История, панорама современного естествознания и тенденции его развития

Возникновение науки. Развитие рациональных знаний Древнего Востока, Древней Греции, эпохи средневековья, эпохи Возрождения. Научная революция XVI-XVII вв. и становление классической науки. Ее развитие и завершение в XIX в. Кризис современной науки.

Рубрика Биология и естествознание
Вид реферат
Язык русский
Дата добавления 06.07.2008
Размер файла 666,1 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

69

Реферат

ИСТОРИЯ, ПАНОРАМА СОВРЕМЕННОГО ЕСТЕСТВОЗНАНИЯ И ТЕНДЕНЦИИ ЕГО РАЗВИТИЯ.

Содержание:

Глава 1. Возникновение науки 3

Глава 2. Развитие рациональных знаний Древнего Востока 6

Глава 3. Наука Древней Греции 12

Глава 4. Формирование естествознания в эпоху средневековья 21

Глава 5. Революция в мировоззрении в эпоху Возрождения 28

Глава 6. Научная революция XVI - XVII вв. и становление классической науки 33

Глава 7. Естествознание XVIII в 43

Глава 8. Развитие и завершение классической науки в XIX в 47

Глава 9. Научная революция в естествознании начала XX в 55

Глава 10. Кризис современной науки. На пути к постнеклассической науке XXI в 66

Библиографический список 69

Глава 1. Возникновение науки

Современное науковедение рассматривает науку в нескольких аспектах:

наука - определенная историческая форма познания:

наука - это совокупность знаний и деятельность по производству этих знаний;

наука - это непосредственная производительная сила общества;

наука - это система профессиональной подготовки и воспроизводства кадров.

В зависимости от того, какой аспект принимается во внимание, получаем разные точки отсчёта начала развития науки. Принято считать, что наука как форма познания складывалась в Древней Греции в VII-VI вв. до н.э., как результат длительного развития познавательной деятельности в эпоху первых цивилизаций Древнего Востока.

Первые цивилизации Древнего Востока начали складываться в Двуречье и в долине Нила в IV тыс. до н.э. Экономической основой этих цивилизаций являлось ирригационное земледелие, которое хотя и требовало колоссальных трудовых затрат, кооперации и особой организации работ, но зато позволяло собирать даже не один, а несколько богатых урожаев в год. Получение значительного избыточного продукта стало экономической предпосылкой быстрого развития социальных отношений, классообразования, общественного разделения труда, возникновения специализированных ремесел (гончарного, ткацкого, кораблестроительного, металлургического, камнерезного и др.); обособления собственности, генезиса соседско-территориальных общин, образования господствующего класса, государст-венного аппарата, храмового персонала.

На таком экономическом базисе сложилась и соответствующая социально-классовая структура, представленная тремя основными классами. Высший класс - это класс людей, которые непосредственно не занимались производительным трудом, но либо сами владели средствами производства, либо распоряжались государственной и храмовой собственностью от имени царя или касты жрецов. Благодаря деятельности части представителей этого класса складывается особая система духовного производства, независимая от материального производства. Именно в этой системе духовного производства зарождается научная деятельность.

Второй, средний класс - это класс свободных крестьян-общинников и городских (или сельских) ремесленников, непосредственно владевших средствами производства и занятых производительным трудом.

И, наконец, третий, низший класс - зависимые, не обладавшие собственностью работники, которые подвергались внеэкономической эксплуатации. В качестве таких работников выступали лишившиеся собственности и попавшие в зависимость крестьяне, а также рабы.

Вместе с тем особенностью древневосточных цивилизаций является наличие еще значительных следов мифологического сознания, для которого характерна образность, слабое развитие абстрактных понятий, категорий, слабое различение закономерного и необходимого, причинно-следственных связей, доминирование ассоциативного мышления по аналогии, ориентация на традиционность, а не на новации, антропоморфизм. Очень медленно шел в сознании процесс различия природного и человеческого, преодоления слитности человека с природой.

Здесь еще мир вещей не отрывался от мира людей, вещи наделялись качествами людей, а человек - качествами вещей, которые ему принадлежат.

Человек древневосточных цивилизаций жил в мире, в котором самым теснейшим образом переплетались земное и божественное, мир людей и мир богов. По мнению людей того времени, множество богов постоянно вмешивается в повседневную жизнь людей и человек находится в их полной власти. Поэтому божественными знамениями интересовались, их боялись, пытались избежать.

Основная тенденция развития духовной культуры древневосточных цивилизаций - возрастание индивидуализации сознания.

Человек начинает осознавать себя как индивидуальность, как самоценность, как личность, постоянно решающая проблему выбора оптимальной линии своего поведения, вопросы координации своих отношений с другими людьми, с коллективом, с обществом, с природой.

В этих условиях складывается героический эпос, в центре которого - образ героя получеловека-полубога. Герой бросает вызов не только людям, но и самим богам, он может преодолеть все, кроме одного - своей судьбы.

Такое противопоставление героя и богов, героя и толпы является показателем того, что рационализация сознания поднялась на новый уровень - уровень теоретического осознания отношений человека и мира, уровень самосознания. Миф трансформируется в рациональный Логос. На этом пути постепенно зарождается наука в самой простейшей форме.

Глава 2. Развитие рациональных знаний Древнего Востока

Рост населения, его подвижность, динамизм образа жизни, укрепление племенных союзов, развитие военного дела, политический и военный экспансионизм, развитие обмена, торговли -- все это способствовало значительному расширению географического кругозора человека.

Наряду с освоением новых пространств, развитием представлений о границах ойкумены (населенной части планеты) совершенствовались формы картографии, создавались карты-схемы местности, способы ориентации по звездам, особенно у народов, осваивавших океанские просторы, народов-мореплавателей (например, у народов Океании).

На смену простейшим способам схематического изображения местности с помощью камней, палок, рисунков на песке и др., которые были характерны для первобытного общества, приходят более долговременные и совершенные "карты". Их либо рисовали, либо вышивали на коже или ткани, либо чертили ножом на коре дерева и т.п. Эти карты обычно были схемами маршрута, так как отражали не местность в целом, а отдельный маршрут. На такой карте-схеме изображались гидрографическая сеть (главная река, ее притоки, озера S и др.), речные пороги, броды, дороги, тропы, жилища, горы, следы проживания людей в данном районе и др. Длина маршрута определялась в днях пути. Есть этнографические данные о том, что у некоторых народов была традиция собирать такие карты местности в особых хранилищах.

