Фенотипическая и генотипическая изменчивость бактерий
Проведение исследования в области генетики и изменчивости микроорганизмов. Характеристика S- и R-форм колоний. Фенотипическая изменчивость (модификация). Возникновение бактериальной мутации. Генетические рекомбинации и трансформация. Структура плазмидов.
Рубрика | Биология и естествознание |
Вид | реферат |
Язык | русский |
Дата добавления | 07.06.2015 |
Размер файла | 20,3 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Содержание
Введение
1. Генетика микроорганизмов
2. Характеристика S- и R-форм колоний
3. Фенотипическая изменчивость (модификация)
4. Генотипическая изменчивость
5. Генетические рекомбинации. Трансформация
6. Плазмиды
7. Практическое значение и применение
Заключение
Введение
В наши дни приоритетным направлением естествознания можно считать молекулярную биологию. Она тесно связана с микробиологией и в известном смысле является её детищем, так как в качестве основных моделей использует бактерии и вирусы, а одно из основных направлений молекулярной биологии -- молекулярная генетика -- долгое время являлась ничем иным, как генетикой бактерий и бактериофагов. Изучение генетики бактерий имеет также и несомненный прикладной интерес, например, в плане установления механизмов передачи патогенных свойств и устойчивости к лекарственным препаратам.
Бактерии -- удобная модель для генетических исследований. Их отличает: относительная простота строения генома, позволяющая выявлять мутанты с частотой 10-9 и ниже; гаплоидность, исключающая явление доминантности; половая дифференциация в виде донорских и реципиентных клеток; наличие обособленных, и интегрированных фрагментов ДНК (плазмид, транспозонов и т.д.); лёгкость культивирования и возможность получения популяций, содержащих миллиарды микробных тел.
В своей работе я разберу понятия, связанные с генетикой бактерий, явление фенотипической и генотипической изменчивости бактерий и исследования, основанные на этом.
1. Генетика микроорганизмов
Наука, изучающая наследственность и изменчивость живых организмов, называется генетикой (от греч. genos-- рождение).
Еще в XIX веке Ч. Дарвин доказал, что все существующие виды живых организмов произошли путем изменчивости от немногих форм, а возникшие изменения, передаваемые по наследству, являются основой эволюционного процесса.
Однако, изучение наследственности и изменчивости у высших организмов связано с большими трудностями из-за большой продолжительности их жизни и немногочисленности потомства.
Удобным объектом для этого изучения являются микроорганизмы, для которых характерен короткий жизненный цикл, быстрое размножение и способность давать многочисленное потомство. Кроме того, они обладают выраженной морфологией, которую можно изучать визуально при помощи светового микроскопа. Микроорганизмы биохимически активны, что легко учитывать при использовании специальных питательных сред.
Способность микроорганизмов изменять свои свойства при воздействии различных факторов (температура, ультрафиолетовое и рентгеновское излучение и др.) позволяет широко использовать их в качестве модели при изучении наследственности и изменчивости.
Первым объектом генетических исследований была кишечная палочка, которая хорошо культивируется в лабораторных условиях. Важное значение имело также то, что морфологические, культуральные и биохимические свойства этой бактерии хорошо изучены. В дальнейшем объектом генетических исследований стали и другие бактерии, а также вирусы.
Исследования генетики микроорганизмов показали, что у них роль носителя генетической информации играет ДНК (у некоторых вирусов РНК).
Молекула ДНК в бактериях состоит из двух нитей, каждая из которых спирально закручена относительно другой. При делении клетки нитчатая спираль удваивается-- каждая из нитей служит как бы шаблоном или матрицей, на которой строится новая нить. При этом каждая нить, возникшая в процессе деления клеток, содержит вновь образовавшуюся двунитчатую молекулу ДНК.
В состав ДНК входят четыре азотистых основания -- аденин, гуанин, цитозин и тимин, порядок расположения в цепи у разных организмов определяет их наследственную информацию, закодированную в ДНК.
Функциональной единицей наследственности является ген, который представляет собой участок нити ДНК. В генах записана вся информация, касающаяся свойств клетки.
Полный набор генов, которым обладает клетка, называется генотипом. Гены подразделяются на структурные, несущие информацию о конкретных белках, вырабатываемых клеткой, и гены-регуляторы, регулирующие работу структурных генов. Например, клетка вырабатывает те белки, которые необходимы ей в данных условиях, однако при изменении условий гены-регуляторы изменяют свойства клетки, приспосабливая их к новым условиям.
