Физиология растений

Процессы превращения веществ и энергии внутри растительного организма как основные физиологические функции растения. Химический состав клетки. Строение, классификация и функции углеводов, липидов и аминокислот. Кинетика ферментативного катализа.

Рубрика Биология и естествознание
Вид курс лекций
Язык русский
Дата добавления 15.06.2010
Размер файла 188,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

биологическая поглощающая способность (при этом происходит иммобилизация минеральных веществ под влиянием деятельности микрофлоры почвы).

Благодаря поглощающей способности почвы минеральные элементы не вымываются из почвы, сохраняются в почвенном растворе и доступны растениям.

Минеральные вещества поглощаются из почвы одновременно с поглощением воды и транспортируются в восходящем направлении преимущественно по ксилеме. Минеральные вещества обычно накапливаются в тех клетках, где в них возникает необходимость.

Для удовлетворения потребности растений в соответствующем количестве минеральных веществ, необходимых для роста и развития, должно быть соблюдено несколько условий:

минералы должны содержаться в почве в форме, доступной для их поглощения клетками корня, т.е. они должны находиться в почвенном растворе,

почва должна хорошо аэрироваться, чтобы в клетках корня могло происходить окислительное фосфорилирование (дыхание), поскольку поглощение минеральных веществ требует непрерывного снабжения энергией за счет АТФ,

должна эффективно функционировать транспортная система по доставке минеральных веществ к потребляющим клеткам.

На разных этапах развития растительного организма питательные вещества потребляются ими с различной интенсивностью, неодинакова также скорость поступления различных соединений у разных видов растений.

Отрицательное действие высоких концентраций питательных солей в почве проявляется в основном на первых этапах жизни растения, особенно в момент прорастания семени, поэтому повышенное содержание минеральных элементов в почвенном растворе часто снижает всхожесть и энергию прорастания семян. В связи с этим важно обеспечить необходимый уровень влаги в почве и регулировать уровень минеральных удобрений непосредственно в послепосевной период.

Недопустимо однократное внесение всей рекомендованной дозы минеральных удобрений в период посева, поскольку это снижает эффективность усвоения азотных удобрений и вызывает превышение допустимых концентраций других элементов в почвенном растворе.

Системы классификаций элементов в растении.

Растение поглощает углекислый газ и кислород из атмосферы, а воду и другие минеральные элементы - из почвенного раствора. Все минеральные элементы за исключением азота происходят в конечном счете из материнской породы, из которой образуется почва и при сгорании остаются в золе, почему и называются зольными элементами. Азот же, находясь в атмосфере, переводится в форму, доступную для автотрофов при синтезе белка, азотфиксирующими микроорганизмами, находящимися в почве, и в результате их метаболизма поступает в виде аммиачных и нитратных ионов в почвенный раствор.

Минеральные вещества составляют всего от 1 до 15% живой материи. Количество золы в различных частях растения, а также в разных растениях неодинаково. Состав зольных элементов также весьма вариабелен в зависимости от органа растения. Например, калия в семенах зерновых культур почти в два раза больше, чем в листьях и стеблях. В стеблях и листьях пшеницы и кукурузы отмечено большое количество кремния.

Как правило, распределение зольных элементов в разных органах растения соответствует следующей таблице:

Наименование органа растения

Содержание зольных элементов,%

древесина

1

семена

3

корни, стебли

4-5

листья

10-15

Содержание зольных элементов в растительных тканях зависит от типа и влажности почвы и от фазы развития растений.

Принято делить минеральные элементы, входящие в состав растительных клеток, на группы, причем используются в основном две системы классификации элементов.

В основу первой системы классификации положен критерий количественного содержания элементов в растении:

макроэлементы (составляют от 10 до 0,01% в клетке) (органогены - О, Н, С, N, P и минералы - Si, K, Ca, S, Mg, Na, Al),

микроэлементы (составляют от 0,001 до 0,00001%) - Mn, B, St, Cu, Zn, Br, F, Sn, Ni, Ti, Rb, Fe, Ba, Mo, Co, Cl, I,

ультрамикроэлементы (составляют 10-6-10-12%) - As, Ge, Pb, Au, Ra, Hg, Ag, Li.

Вторая система классификации основывается на роли минеральных элементов в живой клетке:

основные компоненты органического вещества - C, H, O, N, P, S,

элементы, участвующие в осмотической регуляции, балансе электронов, и определяющие проницаемость мембран - K, Mg, Ca, Mn, Cl,

элементы, входящие в ферментные системы, - Cu, Zn, Mo, Fe. Эти элементы часто поглощаются в форме хелатов, находятся в протопласте и способны вытеснять друг друга при избытке какого-либо из них в следующем порядке Cu Zn Mo Fe.