Новый дополнительный импульс развитию картографии был получен вместе с расширением торговой деятельности, появлением класса купцов, осваивавших дальние и неизведанные торговые пути. Наиболее распространенные и трудные маршруты снабжались определенными указательными знаками (на деревьях, на камнях, на скалах и др.), включая знаки, предупреждающие о возможности нападения (так зарождалось то, что на современном языке называется "служба эксплуатации дорог"). Указательные знаки также отмечались на картах-схемах маршрутов.

Биологические знания

Становление производящего хозяйства (земледелия и скотоводства) стимулировало и развитие биологических знаний. Прежде всего, это связано с доместикацией1, имевшей колоссальное значение для судеб цивилизации. Одомашнивание животных и растений по самой своей сути предполагает использование такого фундаментального биологического явления, как искусственный отбор (селекция). Люди были еще очень далеки от понимания сущности искусственного отбора, но уже умели использовать этот метод для совершенствования своей хозяйственной деятельности. Опыт селекции передавался из поколения в поколение.

Благодаря селекции было выведено много новых пород животных и растений, заложена база современной аграрной культуры. Развитие скотоводства позволило освоить новые массивы зоологических, ветеринарных знаний и навыков, а развитие земледелия способствовало накоплению ботанических, агрохимических и гидротехнических (в связи с мелиорацией и ирригацией) знаний. Еще в Древней Месопотамии было открыто искусственное опыление финиковой пальмы, которое привело к получению большого сортового разнообразия.

Медицинские знания

В эпоху классообразования Древнего Востока от системы биологических знаний постепенно отпочковывается медицина как относительно самостоятельная отрасль знаний и практических навыков. Глубинной основой этого процесса является изменение отношения к человеку. Человек начинает осознавать свое кардинальное отличие не только от природы, её предметов и процессов, но и от других людей. Отрываясь от родовых связей, человек осознает себя как самоценное существо, которое хотя и связано с коллективом (соседско-территориальной общиной, патриархальной семьей и др.), его традициями и ценностями, но уже имеет и свои индивидуальные ценности. В сознании появляются новые элементы, представляющие собой зачаточные формы смысложизненных ориентиров. Человек впервые сталкивается с проблемой смысла своего существования. А это значит, что и поддержание жизни человека, его работоспособности приобретает особую ценность, значимость.

В этих условиях приоритетной сферой рациональной деятельности становится медицинская практика. В обществе растет престиж тех, кто берется лечить людей и кому это удается.

Лекарь, врачеватель - это прежде всего знаток лечебных трав и народной медицины. Развивается древнейшая традиция лечебного применения средств растительного происхождения (травы, цветы, плоды, кора деревьев и др.) и средств минерального и животного происхождения (жир, части организмов животных и др.). Создаются приемы санитарии и гигиены, появляются физиотерапевтические процедуры, массаж, иглотерапия, диетика, разрабатываются новые хирургические приемы и соответственно металлические хирургические инструменты (скальпель, щипцы и др.). Совершенствуется акушерство - одна из первых медицинских специальностей.

Конечно же, в первобытной медицине наряду с рациональными знаниями еще много и наивного. Так, древние вавилоняне считали, что жизнь связана с кровью, печень - главный орган жизни, содержащий запас крови; органом же мышления они считали сердце. Поэтому наряду с народной медициной, лекарями - знатоками лекарственных трав, простейшей хирургии складывается и другой тип врачевателей - знахари-заклинатели, опиравшиеся на мифологические и магические процедуры. Эта ветвь древней медицины со временем трансформируется в храмовую медицину.

Астрономические знания

Развитие астрономических знаний в рассматриваемую эпоху определялось в первую очередь потребностями совершенствования календаря, счета времени. Важнейшим условием зарождения научной астрономии являлось осознание связи небесных явлений и сезонов года.

Если присваивающее хозяйство вполне могло обходиться лунным календарем, то производящее хозяйство требовало более точных знаний времени сельскохозяйственных работ (особенно времени посева и сбора урожая), которые могли базироваться лишь на солнечном календаре, на солнечных циклах (годовом, суточном, сезонном).

Важным условием перехода от лунного календаря к солнечному являлось отделение наблюдений за интервалами времени от их привязки к биологическим ритмам (связанным с человеком и домашними животными) и выделение некоторых внебиологических природных "систем отсчета" для измерения интервалов времени. В таком качестве выступали, например, точки восхода Солнца в день летнего солнцестояния и захода в день зимнего солнцестояния, наблюдения за звездной группой Плеяд в созвездии Тельца, позволявшие корректировать солнечное и лунное времяисчисления. Чтобы результатами подобного рода наблюдений можно было пользоваться неоднократно, их следовало каким-то образом фиксировать. Так появилась потребность в создании соответствующих сооружений. В археологии такие сооружения известны в виде разного рода мегалитических конструкций.

Мегалитические сооружения - это постройки из громадных каменных плит и камней. Известны их различные виды - дольмены (несколько вертикально установленных огромных каменных плит, сверху перекрытых горизонтально уложенными плитами), кромлехи (выстроенные в круг гигантские монолиты, иногда вместе с дольменами) и др. Большинство из них выполняло одновременно несколько функций - религиозно-культовую, произведения монументальной архитектуры, научной астрономической обсерватории и др. Одним из наиболее известных является грандиозный мегалитический комплекс Стоунхендж в Англии, созданный на рубеже неолита и бронзового века.

Мегалитические сооружения строились так, что они позволяли с довольно высокой точностью ориентироваться на точку восхода Солнца, фиксировать день летнего и зимнего солнцестояния и даже предсказывать лунные затмения. Сооружения из огромных каменных плит и монолитов требовали колоссальных трудовых затрат, были результатом коллективного длительного труда многих десятков и сотен, а иногда и тысяч людей. Это говорит о том, какое важное значение придавалось астрономическим знаниям в период становления цивилизации.

