Природа, морфология и основные свойства бактериофагов. Механизм действия их на бактериальную клетку. Применение их в диагностике, лечении и профилактике болезней

История открытия и практического применения бактериофагов. Научные подходы к проблеме природы фагов. Морфологические типы фагов, их химический состав, строение и антигенные свойства. Адсорбция фага на клетке. Лизогения и её биологическое значение.

Рубрика Биология и естествознание
Вид реферат
Язык русский
Дата добавления 02.11.2009
Размер файла 2,1 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

ФГОУ ВПО САНКТ-ПЕТЕРБУРГСКАЯ

ГОСУДАРСТВЕННАЯ АКАДЕМИЯ

ВЕТЕРИНАРНОЙ МЕДИЦИНЫ

Кафедра микробиологии, вирусологии и иммунологии

РЕФЕРАТ

на тему: Природа, морфология и основные свойства бактериофагов. Механизм действия их на бактериальную клетку. Применение их в диагностике, лечении и профилактике болезней

Студентки 2-го курса 21-й группы

Генрих Елены Валерьевны

Проверил преподаватель:

Приходько Елена Игнатьевна

Санкт-Петербург

2008 год

Введение

Бактерии, резистентные к большинству или ко всем из всех известных антибиотиков, вызывают всё более серьезные проблемы. Это увеличивает риск возврата человечества к проблемам того периода, когда антибиотики были неизвестны, когда были широко распространены неизлечимые инфекции и эпидемии. Несмотря на интенсивную работу фармацевтических компаний, за последние 30 лет не было найдено новых классов антибиотиков. Есть надежда, что вновь обнаруженная возможность полностью секвенировать микробные геномы и определять молекулярные основы патогенности откроет новые пути лечения инфекционных заболеваний, но с всё большим рвением идет поиск других подходов к этой проблеме. Одним из результатов такого поиска является вновь возникший интерес к возможностям терапевтического использования бактериофагов (от бактерии и греч. phagos -- пожиратель; буквально -- пожиратели бактерий) - специфических вирусов, которые атакуют только бактерии и убивают патогенные микроорганизмы. Для обозначения фагов вызывающих лизис актиномицетов, применяется термин актинофаг, микобактерий-- микофаг, кишечной палочки -- колифаг, водорослей -- цианофаг и т.д.

Фаговая терапия была впервые разработана в начале этого века и казалась многообещающей, хотя и вызвала много споров. Вначале много внимания уделялось изучению фагов, активных против патогенных бактерий: дизентерийной, брюшнотифозной, дифтерийной палочек, стафилококков с целью выяснения возможности использования их для лечения и профилактики инфекционных заболеваний. Одновременно много внимания уделялось изучению природы фагов. С начала эры антибиотиков в 40-х гг. в западных странах ее использовали мало. Однако в Восточной Европе за последние 50 лет были проведены широкие клинические исследования в отношении фаговой терапии. Результаты этой работы хорошо дополняют ограниченные изыскания последних лет, проведенные на животных на Западе. В последние годы проблема бактериофагии фактически превратилась в самостоятельную область биологии со своими специфическими разделами. Это придает оптимизм в том отношении, что фаги могут, в самом деле, играть важную роль в борьбе с инфекциями, вызываемых микробами, резистентность которых к лекарственным средствам растет.

Фаги оказались весьма удобной моделью для разрешения ряда важнейших теоретических и практических вопросов общей биологии, генетики, молекулярной биологии, биохимии, а также медицины, ветеринарии и вирусологии.

В результате большого теоретического и практического значения проблемы бактериофагии за последние 10--20 лет фаги изучались весьма интенсивно и всесторонне.

История бактериофагов

1896: Эрнест Ханкин сообщил, что воды рек Ганга и Джамна в Индии обладают значительной антибактериальной активностью, которая сохранялась после прохождения через фарфоровый фильтр с порами очень малого размера, но устранялась при кипячении. Наиболее подробно изучал он действие неизвестной субстанции на Vibrio cholerae и предположил, что она ответственна за предупреждение распространения эпидемий холеры, вызванных употреблением воды из этих рек. Однако, в последующем, он не объяснил этот феномен.

1898: Впервые перевиваемый лизис бактерий (сибиреязвенной палочки) наблюдал русский микробиолог Н.Ф. Гамалея.

1915: Английский учёный Ф. Туорт описал это же явление у гнойного стафилококка и открыл первый «вирус, пожирающий бактерии» , когда он наблюдал любопытное дегенеративное изменение - лизис в культурах стафилококков из лимфы теленка. С его именем связано название «феномен Туорта».

1917: Феликс д'Эрель делает аналогичное открытие, Именно Феликс д'Эрель канадский сотрудник Института Пастера в Париже, дал им название “бактериофаги” - используя суффикс “фаг” не в его прямом смысле “есть”, а в смысле развития за счет чего-то (д'Эрель, 1922, р. 21), они стали главной частью работы всей его жизни.

Д'Эрель, микробиолог, преимущественно самоучка, провел 10 лет в Гватемале, Мексике и Аргентине. Там он имел дело с эпидемиями дизентерии, желтой лихорадки и грибков кофейных деревьев, для контроля чумы саранчи он выделил из умирающей саранчи бактерию, а также исследовал несколько интересных загадок брожения. Всё это было хорошей подготовкой к его более поздней работе с фагами и интересно изложено в Summers (1999). В Институте Пастера он проводил кропотливое исследование метода приготовления вакцины с помощью модельной системы - “B. typhimurium” на её природном хозяине мыши, поскольку был твердо убежден в том, что значимые данные об иммунитете и патогенности можно получить только при использовании природных хозяев. В свободное время он также продолжал обследовать дизентерийных больных - частую проблему в воевавшей Франции. Из фекалий нескольких из этих больных он выделил анти-шигелловый “микроорганизм”, который был размножен путем многочисленных серий пассажей на бактерии-хозяине и мог образовывать небольшие чистые круги на газоне этих же бацилл шигеллы ('Эрель, 1917).

Д'Эрель продолжал тщательно характеризовать бактериофаги как вирусы, которые размножаются в бактериях и разрабатывать подробности инфекции различными фагами разнообразных бактерий-хозяев в разных условиях окружающей среды, всегда объединяя в своей работе природные феномены и лабораторные данные, для лучшего понимания иммунитета и естественного (самопроизвольного) излечения от инфекционных заболеваний (Summers, 1999). На Девятнадцатом ежегодном заседании Британской Медицинской Ассоциации в Глазго прошла очень интересная дискуссия между д'Эрель, Twort и несколькими другими выдающимися учеными того времени о природе и свойствах бактериофагов (d'Herelle et al, 1922). Главный её вопрос: является ли причинной основой лизиса бактерий, вырабатываемый ими фермент или это особая форма мельчайшего вируса с некоторым родом собственной жизни, как заявлял д'Эрель. Этот спор продолжался много лет, разделяя людей, работающих с фагами, которых становилось все больше и больше.