Изменения морфологических, культуральных, биохимических и других свойств микроорганизмов, возникающие под действием внешних факторов, взаимосвязаны. Например, изменения морфологических свойств сопровождаются обычно изменениями физиологических особенностей клетки.
В процессе изучения изменчивости микроорганизмов была обнаружена особая форма изменчивости -- диссоциация. Этот вид изменчивости был описан П. де Крюи и Дж. Аркрайтом и выражается в том, что при посеве некоторых культур на плотные питательные среды происходит разделение колоний на два типа: гладкие, круглые, блестящие колонии с ровными краями -- S-форма (от англ. smooth -- гладкий), и плоские, непрозрачные колонии неправильной формы, с неровными краями -- R-форма (от англ. rough-- шероховатый). Существуют также переходные формы: М-формы (слизистые) и g-формы (карликовые).
Колонии, относящиеся к гладкой S-форме, могут при определенных условиях переходить в R-форму и обратно, однако переход R-формы в S-форму происходит труднее.
Диссоциация наблюдается у ряда бактерий, в частности у возбудителей сибирской язвы, чумы и др.
2. Характеристика S- и R-форм колоний
S-форма:
· Колонии гладкие, блестящие, правильной выпуклой формы;
· При росте в бульоне -- равномерная муть;
· У подвижных бактерий имеются жгутики;
· У капсульных бактерий имеется капсула;
· Биохимически активны;
· Болезнетворны;
· Выделяются чаще в остром периоде заболевания.
R-форма:
· Колонии неправильной формы, мутные, шероховатые;
· Растут в бульоне в виде осадка;
· У подвижных бактерий жгутики могут отсутствовать;
· Капсулы отсутствуют;
· Биохимические свойства выражены слабо;
· Большинство бактерий менее болезнетворны;
· Выделяются обычно при хронической форме заболевания.
Болезнетворные бактерии чаще бывают в S-форме. Исключением являются возбудители туберкулеза, чумы, сибирской язвы, у которых болезнетворной является R-форма.
Изменения, возникающие в бактериальных клетках, могут быть ненаследуемые -- фенотипическая изменчивость и наследуемые -- генотипическая изменчивость.
3. Фенотипическая изменчивость (модификация)
Модификация микроорганизмов возникает как ответ клетки на неблагоприятные условия ее существования. Это адаптивная реакция на внешние раздражители. Модификация не сопровождается изменением генотипа, в связи с чем возникшие в клетке изменения по наследству не передаются. При восстановлении оптимальных условий возникшие изменения утрачиваются. Модификация может касаться разных свойств микроорганизмов -- морфологических, культуральных, биохимических и др.
Морфологическая модификация выражается в изменениях формы и величины бактерий. Например, при добавлении пенициллина к питательной среде клетки некоторых бактерий удлиняются. Недостаток в среде солей кальция вызывает у палочки сибирской язвы повышенное спорообразование. При повышенной концентрации солей кальция способность образовывать споры утрачивается и т. д. При длительном росте бактерий в одной и той же среде возникает полиморфизм, обусловленный влиянием накопившихся в ней продуктов их жизнедеятельности.
Культуральная модификация состоит в изменении культуральных свойств бактерий при изменении состава питательной среды. Например, при недостатке кислорода у стафилококка утрачивается способность образовывать пигмент. Чудесная палочка при комнатной температуре образует ярко-красный пигмент, но при 37 °С способность образовывать этот пигмент утрачивается и т.д.
Биохимическая (ферментативная) модификация. Каждый вид бактерий имеет определенный набор ферментов, благодаря которым они усваивают питательные вещества. Эти ферменты вырабатываются на определенных питательных субстратах и предопределены генотипом.
В процессе жизнедеятельности бактерий обычно функционируют не все гены, ответственные за синтез соответствующих ферментов. В геноме бактерий всегда имеются запасные возможности, т.е. гены, определяющие выработку адаптивных ферментов. Например, кишечная палочка, растущая на среде, не содержащей углевод лактозу, не вырабатывает фермент лактазу, но если пересеять ее на среду с лактозой, то она начинает вырабатывать этот фермент. Адаптивные ферменты позволяют приспособляться к определенным условиям существования.