Накапливались знания и в системе астрологии. Астрология - это уходящая своими корнями в магию деятельность, состоящая в предсказании будущего (судеб людей, событий разного рода) по поведению, расположению небесных тел (звезд, планет и др.) в форме гороскопов. Древнейший из дошедших до нас гороскопов (из Вавилона) датируется второй половиной V в. до н.э. Астрология строилась, с одной стороны, на религиозном убеждении, что небесные тела являются всесильными божествами и оказывают решающее влияние на судьбы людей и народов. С другой стороны, в основе астрологии лежит представление о всеобщей причинной связи вещей и их повторяемости - всякий раз, когда на небе будет наблюдаться одно и то же событие, последуют те же следствия. Из взаимного расположения планет между собой, а также из их отношения к знакам зодиака, астрология пытается угадать будущие события и все течение жизни человека.

Математические знания

В рассматриваемую эпоху математические знания развивались в следующих основных направлениях.

Во-первых, расширяются пределы считаемых предметов, появляются словесные обозначения для чисел свыше 100 единиц -- сначала до 1000, а затем вплоть до 10 000.

Во-вторых, закладываются предпосылки позиционной системы исчисления. Они состояли в совершенствовании умения считать не единицами, а сразу некоторым набором единиц (4, 5, чаще всего 10). Когда нужно было пересчитать большое количество одинаковых предметов (например, стадо скота), применялся так называемый групповой счет. Такой счет вело несколько человек: один вел счет единицам, второй -- десяткам, третий -- сотням (наблюдения Н. Н. Миклухо-Маклая). Развитие хозяйства, торговли требовало не просто умения считать, но и умения сохранять на длительное время или передавать на расстояния результаты счета (очень часто -- большие числа). Для этого применялись известные еще с древнейших времён бирки, шнуры, нарезки или узлы, на которых уже обозначаются не только единицы, но и группы единиц (по 4, 5, 10, 20 единиц). По сути, формировался прообраз различных систем счисления.

В-третьих, формируются простейшие геометрические абстракции -- прямой линии, угла, объема и др. Развитие земледелия, отношений земельной собственности потребовало умения измерять расстояния, площади земельных участков (отсюда и происхождение слова "геометрия" -- от древнегреческого "землемерие"). Развитие строительного дела, гончарного производства, распределение урожая зерновых и т.п. требовало умения определять объемы тел. В строительстве было необходимо уметь проводить прямые горизонтальные и вертикальные линии, строить прямые углы и т.д.

На Древнем Востоке математика получила особое развитие в Ме-сопотамии. Математика развивалась как средство решения повседневных практических задач, возникавших в царских храмовых хозяйствах (землемерие, вычисление объемов строительных и земляных работ, распределение продуктов между большим числом людей и др.). Найдено более сотни клинописных математических текстов, которые относятся к эпохе Древневавилонского царства (1894-1595). Их расшифровка показала, что в то время уже были освоены операции умножения, определения обратных величин, квадратов и кубов чисел, существовали таблицы с типичными задачами на вычисление, которые заучивали наизусть.

Глава 3. Наука Древней Греции

Задача понять и объяснить мир без привлечения таинственных сил была впервые поставлена древними греками в период развития

рабовладельческого строя [3]. Возникновение греческой науки (VII-VI вв. до н. э.) обычно связывают с расцветом ионических городов Милета и Эфеса, островов Средиземноморья и греческих колоний в Италии. В Греции впервые появились профессиональные ученые и учителя, труд которых оплачивался как государством, так и частными лицами, первые научные учреждения: академия Платона, лицей Аристотеля, Александрийский музей. Именно в Греции была впервые выдвинута идея о единой материальной основе мира и о развитии его из этой основы.

Родоначальник греческой науки милетский купец Фалес (~624-547) такой основой, например, считал воду. Его ученик Анаксимандр (~610-546) источником всего сущего, субстанцией всех вещей считал не воду, а некое вечное, беспредельное, безграничное, бесконечное начало, которое он назвал апейроном (т.е. "беспредельное"). В этом вечном, находящемся в непрерывном движении неопределенном первовеществе возникает как бы зародыш будущего мира. Мир периодически возвращается в это первовещество. Древние сообщали, что Анаксимандр был первым греком, начертившим географическую карту Земли. Он же распространял среди греков заимствованные на Востоке солнечные часы (гномон).

Последним великим представителем милетской школы был Анаксимен, который началом, основой, субстанцией мира считал воздух. Все возникает из воздуха, через его разряжение и сгущение. Разряжаясь, воздух становится сначала огнем, затем эфиром, а сгущаясь - ветром, облаками, водой, землей и камнем. Но если первые ионийцы не рассматривали вопрос об источнике движения, то Гераклит из Эфеса (~544-483) считал источником движения борьбу противоположностей. По Гераклиту в этой постоянной борьбе единая материальная первооснова порождает многообразие вещей и явлений, составляющих вместе единую сущность. Гераклит - один из самих глубоких мыслителей Греции оказавший значительное влияние на последующее развитие науки философии. В центре учения Гераклита - идея безостановочной изменчивости вещей, их текучести. Гераклит учил, что все в мире изменчиво, "все течет". Ничто в мире не повторяется, все преходяще и одноразово.

Какое же вещество больше всего соответствует в качестве субстанции мира его постоянной подвижности, текучести, изменчивости, становлению? Гераклит видел такую первооснову в огне, который в то время представлялся самым подвижным и изменчивым веществом.

В Древней Греции были построены первые модели Вселенной (Анаксимандр, Филолай, Аристарх Самосский). Наиболее верной и прогрессивной была модель Аристарха Самосского, согласно которой сферическая Земля и еще семь сфер - Меркурия, Венеры, Марса, Юпитера, Сатурна, Луны и звезд - движутся вокруг Солнца. Это была первая гелиоцентрическая система мира. Кроме того, Аристарх Самосский утверждал о вращении Земли вокруг своей оси. За все это он был объявлен духовными властями безбожником и изгнан из Афин.