элементы, токсичные для высших растений - F, I, Ni, Cr, Pb, Cd.

Ряд элементов, весьма важных в малых концентрациях, при накоплении в избыточном количестве могут быть токсичными для растений, например Mn, Cu, Fe, B.

Для определения роли того или иного элемента в питании растений проводят специальные опыты с использованием водных или песчаных культур, других специализированных методик.

Характеристика физиологической роли основных минеральных элементов.

К основным минеральным элементам, входящим в любую живую клетку, в том числе и в растительную, и играющим существенную роль в метаболизме клетки, относятся N, P, S, K, Mg, Ca, Mn, Cl, Cu, Zn, Mo, Fe, В.

Каждый из этих элементов имеет свое назначение, входит в определенные группы органических соединений и влияет на прохождение определенных физиологических процессов и биохимических реакций.

Азот (N) является наряду с С, О, Н, основным органогеном, входит в состав аминокислот, азотистых оснований, пигментов, а значит и в состав белков, нуклеиновых кислот, липидов. Это элемент, который влияет на количество строительных компонентов клетки, мембран, пигментов. Его недостаток будет ограничивать количество синтезирующихся белков, нуклеотидов, транспортных, информационных РНК, хлорофиллов, каротиноидов. Этот элемент является определяющим в физиологических процессах биосинтеза белка, фотосинтеза, роста вегетативных органов.

Фосфор (Р) также является элементом, относящимся к основным органогенам клетки. Этот элемент входит в состав нуклеотидов, фосфолипидов, ауксинов, а значит в состав нуклеиновых кислот, макроэргических соединений, мембран, гормонов. Этот элемент является очень важным в обеспечении таких физиологических процессов, как дыхание, фотосинтез, развитие генеративных органов.

Сера (S) является компонентом серосодержащих аминокислот (цистеин, цистин, метионин), присутствует в глутатионе, который играет определенную роль в окислительно-восстановительных реакциях, благодаря своей способности к обратимому превращению из восстановленной (сульфгидрильной) формы (-SH-) в окисленную, или дисульфидную, форму (-S-S-), входит в кофермент А, в тиамин (витамин В1). Этот элемент также играет весьма важную роль в таких физиологических процессах, как биосинтез белка, дыхание.

Кальций (Са) включается в структуру срединной пластинки клеточной стенки, связывается с кислотными компонентами пектина и образует нерастворимую соль, что определяет плотность полужидкой структуры клеточной стенки. Кальций играет важную роль в регуляции избирательной проницаемости клеточных мембран, определяет механическую прочность клеточных стенок.

Магний (Mg) входит в молекулу хлорофилла, является кофактором ряда ферментов, обеспечивает стабильность нуклеиновых кислот. Магний участвует в процессе фотосинтеза, регуляции избирательной проницаемости клеточных мембран.

Калий (К) является осмотически активным элементом, находится чаще всего в виде неорганического катиона, входит в рад ферментов в качестве активатора. Калий участвует в регуляции тургора клетки, избирательной проницаемости клеточных мембран.

Хлор (Cl) в форме хлорид-аниона перемещается вместе с калием, обеспечивая электронейтральность клетки, входит в число активаторов ферментов, катализирующих фотосинтетическое фосфорилирование. Хлор участвует в регуляции тургора клетки, в процессе фотосинтеза.

Железо (Fe) входит в состав многих важных ферментов, таких как цитохромы, ферредоксины, пероксидаза, каталаза, нитратредуктаза. Железо играет значительную роль в осуществлении таких физиологических процессов, как фотосинтез, дыхание, восстановление нитратов.

Молибден (Мо) входит в состав ферментов, восстанавливающих азот как из нитратной формы, так и из молекулярной формы. Восстановление азота из молекулярной формы осуществляется ферментом нитрогеназой, синтезирующейся в организме симбионтов бобовых растений - бактерий рода Rizobium - обитающих на корнях бобовых растений. Восстановление азота из нитратной формы осуществляется ферментами из группы нитратредуктаз. Молибден играет существенную роль в процессе синтеза аминокислот, а, значит, и в процессе биосинтеза белка.

Медь (Сu) входит в состав оксидаз (тирозиназа, аскорбатоксидаза). Медь играет значительную роль в процессе дыхания.