Таким образом, модификация -- это способ приспособления микроорганизма к условиям внешней среды, обеспечивающий им возможность расти и размножаться в измененных условиях. Приобретенные свойства не передаются по наследству, поэтому они не играют роли в эволюции, а способствуют в основном выживанию микробных популяций.
4. Генотипическая изменчивость
Генотипическая изменчивость может возникать в результате мутаций и генетических рекомбинаций.
Мутации (от лат. mutatio -- изменять) -- это передаваемые по наследству структурные изменения генов. Крупные мутации (геномные перестройки) сопровождаются выпадением или изменением относительно крупных участков генома -- такие мутации, как правило, необратимы. Мелкие (точковые) мутации связаны с выпадением или добавлением отдельных оснований ДНК. При этом изменяется лишь небольшое число признаков. Такие измененные бактерии могут полностью возвращаться в исходное состояние (ревертировать).
Бактерии с измененными признаками называются мутантами. Факторы, вызывающие образование мутантов, носят название мутагенов.
Бактериальные мутации делят на спонтанные и индуцированные.
Спонтанные (самопроизвольные) мутации возникают под влиянием неконтролируемых факторов, т.е. без вмешательства экспериментатора. Индуцированные (направленные) мутации появляются в результате обработки микроорганизмов специальными мутагенами (химическими веществами, излучением, температурой и др.).
В результате бактериальных мутаций могут отмечаться:
· изменение морфологических свойств;
· изменение культуральных свойств;
· возникновение у микроорганизмов устойчивости к лекарственным препаратам;
· потеря способности синтезировать аминокислоты, утилизировать углеводы и другие питательные вещества;
· ослабление болезнетворных свойств и т.д.
Если мутация приводит к тому, что мутагенные клетки обретают по сравнению с остальными клетками популяций преимущества, то формируется популяция из мутантных клеток и все приобретенные свойства передаются по наследству. Если же мутация не дает клетке преимуществ, то мутантные клетки, как правило, погибают.
5. Генетические рекомбинации. Трансформация
генетика бактериальный мутация плазмид
Клетки, которые способны воспринять ДНК другой клетки в процессе трансформации, называются компетентными. Состояние компетентности часто совпадает с логарифмической фазой роста.
Трансдукция -- это перенос генетической информации (ДНК) от бактерии донора к бактерии реципиенту при участии бактериофага. Трансдуцирующими свойствами обладают в основном умеренные фаги. Размножаясь в бактериальной клетке, фаги включают в состав своей ДНК часть бактериальной ДНК и передают ее реципиенту. Различают три типа трансдукции: общую, специфическую и абортивную.
1. Общая трансдукция -- это передача различных генов, локализованных на разных участках бактериальной хромосомы. При этом бактерии доноры могут передать реципиенту разнообразные признаки и свойства -- способность образовывать новые ферменты, устойчивость к лекарственным препаратам и т.д.
2. Специфическая трансдукция -- это передача фагом только некоторых специфических генов, локализованных на специальных участках бактериальной хромосомы. В этом случае передаются только определенные признаки и свойства.
3. Абортивная трансдукция -- перенос фагом какого-то одного фрагмента хромосомы донора. Обычно этот фрагмент не включается в хромосому клетки реципиента, а циркулирует в цитоплазме. При делении клетки реципиента этот фрагмент передается только одной из двух дочерних клеток, а второй клетке достается неизмененная хромосома реципиента.
С помощью трансдуцирующих фагов можно передать от одной клетки другой целый ряд свойств, таких как способность образовывать токсин, споры, жгутики, продуцировать дополнительные ферменты, устойчивость к лекарственным препаратам и т.д.
Конъюгация -- это передача генетического материала от одной бактерии к другой при непосредственном контакте клеток. Клетки, передающие генетический материал, называются донорами, воспринимающие его -- реципиентами. Этот процесс носит односторонний характер -- от клетки донора к клетке реципиента.
Бактерии донора обозначаются «F+» (мужской тип), а бактерии реципиента -- «F-» (женский тип). При тесном сближении клеток «F+» и «F-» между ними возникает цитоплазматический мостик. Образование мостика контролируется фактором F (от англ.Fertility-- плодовитость). Этот фактор содержит гены, ответственные за образование половых ворсинок (sex-pili). Функцию донора могут выполнять только те клетки, которые содержат фактор F. Клетки реципиента лишены этого фактора. При скрещивании фактор Р передается клеткой донора реципиенту. Получив фактор F, женская клетка сама становится донором (F+).