Греция является родиной логики и диалектического метода. От греков ведет начало и термин "диалектика". Под диалектикой в древности понимали искусство вести беседу и достигать истины путем обнаружения противоречий в суждениях противника. Требования логического обоснования и доказательства выдвигаемых положений существенным образом отличали науку Древней Греции от рецептурных предписаний египтян и вавилонян. "Найти одно научное доказательство для меня значит больше, чем овладеть всем персидским царством", - говорил основатель атомистики Демокрит. Эти слова в значительной степени определяют характер и метод греческой науки. Названия современных наук: математика, механика, физика, география, биология и др.; научные понятия: атом, масса, электрон, протон и пр.; имена: Фалес, Демокрит, Аристотель, Пифагор и т.д., а главное - характер, метод и достижения науки Древней Греции служат одним из убедительных доказательств того, что Древняя Греция по праву считается родиной современной науки.

Первые естественно-научные программы античности

Атомическая программа. Идея атомистического строения материи была высказана впервые Левкиппом (500-440) и развита его учеником -гениальным Демокритом [3]. Демокрит (460-370) происходил из фракийского города Абдеры на берегу Эгейского моря. Он очень много путешествовал, был в Вавилоне, Персии, Египте, Индии, Эфиопии. Демокрит поставил перед собой задачу создать такое учение, которое смогло бы преодолеть противоречия, зафиксированные элеатами1. Иначе говоря, такое учение, которое обеспечивало соответствие картины мира, открывающейся человеческим чувствам, картине мира, конструируемой деятельностью мышления, дискурсивно, логикой. На этом пути он осуществил переход от континуального2 к дискретному видению мира. Демокрит исходил из безоговорочного признания истинного бытия существующим и существующим как многое. Он убедительно показал, что мыслить бытие как многое, мыслить движение можно, если ввести понятие о неделимости элементарных оснований этого бытия - атомов. Бытие в собственном смысле этого слова - это атомы, которые движутся в пустоте (небытии). Демокрит написал много сочинений по физике, астрономии и философии. К сожалению, его сочинения не дошли до нашего времени и об их содержании мы узнаем лишь из книг других авторов. Суть учения Демокрита сводится к следующему.

1. Не существует ничего, кроме атомов и чистого пространства, все
другое - только воззрение.

2. Атомы бесконечны по числу и бесконечно разнообразны по форме.

3. Из ничего не происходит ничего.

4. Ничто не совершается случайно, но все совершается по какому-нибудь основанию и с необходимостью.

5. Различие между вещами происходит от различия их атомов в числе, величине, форме и порядке. Качественного различия между атомами не существует.

По Демокриту мир в целом - это беспредельная пустота, начиненная многими отдельными мирами. Отдельные миры образовались в результате того, что множество атомов, сталкиваясь друг с другом, образуют вихри - кругообразные движения атомов. В вихрях крупные и тяжелые атомы скапливаются в центре, а более легкие и малые вытесняются к периферии. Так возникли земля и небо. Небо образует огонь, воздух, светила. Земля -центр нашего мира, на краю которого находятся звезды. Каждый мир замкнут. Число миров бесконечно. Многие из них могут быть населёнными. Демокрит впервые описал Млечный Путь как огромное скопление звезд. Миры преходящи: одни из них только возникают, другие находятся в расцвете, а третьи уже гибнут.

Развивая учение Демокрита, Эпикур (341-270) пытался объяснить на основе атомных представлений все естественные, психические и социальные явления. Атомы Эпикура имеют уже вес, а само представление о них выводится из хорошо известных фактов: белье, например, сохнет потому, что под действием ветра и солнца от него отрываются невидимые частицы воды. Атомы находятся в беспрерывном движении, причем: атомы падают в пустоте (в современном понятии - в вакууме) с одинаковой скоростью, в некоторые моменты они могут случайно отклоняться от своего пути. Это и приводит к образованию из атомов миров. Так возникла Земля, "затем от нее отделилось высокое небо, стали моря отходить, обособившись водным пространством, и выделяться огни стали чистые в дальнем эфире". Земля породила жизнь, все, что не было приспособлено к жизни, умирало. Так, в конце концов, естественным путем возник животный и растительный мир, появилось человеческое общество.

Как видно, Эпикур не оставляет места для бога ни в сотворении мира, ни в его развитии. Кроме того, в философской системе Эпикура утверждалось, что целью жизни должно быть отсутствие страданий. А чтобы их не было, жизнь должна быть основана на разуме и справедливости, должен быть уничтожен страх смерти и связанные с ним верования.

Исторической заслугой античного атомизма являлось также фор-мулирование и разработка принципа детерминизма (причинности). В соответствии с этим принципом любые события влекут за собой определенные следствия и в то же время представляют собой следствие из некоторых других событий, совершавшихся ранее. Демокрит понимал принцип детерминизма механистически, отождествляя причинность и необходимость. Все, что происходит в мире, не только причинно обусловлено, но и необходимо, неизбежно. Он отвергал объективное существование случайности, говоря, что человек называет событие случайным, когда не знает (или не хочет узнать) причины события. Мир атомистов - мир сплошной необходимости, в котором нет объективных случайностей.

Концепция атомизма - одна из самых эвристичных, одна из самых плодотворных и перспективных научно-исследовательских программ в истории науки. Она сыграла выдающуюся роль в развитии представлений о структуре материи, в ориентации движения естественно - научной мысли на познание все более глубоких структурных уровней организации материи.

Математическая программа. Второй научной программой античности, оказавшей громадное влияние на все последующее развитие науки, стала математическая программа, представленная Пифагором и позднее развитая Платоном.

В её основе, как и в основе других античных программ, лежит представление о том, что Космос - это упорядоченное выражение целого ряда первоначальных сущностей, которые можно постигать по-разному. Пифагор нашел эти сущности в числах и представил в качестве первоосновы мира. При этом числа вовсе не являются теми кирпичиками мироздания, из которых состоят все вещи. Вещи не равны числам, а подобны им, основаны на количественных отношениях действительности, являющихся подлинно фундаментальными. Картина мира, представленная пифагорейцами, поражала своей гармонией протяженного мира тел, подчиненной законам геометрии, а движение небесных тел - математическим законам.

Свое завершение математическая программа получила в философии Платона, который нарисовал грандиозную картину истинного мира - мира идей, представляющего собой иерархически упорядоченную структуру.