Д'Эрель суммировал начальный этап работы с фагами в 300-страничной книге “Бактериофаг” (1922). Он провел классические описания образования бляшек и состава, инфекционных центров, литических процессов, специфической адсорбции на бактерии-хозяина и размножения, зависимости продукции фагов от конкретного состояния бактерии-хозяина, выделения фагов из источников инфекционных бактерий и факторов, регулирующих стабильность внеклеточного фага. Он быстро увлекся очевидной ролью фагов в природном контроле микробных инфекций. Он, например, отметил частое выявление у выздоравливающих больных фагов, специфичных в отношении микроорганизмов, вызвавших заболевание и довольно быстрое по времени изменения популяций этих фагов. Всю свою жизнь он посвятил, разработке возможности применения фагов, полученных путем надлежащей селекции, как средства для лечения заболеваний, наиболее подрывавших здоровье людей в те годы. Вначале, однако, он сосредоточился на простом понимании биологии фагов. По этому первое известное сообщение об успешной фаговой терапии поступило не от д'Эрель, а от Bruynoghe и Маisin (1921), которые использовали фаг для лечения стафилококковых инфекций кожи.

Через год, будучи в институте Пастера в Сайгоне, д'Эрель оказался в тяжелом материальном положении, находясь в конфликте и имея интеллектуальные разногласия с коллективом института Пастера в Париже. Вскоре он принял предложение переехать в Нидерланды, где ему были обеспечены лучшие условия для работы по лечению инфекционных заболеваний и исследованию свойств бактериофагов. Там он опубликовал свою первую книгу и ряд статей, получил степень доктора медицинских наук .В 1925 г. он стал инспектором службы здравоохранения Лиги Наций, (Александрия, Египет), особо уполномоченным за борьбу с инфекционными заболеваниями на кораблях, проходящих по Суэцкому каналу и во время некоторых крупных мусульманских паломничеств. Фаговая терапия и санитарные мероприятия были главными средствами в его арсенале борьбы с крупными вспышками инфекционных заболеваний на Среднем Востоке и в Индии. В течение всего этого периода он продолжал публикации о своем исследовании и клинических испытаниях, оказывал помощь и давал консультации желающим изучать фаги, часто предпринимая длительные путешествия за свой счет. Одно из наиболее обширных исследований фаговой терапии, проведенное с его помощью, было Исследование Бактериофагов в 1927-1936 гг. (Summers, 1993), закончившееся тем, “что результаты, подтвержденные августейшей комиссией, кажутся убедительными” и хотя все еще остается много скептиков в отношении фаговой терапии, эти исследования заслуживают тщательного изучения.

В 1928 г. д'Эрель был приглашен в Стэнфорд, чтобы прочитать престижные лекции - Lane Lectures; его дискуссия “Бактериофаг и его клинические применения” была опубликована в виде монографии (d' Herelle and Smith, 1930). Во время поездок по стране он прочел множество лекций в медицинских институтах и обществах. Затем он отправился в Йель, чтобы занять постоянную должность на факультете, организованную при поддержке George Smith, который перевел первые две его книги на английский язык. Он продолжал проводить летний период в Париже, работая в организованной им фаговой компании, которой руководил его зять. Компания была создана в ответ на большие потребности в высококачественных фаговых препаратах; этот период особенно хорошо описан Summers (1999). В 1933 г. д'Эрель возвратился в Европу на постоянное жительство, проводя много времени в следующие два года в Тифлисе (Тбилиси), Грузия, помогая в организации Международного Института Бактериофагов.

С самого начала, одним из главных направлений практического применения фагов была идентификация бактерий путем процесса, называемого фаготипирование - идентификации штаммов микробов с помощью определения спектра чувствительности к специфическому набору фагов. Эта методика обладает преимуществом в виду высокой специфичности многих фагов в отношении их хозяев и по-прежнему широко используется во всем мире. Высокоспецифичная способность фагов уничтожать свои бактерии-хозяева может также оказать негативный коммерческое эффект: случайное заражение фагом может быть катастрофическим для различных бродильных производств, использующих микробные технологии, таких, как производство сыра и ферментативный синтез химических веществ и вызывать финансовые бедствия

Фаговая терапия испытывалась широко, были сообщения о многочисленных успехах ее при ряде заболеваний включая дизентерию, брюшной тиф и напоминающую брюшной тиф лихорадку, холеру, пиогенные инфекции и инфекции мочевых путей. Фаги непосредственно наносили на место поражения, давали внутрь либо применяли в виде аэрозолей или клизм. Их также вводили в виде инъекций внутрикожно, в сосуды, внутримышечно, интрадуоденально, внутрибрюшинно даже внутрь легких, в сонную артерию и перикард. Сильный интерес к фаговой терапии на раннем этапе нашел отражение в том, что на эту тему опубликовано около 800 статей с 1917 по 1956 г; результаты были довольно разнообразными и подробно освещены Ackerman и Dubow (1987). Многие врачи и предприниматели очень заинтересовались возможным клиническим применением фагов и перескочили к использованию, имея как слабое представление о них самих и о микробиологии, так и дефицит базовых научных знаний вообще. Таким образом, многие из этих исследований были плохо контролируемыми или вовсе анекдотичными, многие неудачи были предсказуемыми, а в описании некоторых успехов не доставало научного смысла. Часто фаги с неизвестными свойствами, в неизвестных концентрациях давались больным без специфичного бактериологического диагноза, при этом не было никакого упоминания о катамнезе, контроле или плацебо.

На раннем этапе работы с фагами игнорировалось многое из того, что удалось понять д'Эрель часто использовались неправильные методы приготовления, “консервирования” и хранения. В одном случае д'Эрель описал испытание 20 препаратов изготовленных различными компаниями, в ходе которого выяснилось, что ни один из них не содержал активные бактериофаги (Summers, 1999).

В другом случае препарат рекламировался как содержащий ряд различных фагов, но, как оказалось, ответственный технолог решил, что легче выращивать их в виде одной большой партии, чем отдельно. Неудивительно, что проверка продукта выявила подавление одним фагом всех остальных, и препарат фактически не был поливалентным. Так был получен фаг Т7, РНК-полимераза которого сейчас играет большую роль в биотехнологии (личное сообщение William Summers). В целом, исключая несколько исследовательских центров, контроль качества не производился. Крупные клинические исследования были редкостью, и результаты этих немногих работ были большей частью недоступны за пределами Восточной Европы.