Процесс конъюгации можно прервать механическим способом, например встряхиванием. В этом случае реципиент получает неполную информацию, заключенную в ДНК.
Перенос генетической информации путем конъюгации лучше всего изучен у энтеробактерий (сальмонелла,кишечная палочка,чумная палочка и др.).
Конъюгация, как и другие виды рекомбинации, может осуществляться не только между бактериями одного и того же вида, но и между бактериями разных видов. В этих случаях рекомбинация называется межвидовой.
6. Плазмиды
Плазмиды -- это сравнительно небольшие внехромосомные молекулы ДНК бактериальной клетки. Они расположены в цитоплазме и имеют кольцевую структуру. В плазмидах содержится несколько генов, функционирующих независимо от генов, содержащихся в хромосомной ДНК.
Типичным признаком плазмид служит их способность к самостоятельному воспроизведению (репликации).
Они могут также переходить из одной клетки в другую и включать в себя новые гены из окружающей среды. К числу плазмид относятся:
Профаги, вызывающие у лизогенной клетки ряд изменений, передающихся по наследству, например, способность образовывать токсин.
F-фактор, находящийся в автономном состоянии и принимающий участие в процессе конъюгации.
R-фактор, придающий клетке устойчивость к лекарственным препаратам (впервые R-фактор был выделен из кишечной палочки, затем из шигелл). Исследования показали, что К-фактор может быть удален из клетки, что вообще характерно для плазмид.
К-фактор обладает внутривидовой, межвидовой и даже межродовой трансмиссивностью, что может явиться причиной формирования трудно диагностируемых атипичных штаммов.
Бактериоциногенные факторы (col-факторы), которые впервые были обнаружены в культуре кишечной палочки (E.coli), в связи с чем названы колицинами. В дальнейшем они были выявлены и у других бактерий: холерного вибриона -- вибриоцины, стафилококков -- стафилоцины и др.
Соl-фактор -- это маленькая автономная плазмида, которая детерминирует синтез белковых веществ, способных вызывать гибель бактерий собственного вида или близкородственного. Бактериоцины адсорбируются на поверхности чувствительных клеток и вызывают нарушения метаболизма, что приводит клетку к гибели.
В естественных условиях только единичные клетки в популяции (1 на 1000) спонтанно продуцируют колицин. Однако при некоторых воздействиях на культуру (обработка бактерий УФ-лучами) количество колицинпродуциирующих клеток увеличивается.
7. Практическое значение и применение
Еще Пастер искусственным путем получил необратимые изменения у возбудителей бешенства, сибирской язвы и приготовил вакцины, предохраняющие от этих заболеваний. В дальнейшем исследования в области генетики и изменчивости микроорганизмов позволили получить большое число бактериальных и вирусных штаммов, используемых для получения вакцин.
Результаты исследования генетики микроорганизмов с успехом были использованы для выяснения закономерностей наследственности высших организмов.
Большое научное и практическое значение имеет также новый раздел генетики -- генная инженерия.
Методы генной инженерии позволяют изменять структуру генов и включать в хромосому бактерий гены других организмов, ответственных за синтез важных и нужных веществ. В результате микроорганизмы становятся продуцентами таких веществ, получение которых химическим путем представляет очень сложную, а иногда даже невозможную задачу. Этим путем в настоящее время получают такие медицинские препараты, как инсулин, интерферон и др. При использовании мутагенных факторов и селекции были получены мутанты-продуценты антибиотиков, которые в 100--1000 раз активнее исходных.
Заключение
После проведенного исследования и рассмотренных материалов я могу сделать вывод о том, что генетика микроорганизмов - крайне важна для человечества в целом.
Возможность проводить эксперименты на клеточном уровне позволяет выводить новые штаммы полезных микроорганизмов, создавать вакцины, противовирусные препараты. Кроме того, на основе бактерий создаются противовирусные препараты, антибиотики: например, из синегнойной палочки был получен пиоцианин. В настоящее время препарат, названный саназином, получен в синтетическом виде и находит применение главным образом в хирургической практике в виде местного применения. Среди антибиотиков, выделенных из бацилл, почетное место занимает тиротрицин и грамицидин С. Тиротрицин и грамицидин С подавляют рост стафилококков и стрептококков и хорошо помогают при ангинах и нагноительных процессах, убивая возбудителей этих заболеваний.