Значительную роль в своей теории идей Платон отводит математике. У Платона все бытие пронизано числами, числа - это путь к постижению идей, сущности мира. О значении, которое он придавал математике, свидетельствует надпись над входом в платоновскую Академию: "Несведущим в геометрии вход воспрещен". Эта высокая оценка математики определялась философскими взглядами Платона. Он считал, что только занятия математикой являются реальным средством познания вечных, идеальных, абсолютных истин. Платон не отвергал значения эмпирического знания о мире земных вещей, но считал, что это знание не может быть основой науки, так как - приблизительно, неточно и лишь вероятно. Только познание мира идей, прежде всего, с помощью математики, является единственной формой научного, достоверного познания. Математическими образами и аналогиями пронизана вся философия Платона.

Вслед за пифагорейцами Платон закладывал основы программы математизации познания природы. Но если пифагорейцы рассматривали Космос как некоторую однородную гармоническую сферу, то Платон впервые вводит представление о неоднородности бытия, Космоса. Он разделяет Космос на две качественно различные области: божественную (вечное, неизменное бытие, небо) и земную (преходящие, изменчивые вещи). Из представления о божественности Космоса Платон делает вывод, что небесные светила могут двигаться только равномерно, по идеальным окружностям и в одном и том же направлении.

Программа Аристотеля стала третьей научной программой античности. Она возникла на переломе эпох. С одной стороны, она еще близка к античной классике с ее стремлением к целостному философскому осмыслению действительности (при этом она пытается найти компромисс между двумя предыдущими программами). С другой, в ней отчетливо проявляются эллинистические тенденции к выделению отдельных направлений исследования в относительно самостоятельные науки, со своими предметом и методом.

Пытаясь найти третий путь, возражая и Демокриту, и Платону с Пифагором, Аристотель отказывается признать существование идей или математических объектов, существующих независимо от вещей. Но не устраивает его и демокритовское появление вещей из атомов. Пытаясь снять это противоречие, Аристотель предлагает четыре причины бытия: формальную, материальную, действующую и целевую. В его "Метафизике" воссоздается мир как целостное, естественно возникшее образование, имеющее причины в себе самом. Это образование предстает перед нами в виде двойственного мира, имеющего неизменную основу, но проявляющегося через подвижную эмпирическую видимость. Предметом науки должны стать вещи умопостигаемые, не подвластные сиюминутным изменениям.

Пожалуй, ни один ученый древности не оказал на развитие науки и мышления такого глубокого и длительного влияния, как Аристотель. В своей "Физике" он поднимает и глубоко рассматривает многие вопросы: о материи и движении, о пространстве и времени, о существовании пустоты, о конечном и бесконечном, о действующих причинах. Движение тел происходит в пространстве, свойства которого Аристотель связывает со свойствами самих тел. Он отрицает существование пустого пространства, аргументируя это различными доводами. Науке понадобилось длительное время, чтобы разобраться в этой аргументации, что было сделано Галилеем и Эйнштейном.

По Аристотелю, нет и времени, существующего независимо от происходящих событий, от каких-либо изменений. "Если бы "теперь" не было каждый раз другим, а тождественным и единым, времени не было бы".

Пространство и время - непрерывные величины; пространство по протяженности - конечная граница одной его части является начальной границей другой; время по последовательности - "теперь" соприкасается с прошлым и будущим.

Аристотель признавал объективное существование материального мира и его познаваемость. Являясь учеником Платона, он порвал с его идеалистическими взглядами на мир как отображениями идей, постигаемых душой, и на познание, которое должно отвернуться от реального опыта.

Знаменитые слова Аристотеля: "Платон мне друг, но истина дороже" - значили отход его от воззрений своего учителя.

Но вместе с тем Аристотель верил в бога, противопоставлял земное и небесное, в центре ограниченной Вселенной он поместил неподвижную Землю, как тело, обладающее наибольшей тяжестью. За эти и подобные им моменты в учении Аристотеля ухватилась церковь, превратив их в догмы. А тех, кто выступал против Аристотеля, часто обвиняли в выступлении против религии и церкви, и церковь жестоко расправлялась с еретиками.

Аристотеля называют крестным отцом физики: ведь название его книги "Физика" стало названием всей физической науки.

Он очень верно определяет задачи физики, сводя их к исследованию "первых причин" природы (основных законов), "первых начал" (принципов) и ее "элементов" (основополагающих частиц). Говоря о пути познания, Аристотель так определяет его: "От более явного для нас к более явному по природе". Действительно, люди сначала воспринимают вещи такими, какими они им представляются ("явными для нас"), а не такими, какими они есть на самом деле ("по природе"). Так, Земля представлялась нам сначала плоской и неподвижной; открытие ее шарообразности было большим шагом в направлении к "явному по природе" и "менее явному для нас". История науки подтверждает этот путь познания.

Что касается математики, то Аристотель полагал недопустимым ее применение к исследованию природы по двум причинам:

математика имеет дело с постоянными величинами и отношениями, природа же находится в непрерывном движении и изменении;

математика пригодна для предметов, у которых нет материи, а поскольку природа почти во всех случаях связана с материей, то математика не подходит для науки о природе.

В трудах великого философа, несмотря на множество наивного и примитивного, содержались и глубокие мысли, которые являются предметом исследования науки по сей день и получают в ней новое, современное толкование. Широтой, стройностью и логичностью своей системы Аристотель подчинил греческой философии мир, подобно тому, как Алек-сандр Македонский подчинил его греческому господству. Если еще учесть, что учение Аристотеля было признано и обработано церковью, то станет ясно, почему естествознание в течение почти двадцати столетий (вплоть до XVII в.) излагалось по Аристотелю.

Глава 4. Формирование естествознания в эпоху средневековья Основные черты средневекового мировоззрения

Стержнем средневекового сознания явилось религиозное мировоззрение, в котором истолкование всех явлений природы и общества, их оценка, а также регламентация поведения человека обосновываются ссылкой на сверхъестественные силы, которые полностью господствуют над материальным миром, способны по своему произволу как угодно изменять ход естественных событий и даже творить бытие из небытия. Высшей сверхъестественной силой выступал Бог. Такие представления порождались как практическим бессилием человека перед природой (неразвитость производительных сил, сельскохозяйственный и ремесленный характер производства), так и стихийным характером социально-классовых процессов, процессов общения (социальный гнет, социальная несправедливость, непредсказуемость жизненных ситуаций и др.).