В 1931 г. Советом по Фармации и Химии Американской Медицинской Ассоциации был подготовлен обширный обзор по фаговой терапии (Eaton and Bayne-Jones, 1931). Его целью было: “(а) представить резюме и обсуждения (1) экспериментально установленных фактов, связанных с феноменом бактериофагов, (2) лабораторных и клинических данных "за" и "против" терапевтической применимости бактериофагов и (3) выявить имеет ли отношение так называемый антивирус к материалам, содержащим бактериофаги и (б) служить основой для изучения свойств некоторых коммерческих препаратов”. Этот отчет, имевший 150 ссылок, был крупнейшей попыткой обзора, по крайней мере, тех статей и обзоров, которые рассматривались как наиболее значимые. Оценивая этот отчет, важно понять, насколько мало было известно тогда о бактериофагах. Фактически первым заключением было: “Экспериментальные исследования литического агента, названного “бактериофагом”, не раскрыли его природы. Теория д'Эрель о том, что этот материал является живым вирусом, паразитирующим в бактериях, не доказана. Напротив, факты указывают на то, что этот материал неживой, возможно является ферментом”. В ретроспективе доказательство того, что фаги являются вирусами, выглядит веско, и трудно понять‚ как можно было придти к такому заключению, явно повлиявшему на все остальные. Они включали в себя следующее:

1) Поскольку окончательно не показано, что бактериофаг является живым организмом, не обосновано объяснять его действия на культуры бактерий или его возможное терапевтическое действие свойствами живого вещества. 2) В то время как в [бактериальной] культуре бактериофаг растворяет чувствительные бактерии и вызывает многочисленные модификации микроорганизмов, его литическое действие в организме ингибируется или сильно затрудняется кровью и другими жидкостями тела. 3) Материал, называемый бактериофагом, обычно является фильтратом лизированных микроорганизмов, содержащим, в дополнение к литическому началу, антигенные бактериальные вещества, продукты бактериального роста и составляющие культуральной среды. Эффект всех этих компонентов необходимо принимать во внимание всякий раз, когда испытывается терапевтическое действие. 4) Обзор литературы об использовании бактериофагов в лечении инфекций выявил, что обоснование терапевтической значимости литических фильтратов является большей частью спорным. Только при лечении местных стрептококковых инфекций и, возможно, цистита, представлены вполне убедительные данные”.

Эта оценка явно оказала сильное влияние на инвестирование серьезных исследований фаговой терапии медицинской общественностью, по крайней мере, в Соединенных Штатах. Поднятые вопросы, по-прежнему требуют рассмотрения, как, в отношений многих описанных здесь исследований на животных или на людей, которые, казалось, были малоуспешными или безуспешными, так и в отношении таких возможно неправильных объяснений успехов, как сильная стимуляция естественных иммунных механизмов продуктами распада бактерий, содержащимися в используемых лизатах. Далее в 40-х гг. стали широкодоступны новые “чудесные” антибиотики, такие как пенициллин, и Западный мир большей частью отказался от фаговой терапии.

Специфическе проблемы ранних работ по фаговой терапии

Сегодня многие полагают, что в первой половине этого века была показана неэффективность фаговой терапии. Однако получилось так, что она просто не исследована в полной мере и должным образом, так что иная ее оценка вполне оправдана. По этому важно рассмотреть во всех деталях как возможные причины проблем раннего периода, так и вопросы касающиеся эффективности, а именно:

1) Недостаточность понимания гетерогенности и экологии как фагов, так и вовлеченных бактерий.

2) Неудача в селекции фагов, высоко вирулентных против бактерий-мишеней, до их использования у больных.

3) Использование моно фагов при инфекциях, вызываемых несколькими различными бактериями.

4) Появление резистентных штаммов бактерий. Они могут возникнуть путем селекции резистентных мутантов (это часто происходит, при использовании только одного штамма фага против конкретной бактерии) или путем лизогенизации (если используются умеренные фаги, как обсуждается ниже).

5) Неправильная классификация фагов или ошибки в отношении титра препаратов, некоторые из которых были полностью неактивны.

6) Неудача в нейтрализации низких значений желудочного рН при использовании пероральных препаратов.

7) Инактивация бактериофагов специфическими и неспецифическими факторами в жидкостях организма.

8) Высвобождение эндотоксинов вследствие массивного лизиса бактерий внутри организма (что именуется врачами реакцией Herxheimer). Это может привести к токсическому шоку и является потенциальной проблемой также и для химических антибиотиков.

9) Недостаточная готовность и надежность бактериологических лабораторий для тщательной идентификации причинных патогенов, необходимой ввиду специфичности фаговой терапии.

Природа фагов

Несмотря на то, что явление бактериофагии интенсивно изучается более пятидесяти лет, на природу фагов нет единой точки зрения, и этот вопрос до сих пор остается спорным. В нашей стране и за рубежом в специальной печати и на конференциях неоднократно возникали горячие дискуссии на эту тему. И это не случайно. Вопрос о происхождении фагов, как и других вирусов, имеет большое значение, так как с ним тесно связано решение многих актуальнейших задач современной биологии: происхождение жизни, возможные формы существования живого; существование живых существ, не имеющих клеточной структуры; происхождение клеточных форм жизни; развитие, изменчивость и видообразование у микроорганизмов и др.

До настоящего времени все еще существуют диаметрально противоположные точки зрения на природу вирусов, в том числе и фагов. По мнению одних ученых, фаги относятся к живым организмам; другие рассматривают их как особые вещества типа ферментов.

Важно отметить, что те исследователи, которые относят фаги к живым организмам, различно трактуют вопрос об их происхождении. Одни исследователи считают, что фаги, как и вирусы человека, животных и растений, произошли от древнейших доклеточных форм, которые в процессе эволюции приспособились к паразитированию в первичных одноклеточных организмах и в дальнейшем эволюционировали вместе со своими хозяевами. Таким путем, как думают эти ученые, возникли фаги микроорганизмов, которые по своему отношению к клетке-хозяину являются паразитами экзогенного, т.е. внешнего, происхождения. Другие же считают, что происхождение фагов связано тем или иным образом с клеткой своего теперешнего хозяина (эндогенное происхождение).