Специальные бактерии помогают и в сельском хозяйстве - бороться с насекомыми-вредителями и сорняками. Для повышения урожайности человек использует также специальные бактериальные удобрения.
Бактерии необходимы в процессе брожения при производстве сыра и уксуса. Такой же процесс протекает в промышленном производстве красок, пластмасс, косметических товаров и кондитерских изделий. Бактерии нужны для получения некоторых напитков, используются в производственных процессах по заготовке табачных листьев, выработке кож, снятии оболочек с зерен кофе и какао, отделении определенных волокон в текстильной промышленности. Поэтому можно сделать вывод, насколько бактерии важны в жизни человека. Существует и много других сфер деятельности, где применяют бактерии и будут применять впредь благодаря развитию генной инженерии и, в частности, генетики бактерий.
Список литературы
1. Современная микробиология. Прокариоты: В 2-х томах / Под ред. Й. Ленглера, Г. Древса, Г. Шлегеля. -- М.: Мир, 2005.
2. Грин Н., Стаут У., Тейлор Д. Биология. В 3 т.-- 3 изд. -- М.: Мир, 2004.
3. Гусев М.В., Минеева Л.А. Микробиология. -- М.: Изд-во МГУ, 2004.
4. Biotechnolog.ru «Биотехнология в сельском хозяйстве».
5. Ecologum. Com «Бактерии в жизни человека».
6. Immunology-allergy.org «Генетика микроорганизмов» //Павел Несмиянов.
Размещено на Allbest.ru
Подобные документы
Гипотезы о зарождении жизни на Земле. Изучение биохимической деятельности микроорганизмов, их роли в природе, жизни человека и животных в работах Л. Пастера. Генетические исследования бактерий и вирусов, их фенотипическая и генотипическая изменчивость.
реферат [40,9 K], добавлен 26.12.2013Изменчивость - возникновение индивидуальных различий. Сравнительная характеристика форм изменчивости. Модификационная изменчивость. Генотипическая изменчивость. Комбинативная изменчивость.
реферат [21,2 K], добавлен 04.09.2007Изменчивость (биологическая)- разнообразие признаков и свойств у особей и групп особей любой степени родства, ее формы. Генетическая рекомбинация и трансформация. Изменчивость фагов и микроорганизмов. Практическое применение изменчивости микроорганизмов.
реферат [20,6 K], добавлен 26.12.2013ДНК - материальная основа наследственности бактерий. Изменчивость бактерий (модификации, мутации, генетические рекомбинации). Генетика вирусов. Механизмы образования лекарственной устойчивости бактерий. Получение и использование вакцины и сыворотки.
реферат [509,3 K], добавлен 28.01.2010Предпосылки эволюции: изменчивость и наследственность. Формы изменчивости, основные понятия и термины. Наследственные изменения - мутации. Эволюционная характеристика мутаций. Генетические различия между близкими группами. Корреляции.
курсовая работа [280,9 K], добавлен 09.11.2006Задачи физиологии микроорганизмов. Анализ химического состава бактериальной клетки. Особенности и механизмы питания аутотрофных и гетеротрофных бактерий, их ферменты, процесс дыхания и размножения. Наследственность и генетические рекомбинации у бактерий.
реферат [21,1 K], добавлен 29.09.2009Характеристика модификационной изменчивости, ее классификация и механизм. Окружающая среда как причина модификаций, ее анализ и закономерности. Понятие вариационного ряда и его графическое отображение. Сущность дарвинизма и естественного отбора.
реферат [28,5 K], добавлен 16.01.2011Наследственность и генетические рекомбинации у бактерий. Химический состав, размножение и особенности питания бактериальной клетки. Ферменты микроорганизмов. Мутация, молекулярные изменения в хромосоме. Деление стафилококка путем врастания перегородок.
презентация [2,4 M], добавлен 23.02.2014Определенная (ненаследственная) и неопределенная (наследственная) изменчивость. Генетические различия между особями. Мутации как элементарный эволюционный материал. Роль мутантных изменений в эволюции организмов. Категории гомологической изменчивости.
презентация [503,0 K], добавлен 15.12.2013Модификационная изменчивость - процесс взаимосвязи организма со средой; популяции и чистые линии; фенотип и генотип. Мутационная изменчивость: типы, классификация. Закон гомологических рядов в наследственной изменчивости, использование в селекции.
курсовая работа [53,6 K], добавлен 09.06.2011