Средневековое сознание было ориентировано преимущественно на межличностные отношения. Но в их отражении и воспроизведении преобладают эмоциональные стороны, факторы сознания.

Природа больше не воспринималась как нечто самостоятельное, несущее в себе свою цель и свой закон, как это было в античности. Она создана Богом для блага человека. Бог всемогущ и способен в любой момент нарушить естественный ход природных процессов во имя своих целей. Сталкиваясь с необычными, поражающими воображение явлениями природы, человек воспринимал их как чудо, как промысел Божий, непостижимый для человеческого ума, слишком ограниченного в своих возможностях.

Для средневекового человека природа -- это мир вещей, за которыми надо стремиться видеть символы Бога. Поэтому и восприятие природы раздваивалось на предметную и символическую составляющие. Познавательный аспект средневекового сознания был направлен не столько на выявление объективных свойств предметов зримого мира, сколько на осмысление их символических значений, т.е. их отношения к божеству. Познавательная деятельность была по преимуществу герменевтической1, толковательной, а значит, в конечном счете опиралась на иерархизированную и субординированную систему ценностей, на ценностное сознание.

В эпоху средневековья все формы человеческой деятельности и общения были пронизаны ритуалами. Все формы действий людей, включая коллективные, строго регламентированы. Магические, обрядовые и ритуальные действия рассматривались как способ влияния на природные и божественные стихии. С ними связывались надежды на дополнительную сверхъестественную помощь со стороны "добрых" сил и ограждение от "злых". Точное соблюдение ритуально-магических действий, обычаев, праздников, исполнение разного рода заклинаний, просьб, призывов считалось необходимым условием благоприятного исхода деятельности, причем не только в хозяйственной области, но и в сфере общения людей, в сфере познания, политической и юридической практики и др. В ремесленном и мануфактурном производстве ритуалы сопровождали каждую технологическую процедуру, поскольку в их выполнении виделось условие полного раскрытия заложенных в предметах труда потенциальных возможностей.

Отмеченные нами особенности средневекового мировоззрения и мышления соответствующим образом отразились на процессе средневекового познания, обусловив следующие его специфические черты.

1. Вся деятельность человека воспринималась в русле религиозных
представлений, а все противоречащее догматам церкви запрещалось
специальными декретами. Все воззрения на природу проходили через
цензуру библейских концепций. Это усиливало элемент созерцательности
познания, настраивало его на откровенно мистический лад, что и
предопределило регресс или, в лучшем случае, стагнацию научного
познания.

2. Поскольку причина взаимосвязанности и целостности элементов мира в Средние века усматривалась в Боге, в средневековой картине мира не могло быть концепции объективных законов, без которой не могло оформиться естествознание. Ведь закон - это необходимая существенная связь каких-то явлений. Средневековый же мыслитель искал не эти связи между явлениями, а отношение их к Богу, место в иерархии вещей.

3. В силу теологически-текстового характера познавательной деятельности усилия интеллекта сосредоточивались не на анализе вещей, а на анализе понятий. Универсальным методом служила дедукция, осуществлявшая субординацию понятий, которой соответствовал определенный иерархический ряд действительных вещей. Поскольку манипулирование понятиями замещало манипулирование объектами действительности, не было необходимости контакта с последними. Отсюда принципиально внеопытный стиль умозрительной науки, обреченной на бес-плодное теоретизирование и оторванность от реальной действительности.

Естественно-научные достижения в средние века

Математические достижения. Арабы существенно расширили античную систему математических знаний. Они заимствовали из Индии и широко использовали десятичную позиционную систему исчисления. Она проникла по караванным путям на Ближний Восток в эпоху Сасанидов (224-041), когда Персия, Египет и Индия переживали период культурного взаимодействия.

Получила также значительное развитие (свойственная еще Древнему Востоку) традиция создания новых вычислительных приемов и специальных алгоритмов. Так, например, аль-Каши с помощью вписанных и описанных правильных многоугольников вычислил число р до 17 верных знаков.

Арабские математики умели также суммировать арифметические и геометрические прогрессии. Не ограничиваясь методами геометрической алгебры, арабские математики смело переходят к операциям над алгебраическими иррациональностями. Они создали единую концепцию действительных чисел путем объединения рациональных чисел и отношений и постепенно стёрли грань между рациональными числами и иррациональностями.

Арабские математики совершенствовали методы решений 2-й и 3-й степеней, решали отдельные типы уравнений 4-й степени.

Наиболее значительным достижением арабов в алгебре был "Трактат о доказательствах задач" Омара Хайяма, посвященный в основном кубическим уравнениям. Хайям построил теорию кубических уравнений, основанную на геометрических методах древних. Он классифицировал все кубические уравнения с положительными корнями на 14 видов. Каждый вид уравнений он решал соответствующим построением. Хайям пытался найти правило решения кубических уравнений в общем виде, но безуспешно.

Если отдельные зачаточные элементы сферической тригонометрии были известны еще древним грекам (например, Птолемей пользовался понятием "хорда угла"), то в систематическом виде тригонометрия создана арабскими математиками. Уже в работах аль-Баттани содержится значительная часть тригонометрии, включая таблицы значений котангенса для каждого градуса.

Историческая заслуга средневековых арабских математиков состояла и в том, что они начали глубокие исследования по основаниям геометрии. Первые попытки доказательств постулатов описаны в сочинениях О. Хайяма.

Достижения в физике. Из разделов механики наибольшее развитие получила статика, чему способствовали условия экономической жизни средневекового Востока. Интенсивное денежное обращение и торговля, как внутренняя, так и международная, требовали постоянного совершенствовании методов взвешивания, а также системы мер и весов. Это определило развитие учения о взвешивании и теоретической основы взвешивания - науки о равновесии, создание многочисленных конструкций, различных видов весов.