По мнению ученых, рассматривающих фаг как фермент эндогенного происхождения, фаговая частица является продуктом жизнедеятельности микробной клетки. При попадании в клетку фаги вызывают каталитически протекающие процессы образования активного фага, способного разрушать микробную клетку. А размножение фага в клетке происходит приблизительно так же, как образование активного фермента из его неактивного предшественника -- профермента.

Какая же из изложенных точек зрения на природу фага является наиболее приемлемой, исходя из современных знаний о свойствах фага и его взаимоотношений с клеткой-хозяином? Является ли фаг живым существом или это -- вещество подобное ферменту? За последние годы благодаря применению новейших современных методов исследования (электронная микроскопия, меченые атомы) знания о структуре фагов, их химическом составе, особенностях размножения значительно расширились. Фаговая частица оказалась довольно сложно организованной. Она содержит основные химические соединения, свойственные живому организму,-- нуклеиновые кислоты и белок. Подобно другим живым существам, фаги способны изменять все свои свойства. Поэтому рассматривать их как ферменты нет никаких оснований. Верно, они не обладают собственным обменом веществ. Они являются абсолютными паразитами, живущими полностью за счет клетки-хозяина.

Следовательно, фаги логично рассматривать как особые формы живых существ. Однако вопрос о происхождении фагов пока еще нельзя считать окончательно решенным.

Распространение фагов

В настоящее время найдены, фаги, лизирующие клетки микроорганизмов, принадлежащих ко всем систематическим группам, как патогенных для человека, животных и растений, так и сапрофитных (непатогенных).

До недавнего времени не было ясно, существуют ли фаги против плесневых грибов и дрожжей. В последние годы найдены фаги, активные против грибов родов пенициллов, аспергил-лов и других, а также против некоторых дрожжей. Интересно отметить, что вирус удалось выявить и у тех видов пенициллов, которые применяются в промышленности для получения пенициллина. Не выявлены вирусы, активные против простейших животных, а также истинных спирохет.

В природных условиях фаги встречаются в тех местах, где есть чувствительные к ним бактерии. Чем богаче тот или иной субстрат (почва, вода, выделения человека и животных и т. д.) микроорганизмами, тем в большем количестве в нем встречаются соответствующие фаги. Так, фаги, лизирующие клетки всех видов почвенных микроорганизмов, находятся в почвах. Особенно богаты фагами черноземы и почвы, в которые вносились органические удобрения. Фаги, активные против разных видов кишечной, дизентерийной, тифозной и паратифозной палочек, часто встречаются в содержимом кишечника человека и животных, сточных водах и загрязненных водоемах. Фаги фитопатогенных микроорганизмов успешнее всего выделяются из остатков растений, пораженных этими микробами

Итак, те субстраты, на которых развиваются определенные формы микроорганизмов, также благоприятны для существования соответствующих фагов.

Иллюстрация 1: Escherichia coli атакуемая фагами

Морфология фагов

Применение современных электронных микроскопов, а также усовершенствование методов приготовления препаратов для электронной микроскопии позволили более детально изучить тонкую структуру фагов. Оказалось, что она весьма разнообразна и у многих фагов более сложна, чем структура вирусов растений и ряда вирусов человека и животных.

Иллюстрация 2: Морфологические типы фагов

Разные фаги отличаются друг от друга не только по форме, величине и сложности своей организации, но и по химическому составу. Оказалось, что фаги, лизирующие микроорганизмы различных групп, могут быть вполне идентичными по своей морфологии. В то же время фаги, активные против одной и той же культуры, могут резко различаться по своей структуре. Так, например, среди фагов, способных лизировать разные штаммы кишечной палочки, выявлены все известные морфологические типы фагов.

Иллюстрация 3: Палочковидные, или нитевидные, фаги. Увел. X 400 000.

Частицы (или вирионы) большинства известных фагов имеют форму сперматозоида. Они состоят из головки (или капсида) и отростка. Наряду с этим есть фаги, которые состоят из одной головки, без отростка, и фаги, имеющие форму палочки (палочковидные или нитевидные фаги).

По форме частиц фаги делятся на шесть основных морфологических типов (групп): (рис.2) палочковидные или нитевидные фаги; фаги, состоящие из одной головки, без отростка; фаги, состоящие из головки, на которой имеется несколько небольших выступов; фаги, состоящие из головки и весьма короткого отростка; фаги, имеющие головку и длинный отросток, чехол которого не может сокращаться; фаги, имеющие головку и длинный отросток, чехол которого может сокращаться.

Иллюстрация 4: Фаги 2 морфологического типа, частица состоит из одной головки. Увел. X 600 000

Размеры фагов принято обозначать в милли-микрометрах (1 миллимикрометр -- миллионная часть миллиметра) или в ангстремах (10 А = 1 миллимикрометр).

Фаги первого морфологического типа -- палочковидные или нитевидные -- выявлены у кишечной, синегнойной, чудесной палочек и других бактерий. Средние размеры их: длина -- от 7000 до 8500 А, ширина -- от 50 до 80 А (рис. 3). Эти фаги отличаются от всех остальных не только большой специфичностью, но и рядом других важных свойств.

Фаги второго морфологического типа. Частица их состоит из одной головки гексагональной (шестигранной) формы на плоскости. Частицы очень мелкие, средний размер их 230--300 А в диаметре (рис. 4).

У фагов третьего морфологического типа форма и размеры головки такие же, как у фагов второго типа, но у их головок имеются обычно несколько очень коротких выступов (рис. 5). Возможно, эти выступы являются аналогами отростков.

Иллюстрация 5: Фаги третьего морфологического типа от головки отходят небольшие выступы

Иллюстрация 6: Фаг 4 морф. типа. Частица состоит из головки и короткого отростка Увел. х500 000

Фаги 2-го и 3-го морфологических типов отличаются постоянством формы и размеров, независимо от того, против каких микроорганизмов они активны. Эти фаги относятся к мелким формам.

Фаги 4-го морфологического типа. Частица состоит из головки, размеры которой варьирую от 400 до 640 А в диаметре, и очень короткого отростка (рис. 6).Длина и ширина отростка от 70 до 200 А.

Фаги пятого морфологического типа наиболее широко распространены. Головка у частиц гексагональной, формы различных размеров -- от 500 до 4250 А в диаметре. Размеры отростка: длина -- от 1700 до 5000 А, ширина -- от 70 до 120 А (рис. 7). Чехол отростка не способен сокращаться.

Фаги шестого морфологического типа также широко распространены. Головка частицы различной формы и размеров -- от 600 до 1500 А в диаметре, гексагональная. Размеры отростка: длина -- от 800 до 2890 А, ширина -- от 140 до 370 А. Важной особенностью фагов этой группы является то, что чехол, окружающий отросток, способен сокращаться, в результате чего становится видимым внутренний стержень отростка (рис.8).

