2,0 M], добавлен 21.05.2012

  • Понятие биосферы как оболочки Земли, ее состав и структура. Особенности учения о биосфере В.И. Вернадского. Взаимосвязь эволюции биосферы с эволюцией форм живого вещества. Ресурсы биосферы — особый компонент природной среды. Пределы устойчивости биосферы.

    реферат [24,9 K], добавлен 13.04.2014

  • Теории эволюции — система естественнонаучных идей и концепций о прогрессивном развитии биосферы Земли, составляющих её биогеоценозов, отдельных таксонов и видов. Гипотезы биохимической эволюции, панспермии, стационарного состояния жизни, самозарождения.

    презентация [1,4 M], добавлен 08.03.2012

  • Содержание креационизма - философско-методологической концепции возникновения жизни. Основные идеи гипотез стационарного состояния, самопроизвольного зарождения и панспермии. Этапы появление живых организмов по концепции биохимической эволюции Опарина.

    реферат [26,0 K], добавлен 19.11.2010

  • Определение биосферы как общепланетной оболочки. Масса биосферы. Географическая оболочка. Образование живых веществ и их распад. Кругооборот кислорода, углерода, азота, фосфора и воды. Замкнутый круг взаимозависимых и взаимоприспособленных организмов.

    реферат [24,9 K], добавлен 09.03.2009

  • Понятие о биосфере. Структура и границы биосферы. Общая масса живых организмов. Распределение биомассы по планете. Круговорот веществ в природе как главная функция биосферы. Влияние человека на биосферу. Влияние загрязнения среды на здоровье человека.

    презентация [1,8 M], добавлен 07.04.2012

  • Понятие биосферы, ее сущность и особенности, состав и элементы. Истрии я возникновения и формирования сообществ живых организмов, путь их становления и эволюции. Понятие биогеоценоза, его структура, отличия от биоценоза. Факторы среды и их интенсивность.

    реферат [2,0 M], добавлен 09.02.2009

  • Основа организации и устойчивости биосферы, распределение и классификация живого вещества. Миграция живых организмов, постоянство их биомассы. Фотосинтез - основное звено биохимического круговорота в природе. Функции живого вещества в биосфере Земли.

    реферат [23,7 K], добавлен 25.11.2010

  • Изучение эволюции биосферы как процесса самоорганизации в открытой неравновесной системе планетарного масштаба. Определение сути и главной задачи экологии. Основы целостного учения Вернадского о биосфере. Роль человека в современном состоянии биосферы.

    реферат [19,1 K], добавлен 30.09.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.