Арабские ученые широко использовали понятие удельного веса, совершенствуя методы определения удельных весов различных металлов и минералов. Этим вопросом занимались аль-Бируни, О. Хайям, ать-Хазини (ХII в.). Для определения удельного веса применялся закон Архимеда, грузы взвешивались не только в воздухе, но и воде. Полученные результаты были исключительно точны. Например, удельный вес ртути был определен аль-Хазини в 13,56 г/см3 (по современным данным - 13,557), удельный вес серебра 10,150 г/см3 (по современным данным - 10,49), золота - 19,05 г/см3 (современные данные - 19,27), меди 8,80 г/см3 (современные данные -8,91) и т.д. Столь точные данные позволяли решать ряд практических задач: отличать чистый металл и драгоценные камни от подделок, устанавливать истинную ценность монет, обнаруживать различие удельного веса воды при разных температурах и др.

Развитие кинематики было связано с потребностями астрономии в строгих методах для описания движения небесных тел. В этом направлении и развивается аппарат кинематико - геометрического моделирования движения небесных тел на основе "Альмагеста" К. Птолемея. Кроме того, в ряде работ изучалась кинематика "земных" движений. В частности, понятие движения привлекается для непосредственного доказательства геометрических положений (Ибн Корра Сабит, Насирэтдин ат-Туси), механические движения используются для объяснения оптических явлений (Ибн аль-Хай-Сам), изучается параллелограмм движений и т.п. Одно из направлений средневековой арабской кинематики - разработки инфинитезимальных методов (т.е. рассмотрение бесконечных процессов, непрерывности, предельных переходов и др.).

Динамика развивалась на основе комментирования и осмысления сочинений Аристотеля. Средневековыми арабскими учёными обсуждались проблемы существования пустоты и возможности движения в пустоте, характер движения в сопротивляющейся среде, механизм передачи движения, свободное падение тел, движение тел, брошенных под углом к горизонту.

В эпоху позднего средневековья значительное развитие получила динамическая "теория импетуса", которая была мостом, соединившим динамику Аристотеля с динамикой Галилея.

Кроме того, "теория импетуса" способствовала развитию и уточнению понятия силы. Старое, античное и средневековое, понятие силы благодаря "теории импетуса" в дальнейшем развитии физики раздвоилось на два понятия. Первое - то, что И. Ньютон называл "силой" ( ma), понимая под силой воздействие на тело, внешнее по отношению к движению этого тела. Второе - то, что Р. Декарт называл количеством движения, т.е. факторы процесса движения (mv), связанные с самим движущимся телом.

Всё это постепенно готовило возникновение динамики Галилея.

Астрономия. Существенный вклад внесен арабскими учёными и в астрономию. Они усовершенствовали технику астрономических измерений, значительно дополнили и уточнили данные о движении небесных тел. Один из выдающихся астрономов-наблюдателей аз-Зеркали (Арзахель) из Кордовы, которого считали лучшим наблюдателем XI в., составил так называемые Толедские планетные таблицы (1080). Они оказали значительное влияние на развитие тригонометрии в Западной Европе.

Вершиной в области наблюдательной астрономии стала деятельность Улугбека, который был любимым внуком создателя огромной империи Тимура. Движимый страстью к науке, Улугбек построил в Самарканде по тем временам самую большую в мире астрономическую обсерваторию, имевшую гигантский двойной квадрант и много других астрономических инструментов (азимутальный круг, астролябии, трикветры, армиллярные сферы и др.). В обсерватории был создан труд "Новые астрономические таблицы", который содержал изложение теоретических основ астрономии и каталог положения 1018 звезд.

В теоретической астрономии основное внимание уделялось уточнению кинематико-геометрических моделей "Альмагеста", устранению противоречий в теории Птолемея (в том числе с помощью более совершенной тригонометрии) и поиску нептолемеевских методов моделирования движения небесных тел.

Алхимия в средневековой культуре. В средневековой алхимии (расцвет пришёлся на XIII-XV вв.) выделялись две тенденции. Первая -мистифицированная алхимия, ориентированная на химические превращения (в частности ртути в золото) и в конечном счёте на доказательство возможности человеческими усилиями осуществлять космические превращения. В русле этой тенденции арабские алхимики сформулировали идею "философского камня" - гипотетического вещества, ускорявшего "созревание" золота в недрах земли. Это вещество заодно трактовалось и как эликсир жизни, дающий бессмертие.

Вторая тенденция была больше ориентирована на конкурентную практическую технохимию. В этой области достижения алхимии несомненны. К ним относят способы получения серной, соляной, азотной кислот, "царской водки", селитры, сплавов ртути с металлами, многих лекарственных веществ, создание химической посуды и др.

Среди алхимиков наряду с шарлатанами и фальсификаторами, было немало искренне убеждённых в реальности всеобщей взаимопревращаемости веществ, в том числе и крупных мыслителей, таких как Раймунд Луллий, Арнольдо да Вилланова, Альберт Великий, Фома Аквинский, Бонавентура и др. Почти невозможно в средневековье отделить друг от друга деятельность, связанную с химией, и деятельность, связанную с алхимией. Они переплетались самым тесным образом.

Средневековое мировоззрение постепенно начинает ограничивать и сдерживать развитие науки. Поэтому необходима была смена мировоззрения, которая произошла в эпоху Возрождения.

Глава 5. Революция в мировоззрении в эпоху Возрождения

Эпоха Возрождения сделала огромный вклад в развитие научной мысли благодаря новому пониманию места и роли человека в объективном мире. Человек стал пониматься отныне не как природное существо, а как творец самого себя, что и выделяет его из всех прочих живых существ. Человек становится на место Бога: он сам свой собственный творец, он владыка природы. Эта мысль была чужда языческой Греции, так как для нее природа это то, что существует само по себе, что никем не создано. Более того, для античной науки небесные тела - нечто принципиально отличное от земного мира, это божественные существа, и создать их с помощью орудий и небесного материала было бы равносильно созданию богов -кощунственная для античности мысль.

Возрождение делает следующий шаг - человек чувствует себя божественным. Поэтому в эту эпоху столь символическое значение получает фигура художника - в ней наиболее адекватно выражается самая глубокая ренессансная идея - идея человека-творца, человека, вставшего на место Бога.