Головки всех фагов состоят из внутреннего содержимого -- нуклеиновой кислоты - и окружены белковой оболочкой. Отросток фагов весьма сложен. Он обычно состоит из следующих структур: наружного чехла (или оболочки), внутреннего стержня с канальцем, базальной пластинки, оканчивающейся выступами (типа шипов) и нитевидными структурами. Чехол отростка состоит из субъединиц белковой природы, собранных в спираль. В результате этого он приобретает вид гофрированной трубки. В верхней части отростка многих фагов имеется образование, которое называется воротничком. На рисунке 9 схематически изображена тонкая структура фаговой частицы.

Химический состав фагов

Изучение химического состава фагов стало возможно лишь тогда, когда были усовершенствованы методы получения в больших количествах очищенных препаратов фага. В настоящее время изучен химический состав фагов, принадлежащих к разным морфологическим типам и поражающих микроорганизмы почти всех систематических групп.

Иллюстрация 7: Разные фаги пятого морфологического типа, частица состоит из головки и длинного отростка, чехол которого не способен сокращаться. 1,2- увел. X 225 000, 3 - увел. X250 000

Основными компонентами фагов являются белки и нуклеиновые кислоты. Важно отметить, что фаги, как и другие вирусы, содержат только один тип нуклеиновой кислоты -- дезоксирибонуклеиновую (ДНК) или рибонуклеиновую (РНК). Этим свойством вирусы отличаются от микроорганизмов, содержащих в клетках оба типа нуклеиновых кислот.

Нуклеиновая кислота находится в головке. Внутри головки фагов обнаружено также небольшое количество белка (около 3%).

Таким образом, по химическому составу фаги являются нуклеопротеидами. В зависимости от типа своей нуклеиновой кислоты фаги делятся на ДНК-овые и РНК-овые. Количество белка и нуклеиновой кислоты у разных фагов разное. У некоторых фагов содержание их почти одинаковое и каждый из этих компонентов составляет около 50%. У других фагов соотношение между этими основными компонентами может быть различно.

Иллюстрация 8: Фаг шестого морфологического типа, частица состоит из головки и длинного отростка, чехол которого способен к сокращению. Увел, около 400 000.

Кроме указанных основных компонентов, фаги содержат в небольших количествах углеводы и некоторые преимущественно нейтральные жиры.

Иллюстрация 9: Схема строения фаговой частицы.

Все известные фаги второго морфологического типа РНК-овые. Среди фагов третьего морфологического типа встречаются как РНК-овые, так и ДНК-овые формы. Фаги остальных морфологических типов -- ДНК-овые.

Антигенные свойства фагов

Известно, что при введении в организм животного подкожно или внутривенно белка, бактериальных клеток, некоторых продуктов жизнедеятельности микроорганизмов и других веществ в крови животного вырабатываются вещества, названные антителами. Вещества, способные вызывать образование антител, называются антигенами.

Антитела очень специфичны и способны вступать в реакции только с теми антигенами, которые вызвали их образование. Они или связывают соответствующие антигены, или нейтрализуют их, или осаждают, или растворяют.

Оказалось, что все фаги обладают антигенными свойствами. При введении фага в организм животного в сыворотке крови образуются специфические антитела, способные действовать только против данного фага. Такие сыворотки называются антифаговыми. Когда фаг смешивается со специфической антифаговой сывороткой, происходит инактивация фага -- фаг теряет способность вызывать лизис чувствительных к нему микробов.

Так как каждая антифаговая сыворотка специфична, ее можно успешно применять для идентификации и классификации фагов и очистки микробной культуры от фага. При помощи сыворотки удалось доказать, что белок оболочки фага отличается от белка оболочки отростка и от белка базальной пластинки и ее нитевидных образований, что говорит о сложности структуры фаговой частицы. По антигенным свойствам фаг резко отличается от чувствительных к нему микробов.

Механизм воздействия бактериофагов на бактериальную клетку

Размножение фагов

Взаимоотношения между фагом и чувствительной к нему клеткой очень сложны и не всегда завершаются лизисом клетки и размножением в ней фага. Одни бактериофаги весьма специфичны и способны лизировать клетки только одного какого-либо вида микроорганизмов (монофаги), другие -- клетки разных видов (полифаги). Рассмотрим такую инфекцию клетки, которая заканчивается гибелью клетки и размножением в ней фага. Такая инфекция называется продуктивной.

Важнейшей особенностью размножения фага является то, что оно может происходить только в живых клетках, находящихся в стадии роста.

В мертвых клетках, а также продуктах клеточного обмена размножение фага не происходит.. По характеру взаимодействия с микробной клеткой различают вирулентные и умеренные Б. Процесс взаимодействия вирулентного Б. с клеткой весьма сложный и состоит из следующих последовательно протекающих этапов (рис. 10): 1) адсорбция фаговой частицы на поверхности микробной клетки; 2) проникновение содержимого головки фаговой частицы (нуклеиновой кислоты) в микробную клетку; 3) внутриклеточное развитие фага, заканчивающееся образованием новых фаговых частиц; 4) лизис клетки и выход из нее новых фагов.

Время с момента инфицирования клетки фагом до лизиса клетки называется латентным или скрытым периодом. Продолжительность этого периода различна для разных типов фага, зависит от окружающей температуры, состава среды и других факторов. Латентный период фагов, специфичных для одних бактерий, 15--40 мин, для других -- 5 ч и более. У фагов актиномицетов латентный период может быть еще продолжительнее. При низкой температуре латентный период значительно увеличивается.

Иллюстрация 10: Схема размножения фага.

Иллюстрация 11: Адсорбция фага на клетке

Из всех этапов размножения фага наиболее изучен первый -- адсорбция.

Адсорбция фага на клетке -- реакция весьма специфичная. В клеточной стенке бактерий имеются особые структуры (рецепторы), к которым могут прикрепиться фаги. Адсорбируются на рецепторах только те фаги, к которым чувствительна клетка.

Фаги, имеющие отростки, прикрепляются к микробной стенке свободным концом отростка. Нитевидные фаги, а также фаги, не имеющие отростков, адсорбируются не на микробной стенке, а на нитевидных структурах, окружающих стенку, -- фимбриях. Описаны фаги, которые прикрепляются отростком к бактериальным жгутикам. У некоторых фагов процесс адсорбции может осуществляться лишь в том случае, когда в среде имеются определенные вещества -- кофакторы: аминокислоты (триптофан, тирозин и др.) или соли (кальциевые, магниевые).

На конце фагового отростка имеется особый фермент типа лизоцима. После адсорбции фага под влиянием этого фермента происходит растворение стенки микробной клетки и содержимое головки фага -- нуклеиновая кислота -- перекачивается в микробную клетку. Этим завершается второй этап процесса размножения фага.

Остальные структуры фаговой частицы -- оболочка головки, отросток и его субструктуры -- внутрь инфицированной фагом клетки не попадают. Их роль заключается в обеспечении сохранности фаговой частицы, находящейся вне клетки, и содействии проникновению фаговой нуклеиновой кислоты в клетку при инфекции.

Иллюстрация 12: Мелкие (едва видимые) негативные колонии актинофага. Увел. 6:10

У нитевидных фагов, в отличие от других видов фагов, внутрь клетки проникает весь белок или его часть. После проникновения нуклеиновой кислоты фага в клетку начинается сложный процесс внутриклеточного размножения фага. Под влиянием нуклеиновой кислоты фага резко изменяется весь обмен микробной клетки. Основные процессы, протекающие в инфицированной клетке, направлены на образование новых фаговых частиц. Инъецированная ДНК подавляет синтезирующие механизмы клетки, заставляя ее синтезировать ДНК и белки бактериофага. Из образовавшихся в разных частях клетки в разное время фаговой нуклеиновой кислоты и белка формируются новые фаговые частицы (сборка Б.). Вначале формируются отдельно головки и отростки, которые затем объединяются в зрелые фаговые частицы. К этому времени внутри клетки образуется особый литический фермент, который вызывает лизис клетки изнутри. Клетка распадается, и новые зрелые частицы фага выходят наружу.

Иллюстрация 13: Мелкие негативные колонии актинофага Увел. 8 : 9.

Количество новых фаговых частиц, образуемых одной клеткой при фаговой инфекции, называют выходом фага или его урожайностью. Выход фага зависит от свойств данного фага и не зависит от клетки-хозяина и ее размеров. Одни фаги отличаются очень низким выходом (5--50 частиц на клетку), у других выход значительно выше (от 1000 до 2500). Особенно высоким выходом отличаются мелкие РНК-овые фаги (свыше 20 000 частиц на клетку). Если большое количество бактериальных клеток смешать с небольшим количеством фаговых частиц, то процесс размножения фагов проходит несколько циклов. В начале инфицируется часть клеток. Первое потомство фага инфицирует оставшиеся клетки -- происходит второй цикл, за ним может следовать третий и т.д., пока не будут лизированы все чувствительные к данному фагу клетки. Среди фагов встречаются такие, размножение которых возможно лишь при наличии в среде определенных кофакторов. Одни из этих веществ, как уже указывалось, необходимы для адсорбции фага; другие -- для внутриклеточного размножения фага.

Иллюстрация 14: Негативные колонии бактериофага средней величины. Увел. 1:1

Является ли процесс размножения фага всегда смертельным для инфицированной им клетки? Несомненно, абсолютное большинство фагов вызывают при размножении лизис клетки и ее гибель. Лишь в последнее время было установлено, что при инфицировании клетки нитевидными фагами возможно размножение их без гибели клетки.

Если произвести рассев по поверхности агаризованной питательной среды в чашках Петри смеси фага и чувствительных к нему микробов и чашки выдержать в термостате, то происходит лизис клеток в результате размножения фага. Если взять большое количество частиц фага, то лизируется большая часть или весь выросший газон культуры. Если количество фаговых частиц таково, что они распределяются только на отдельных участках газона, лизируя в этих местах культуру, то возникает колония фага.

Эти колонии фага получили название бляшек, стерильных пятен. Правильнее их называть негативными колониями. Каждая негативная колония состоит из десятков и сотен миллионов фаговых частиц. Размер негативных колоний и их форма зависят в первую очередь от свойств фага, а также от состава среды и культуры микробов. У одних фагов негативные колонии очень мелкие и еле видимы невооруженным глазом, другие достигают 10 мм в диаметре и более. Колонии бывают светлые и четкие, когда лизировалась вся культура, или мутноватые, когда лизировались не все клетки. Вокруг негативных колоний некоторых фагов могут возникнуть различной формы и величины ореолы. На рисунках 12-- 16 показаны негативные колонии разных фагов.

Морфология негативных колоний служит одним из признаков, которым пользуются при дифференциации фагов.

Иллюстрация 15: Крупные негативные колонии актинофага. Увел. 1:1.

Иллюстрация 16: Негативные колонии актинофага, окруженные ореолом угнетенного роста тест-культуры. Увел. 10:8.

Лизогения и её биологическое значение

При изучении явления бактериофагии исследователи обратили внимание на то, что иногда встречаются культуры микроорганизмов, которые содержат фаги, хотя на эти культуры фагами и не воздействовали. Явление фагоносительства получило название лизогении.

Оно было описано одним из основоположников учения о бактериофагах -- Д'Эреллем, который считал, что такие культуры загрязняются фагом извне. Подобные культуры были названы ложнолизогенными.

Ложнолизогенные культуры состоят из смеси устойчивых и чувствительных к определенному фагу клеток.

Такие культуры могут быть легко освобождены от содержащихся в них фагов или путем нескольких рассевов, или с помощью специфической антифаговой сыворотки, или воздействием антифаговыми веществами.

Кроме ложнолизогенных, встречаются такие содержащие фаги культуры, у которых лизо-генное состояние, т. е. способность выделять фаги, стойко сохраняется даже после многочисленных пересевов в среде с антифаговой сывороткой и многократных воздействий антифаговыми веществами. Такие культуры названы истиннолизогенными. Мы расскажем только об этих культурах, которые будем называть лизогенными.

Лизогенными культурами являются такие культуры, которые обладают способностью продуцировать зрелые частицы фага без воздействия на них фагом извне. Это свойство стойко передается по наследству. В лизогенной культуре фаг находится внутри клетки. Для понимания сущности лизогении особо важное значение имел вопрос: в каком состоянии фаг находится внутри лизогенной клетки?

Опыты с искусственным разрывом клеток лизогенных культур под влиянием разнообразных физических и химических факторов (ультразвука, антибиотиков, литических ферментов и т. д.) не выявили наличия в клетках зрелых частиц фага.

Важное значение для понимания истинной природы лизогении имели работы А. Львова и А. Гутмана (1950). Оригинальные опыты этих исследователей убедительно показали, что в лизогенной клетке фаг находится не в виде зрелых частиц, а в какой-то другой, неинфекционной для клетки форме. Такую форму назвали профагом. Именно умеренные фаги могут находиться в лизогенных клетках в виде профага.