В эпоху Возрождения изменилась ситуация в сфере познания живого. Здесь особое место принадлежит XVI в. В истории биологии этот период выделяется как начало глубокого перелома в способах познания живого. Ренессансный гуманизм, пересмотрев представление о месте человека в природе, возвысил роль человека в мире.

Значительные изменения происходят в способе биологического познания - вырабатываются стандарты, критерии и нормы исследования органического мира. На смену стихийности, спекулятивным домыслам, фантазиям и суевериям постепенно приходит установка на объективное, доказательное, эмпирически обоснованное знание. Благодаря коллективным усилиям ученых многих европейских стран такая установка обеспечила постепенное накопление колоссального фактического материала. Значительную роль в этом процессе сыграли Великие географические открытия, эпоха которых раздвинула мировоззренческий горизонт европейцев - они узнали множество новых биологических, геологических, географических и других явлений. Фауна и флора вновь открытых стран и континентов не только значительно расширили эмпирический базис биологии, но и поставили вопрос о его систематизации.

Важной вехой в развитии анатомии стало творчество А. Везалия, исправившего ряд крупных ошибок, укоренившихся в биологии и медицине со времен античности. М. Сервет, павший жертвой протестантского религиозного фанатизма, и У. Гарвей исследовали проблему кровообращения. У. Альдрованди обратился к традиции античной эмбриологии, а его ученик В. Койтер, систематически изучая развитие куриного зародыша, заложил основы методологии экспериментального эмбриологического исследования. Г. Фаллопий и Б. Евстахий проводят сравнение структуры человеческого зародыша и взрослого человека, соединяя тем самым анатомию с эмбриологией.

Величайшим мыслителем, которому суждено было начать великую революцию в астрономии, повлекшую за собой революцию во всем естествознании, был гениальный польский астроном Николай Коперник. Еще в конце XV в., после знакомства и глубокого изучения "Альмагеста", восхищение математическим гением Птолемеем, сменилось у Коперника сначала сомнениями в истинности этой теории, а затем и убеждением в существовании глубоких противоречий в геоцентризме. Он начал поиск других фундаментальных астрономических идей, изучал сохранившиеся сочинения или изложения учений древнегреческих математиков и философов, в том числе и первого гелиоцентриста Аристарха Самосского, и мыслителей, утверждавших подвижность Земли.

Коперник первым взглянул на весь тысячелетний опыт развития астрономии глазами человека эпохи Возрождения: смелого, уверенного, творческого, новатора. Предшественники Коперника не имели смелости отказаться от самого геоцентрического принципа и пытались либо совершенствовать мелкие детали птолемеевской системы, либо обращаться к еще более древней схеме гомоцентрических сфер. Коперник сумел разорвать с этой тысячелетней консервативной астрономической традицией, преодолеть преклонение перед древними авторитетами.

Между 1505-1507 гг. Коперник в "Малом комментарии" изложил принципиальные основы гелиоцентрической астрономии. Теоретическая обработка астрономических данных была завершена к 1530 г. Но только в 1543 г. увидело свет одно из величайших творений в Истории человеческой мысли -- "О вращениях небесных сфер", где изложена математическая теория сложных видимых движений Солнца, Луны, пяти планет и сферы звезд с соответствующими математическими таблицами и приложением каталога звезд.


Подобные документы

  • Естествознание как совокупность наук о природе (познание законов природы). Непосредственная цель науки. Причины, от которых зависит ее развитие. Вторая научная революция и становление классической науки. Труды Галилея, Кеплера, Декарта, Ньютона.

    реферат [34,1 K], добавлен 12.12.2010

  • Наука как способ познания человеком окружающего мира. Отличие науки от искусства и идеологии. Фундаментальные и прикладные науки. Парадигма как метатеоретическое образование, определяющее стиль научных исследований. Научная революция XVI-XVII вв.

    реферат [17,5 K], добавлен 27.08.2012

  • Предпосылки возникновения и история развития естествознания, его значение как науки. Виднейшие философы античности, их взгляды и особенности мировоззрения. Характеристика эпохи средневековья. Строение и состав Вселенной. Этапы развития основных наук.

    курсовая работа [27,0 K], добавлен 29.04.2009

  • История зарождения античной науки - натурфилософии. Основные идеи атомистики (Демокрит) и геоцентрической космологии (Аристотель). Вклад работ Пифагора, Архимеда, Евклида в развитие математики и механики. Знакомство с естествознанием эпохи Средневековья.

    реферат [30,7 K], добавлен 21.02.2010

  • Систематизация знаний в отдельные науки. Возникновение и развитие естествознания, основные понятия и цели. Связь научных знаний о природе с производственной и трудовой деятельностью человека. Взаимосвязь и взаимозависимость естествознания и общества.

    контрольная работа [25,7 K], добавлен 04.04.2009

  • Определение понятия естествознания. Естествознание подразделяется на фундаментальные, прикладные, естественные, технические науки, социальные и гуманитарные науки. История развития науки и её зарождение. Естествознание в античности и в средние века.

    реферат [26,4 K], добавлен 12.12.2010

  • Цель и предмет курса "Концепции современного естествознания", основные термины и понятия. Специфические черты науки, виды культуры. История становления научных знаний. Естественнонаучная картина мира. Внутреннее строение Земли. Законы химии и биологии.

    шпаргалка [136,9 K], добавлен 12.02.2011

  • Особенности зарождения научного мышления в Древней Греции, видение естественнонаучной картины мира древнегреческими философами. Основные этапы развития неклассического естествознания в эпоху Возрождения, идеи Коперника, Бруно, Галилея и Кеплера.

    реферат [144,5 K], добавлен 28.11.2010

  • Открытия науки и техники конца ХХ - начала XXI веков. Парадигма развития человечества в ХХ веке. Проблема чрезмерного аналитизма научного мышления. Универсология как интегративная научная парадигма. Закономерности формирования и развития систем жизни.

    реферат [24,5 K], добавлен 13.01.2015

  • Эмпирические методы познания. Идеи античной науки. Законы классической механики. Становление химии, историческая система знания. Масштаб мегамира, измерение и рост между его объектами. Признаки живой системы. Структурные уровни организации живой материи.

    контрольная работа [62,2 K], добавлен 08.06.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.