Клетку можно экспериментально сделать лизогенной. Такой эксперимент помог выяснить механизмы процесса, благодаря которому клетка становится лизогенной. Оказалось, что при воздействии на клетку умеренным фагом часть популяции клеток лизируется, а другая часть становится лизогенной. При этом фаг адсорбируется клеткой и его нуклеиновая кислота проникает внутрь клетки. Однако, в отличие от продуктивной инфекции, вызываемой вирулентным фагом, при лизогенизадии нуклеиновая кислота фага связывается с ядерным аппаратом клетки (хромосомой) и остается в ней в виде профага.

Вопросы локализации профага в клетке и формы его связи с клеткой являются важнейшими проблемами лизогении. По данным ряда исследователей, каждый профаг занимает определенное место на хромосоме лизогенной клетки. При делении клетки профаг воспроизводится со скоростью, равной скорости воспроизводства генетического материала клетки, что способствует передаче лизогенного состояния потомству.

Следовательно, в лизогенной клетке профаг ведет себя как ее нормальный компонент. При лизогенизации происходит объединение генетического материала клетки с генетическим материалом фага на молекулярном уровне. Известны пока единичные случаи, когда профаг не связан с хромосомой, а расположен на мембранах клеточной цитоплазмы.

Итак, в лизогенной клетке фаг является дополнительным генетическим фактором, который может неопределенно длительное время находиться внутри клетки и, как всякий генетический фактор, определять свойственные ему признаки.

Лизогенные культуры устойчивы (или иммунны) к тому фагу, который они содержат, а также к близкородственным ему фагам. При размножении лизогенной культуры какая-то часть клеток популяции лизируется и освобождает зрелые частицы специфичного для этой популяции умеренного фага.

Образование лизогенными культурами зрелых частиц фага получило название спонтанной индукции. Количество лизируемых клеток и количество образовавшихся зрелых частиц фага зависят от особенностей данной культуры и условий выращивания. В то же время количество клеток, освобождающих фаги, может быть резко увеличено при воздействии на лизогенную культуру некоторыми физическими и химическими факторами, получившими название индуцирующих. При индукции некоторых лизогенных культур удавалось вызывать образование зрелых частиц фага почти у всех клеток. К индуцирующим агентам относятся ультрафиолетовые (УФ), рентгеновские и гамма-излучения, перекиси, азотистый иприт и его гомологи, этиленимин, урацил, многие антибиотики. Наиболее эффективные и широко применяемые индуцирующие факторы -- УФ-лучи и антибиотик митомицин С.

Как отмечалось, важным свойством лизогенной культуры является ее устойчивость к содержащемуся в ней фагу. В связи с этим выделение и изучение умеренных фагов лизогенной культуры возможно лишь в том случае, когда имеется другая культура того же вида, которая чувствительна к умеренному фагу данной лизогенной культуры. Такие культуры получили название индикаторных. К лизогенным культурам, особенно широко распространенным в природе, сравнительно легко можно подобрать индикаторные культуры среди других разновидностей этого же вида.

В отдельных случаях умеренный фаг лизогенной культуры может спонтанно (без внешних воздействий) или под влиянием различных факторов измениться и стать вирулентным. Тогда фаг приобретает способность лизировать все клетки данной культуры. У некоторых лизогенных культур превращение умеренного фага в вирулентный происходит сравнительно легко. Имеется ряд культур, у которых экспериментально не удавалось превратить умеренный фаг в вирулентный.

Возможность возникновения вирулентных мутантов умеренных фагов имеет большое теоретическое и практическое значение. Не редки случаи, когда единственным доказательством лизогенности культуры является возникновение вирулентных мутантов ее умеренного фага.

Лизогения широко распространена среди всех систематических групп микроорганизмов. Это явление детально изучено у сальмонелл -- возбудителей брюшного тифа и паратифа, у дифтерийной палочки; все культуры этих видов патогенных бактерий оказались лизогенными. Лизогения широко распространена среди стрептококков, споровых форм бактерий, клубеньковых бактерий, актиномицетов, микобактерий и др.; она выявлена и у некоторых мицелиальных грибов (пенициллов) и дрожжей. Есть все основания утверждать, что абсолютное большинство микроорганизмов являются лизогенными. Ни про одну культуру нельзя с уверенностью сказать, что она не лизогенная.

За последнее время накапливается все больше данных о том, что многие лизогенные культуры содержат 2, 3, 4 и более умеренных фагов, т. е. являются полилизогенными. Например, многие актиномицеты, проактиномицеты, клубеньковые бактерии и некоторые спороносные бактерии содержат 4 и более фагов. Содержащиеся в полилизогенных культурах фаги часто резко различаются между собой по форме частиц, антигенным свойствам и спектру литического действия. Полилизогенные культуры можно экспериментально получить с помощью воздействия на них одновременно или последовательно различными умеренными фагами. Полученные таким способом культуры не отличаются от выделенных из природных источников.

Как уже отмечалось, профаг лизогенной культуры способен превратиться спонтанно или при индукции в зрелую полноценную фаговую частицу. Однако в ряде случаев под влиянием различных факторов у профага возникают стойкие наследуемые изменения (мутации), в результате которых он при индукции не способен превращаться в полноценную частицу. Поэтому у таких культур возникают частицы, состоящие только из головки или только из одного отростка. Возможны и другие нарушения в структуре фаговой частицы. При индукции таких культур лизогенная клетка лизируется, но образовавшиеся частицы как неполноценные не способны к размножению на индикаторной культуре.

Наиболее детально изучены дефектные фаги, у которых образуются одни лишь отростки. Такие фаги способны адсорбироваться на клетке, убить ее, но не могут размножаться. В последнее время такие дефектные фаги привлекли к себе внимание исследователей, так как было установлено, что многие описанные в литературе бактериоцины (вещества, убивающие бактерии) представляют собой дефектные фаговые частицы.

Существуют два принципиально различных типа бактериоцинов. Одни из них отличаются низким молекулярным весом, не осаждаются при центрифугировании, чувствительны к ферменту трипсину, термолабильны и в электронном микроскопе не видны. Бактериоцины другого типа обладают высоким молекулярным весом, осаждаются при центрифугировании, термостабильны и в электронном микроскопе видны в виде фагоподобных частиц или отдельных компонентов фаговой частицы (преимущественно в виде отростков).

О происхождении бактериоцинов первого типа и о возможной связи их с лизогенным состоянием культуры-продуцента никаких данных нет. В то же время многими исследователями показано, что образование бактериоцинов второго типа тесно связано с дефектной лизогенией продуцента.

Наиболее убедительное доказательство дефектной лизогении -- выявление дефектных фаговых частиц, количество которых значительно увеличивается при индукции.

Имеются все основания утверждать, что дефектная лизогения довольно широко распространена. Она выявлена у очень многих культур, например у актиномицета, продуцирующего антибиотик стрептомицин, клубеньковых бактерий, спороносных бактерий, применяемых для борьбы с вредными насекомыми. Выявлены дефектные фаговые частицы, обнаруженные у кишечной палочки и названные колицином. Кроме того, были выявлены и описаны полилизогенные культуры актиномицетов, которые одновременно содержали нормальные и дефектные фаговые частицы.

Как уже отмечалось, профаг в лизогенной культуре связан с ядерным аппаратом клетки и является дополнительным генетическим фактором. Профаг в лизогенной клетке ведет себя как ген, хотя между ними имеются принципиальные различия. За последние годы достигнуты большие успехи не только в изучении сущности лизогении, но и в выяснении роли профагов как дополнительных генетических факторов. Изменения, вызываемые профагом в лизогенной клетке, получили название лизогенных конверсии.

Лизогения, несомненно, одно из самых интересных явлений в биологии микроорганизмов, теоретическое и практическое значение которого далеко выходит за пределы микробиологии. Изучение этого явления сыграло большую роль в формировании представлений о фагах, их происхождении, о взаимоотношениях фагов с клеткой-хозяином.

Не исключено, что лизогенизация является одним из механизмов защиты микробной клетки от фаговой инфекции, выработанным клеткой в процессе длительной эволюции. Лизогенизация в известной степени биологически выгодна и клетке, и фагу. Клетка при лизогенизации становится устойчивой не только к данному фагу, но и к родственным ему фагам и, кроме того, приобретает дополнительные свойства.

Фаг же приобретает устойчивость к разнообразным внешним воздействиям и в то же время сохраняет потенциальную возможность перейти в вегетативное состояние и в состояние зрелой инфекционной частицы. Широкое распространение лизогении дает основание рассматривать это явление не как исключительное, а как нормальное на данном этапе эволюции микробов.

Изменчивость фагов и изменчивость микроорганизмов под

влиянием фагов

Фаги, как и микроорганизмы, способны изменять все свои свойства: форму и размеры негативных колоний, спектр литического действия, способность к адсорбции на микробной клетке, устойчивость к внешним воздействиям, антигенные свойства. Особенно часто наблюдаются изменения морфологии негативных колоний, спектра литического действия и превращение умеренных фагов в вирулентные.

Большие изменения могут наблюдаться в тонкой структуре фаговой частицы -- возникают дефектные частицы, лишенные головки, отростка, нитевидных образований или других субструктур.

Изменения фагов могут быть наследственными (мутации) и не наследственными (феноти-пические). Фенотипические изменения зависят от условий, в которых образуются фаговые частицы. Важное значение имеют изменения, вызываемые клеткой-хозяином, т.е. той культурой, на которой фаг размножается. Эти изменения большей частью носят фенотипический характер и касаются преимущественно формы негативных колоний, спектра литического действия и вирулентности. Под влиянием клетки-хозяина возможны и стойкие изменения типа мутаций. С помощью разных мутагенных факторов (лучистой энергии, химических агентов) могут быть получены разнообразные мутанты.


Подобные документы

  • Понятие, структура и классификация бактериофагов. Вирулентные и умеренные фаги. Общая схема лизогении – механизма взаимодействия бактериофагов с микробной клеткой. Способы практического использования фагов в медицине, бактериологии и биотехнологиях.

    презентация [547,9 K], добавлен 18.03.2014

  • Понятие и характерные свойства бактериофагов, их многообразие и структурные компоненты. Пути попадания фагов на производство, основные стадии развития и простейшие методы их исследования. Мероприятия для борьбы с микробами-вредителями биопроизводств.

    лекция [16,5 K], добавлен 14.09.2009

  • Рекомбинация у бактериофагов – физическое взаимодействие геномов в смешанно-инфицированных клетках. Детальный анализ межтиповых и внутритиповых рекомбинантов полиовирусов. Генетика бактериофагов, связанная с генетическими особенностями бактерий-хозяев.

    реферат [39,8 K], добавлен 15.12.2010

  • История открытия вирусов как нового типа возбудителей болезней русским ученым Д.И. Ивановским. Отличительные особенности и классификация вирусов, их строение: сердцевина, белковая оболочка (капсид), липопротеидная оболочка. Циркуляция фагов в биосфере.

    презентация [170,7 K], добавлен 21.12.2012

  • Доказательство теории, что именно ДНК, а не белок, является наследственным материалом. Эксперимент А. Херши и М. Чейз (1952) доказал, что ДНК родительских фагов проникает в бактерии и затем становиться составляющей развившихся новых фагов частиц.

    реферат [390,3 K], добавлен 07.02.2008

  • История микроскопа и изучение морфологии микроорганизмов как собирательной группы живых организмов: бактерии, археи, грибы, протисты. Формы, размер, морфология и строение бактерий, их классификация и химический состав. Строение и классификация грибов.

    реферат [130,0 K], добавлен 05.12.2010

  • Биологическое значение нуклеиновых кислот. Строение ДНК, взгляд на нее с химической точки зрения. Обмен веществ и энергии в клетке. Совокупность реакций расщепления, пластический и энергетический обмены (реакции ассимиляции и диссимиляции) в клетке.

    реферат [31,6 K], добавлен 07.10.2009

  • Гиббереллины — обширный класс фитогормонов, регулирующих рост и развитие: история открытия, химическая структура, классификация, содержание в растениях. Биохимия, регуляторные функции и биологическая активность гиббереллинов, их строение, свойства.

    презентация [6,4 M], добавлен 20.10.2014

  • Химический состав бактериальной клетки. Особенности питания бактерий. Механизмы транспорта веществ в бактериальную клетку. Типы биологического окисления у микроорганизмов. Репродукция и культивирование вирусов. Принципы систематики микроорганизмов.

    презентация [35,1 M], добавлен 11.11.2013

  • Химический состав, природа и структура белков. Механизм действия ферментов, виды их активирования и ингибирования. Современная классификация и номенклатура ферментов и витаминов. Механизм биологического окисления, главная цепь дыхательных ферментов.

    шпаргалка [893,3 K], добавлен 20.06.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.