Цинк (Zn) входит в состав карбоангидразы и участвует в качестве кофактора при синтезе индолилуксусной кислоты (гормона из группы ауксинов). Этот элемент играет существенную роль в процессе поддержания запасов углекислого газа в форме иона НСО3-, и в процессе формирования апексов побегов и корней.

Бор (В) входит в качестве кофактора в ряд ферментов. Этот элемент играет роль в таких физиологических процессах, как деление меристем, перемещение ассимилятов, прорастание пыльцы, фенольный обмен, образование клеточных стенок.

Характеристика взаимоотношений элементов в растворах.

Минеральные вещества, поглощаемые растением, находятся в природных условиях в растворенном состоянии в почвенном растворе. Они представлены, как правило, в ионной форме и вступают между собой во взаимоотношения, регулируемые рядом закономерностей. Так, компоненты смеси веществ в растворе могут взаимодействовать по одному из следующих механизмов;

аддитивное действие компонентов смеси (когда действие смеси равно сумме действия отдельных компонентов. Примером такого действия является осмотическое давление, которое у смеси солей равно сумме парциальных осмотических давлений солей, входящих в смесь),

синергическое действие компонентов смеси (когда смесь солей действует сильнее, чем каждая из солей в отдельности, то есть физиологический эффект солевой смеси превышает сумму эффектов компонентов смеси. Синергизм может быть как положительным (внесение смеси минеральных удобрений), так и отрицательным (смесь пестицидов может пагубно влиять на растения),

антагонистическое действие компонентов смеси (когда физиологическое воздействие смеси солей оказывается меньшим, чем действие каждой из солей в отдельности и чем сумма из действия. Типичным примером антагонизма является взаимодействие одновалентных и двухвалентных катионов в растворе, активное развитие жизни в морской воде.

Раствор смеси солей называется физиологически уравновешенным раствором, когда количество и соотношение ионов обеспечивают нормальный рост, развитие и высокую продуктивность растений. Особенно важным является составление физиологически уравновешенных растворов в практике сельского хозяйства при использовании гидропонных технологий выращивания растений. Определяющим моментом величины отношения концентраций катионов в уравновешенных растворах является их валентность. Чем выше валентность иона, тем ниже относительная концентрация данного катиона в уравновешенном растворе. Способность уравновешивать токсическое действие у ионов возрастает быстрее, чем валентность, поэтому для растений солевые растворы являются уравновешенными, если отношении концентрации одновалентных катионов к двухвалентным приблизительно равно 10:

Особенности поглощения растениями элементов из почвенного раствора.

Элементы, соединения которых подвижны, активно поглощаются на ранних этапах развития растений, они поступают со скоростью, превышающей накопление в растении сухих веществ. Элементы, дающие малоподвижные соединения, поглощаются пропорционально синтезу сухих веществ, а в ряде случаев часто отстают от скорости синтеза этих веществ.

Одним из факторов, определяющих ход поглощения веществ растением, является химическая природа соединений, в виде которых данный элемент находится в тканях растения. По этому признаку питательные вещества делят на две группы:

элементы, участвующие в построении мобильных соединений клетки. Эти элементы называют реутилизируемыми. К ним относятся азот, фосфор, калий и магний. При недостатке этих элементов в почве растение транспортирует их во вновь образуемые органы из нижних листьев, при этом нижние листья увядают и отмирают.

элементы, более прочно связанные с протоплазмой и менее подвижные, которые не используются вторично. Эти элементы называются нереутилизируемыми. К ним относятся бор, кальций, железо. При их недостатке в почве старые листья остаются долгое время жизнеспособными, но растение не образует новых органов, то есть не способно развиваться и расти.

Установлено, что концентрация реутилизируемых элементов в растении имеет акропетальный градиент содержания, а нереутилизируемых элементов - базипетальный градиент содержания.

В процессе поглощения минеральных элементов из почвы растение использует комплекс механизмов:

корневой перехват питательных веществ (поглощение питательных веществ из новых объемов почвенного раствора в процессе роста корней),

массовый поток ионов к поверхности корней с потоком воды при поглощении ее корнями растений,

диффузионный поток ионов по градиенту концентрации вещества от ризосферы к корню (ионофорные каналы).

Растения усваивают минеральные элементы через корневые волоски независимо от поглощения воды. Этот процесс обусловлен обменом ионов, выделяемых растениями при дыхании, на ионы почвенного раствора. При дыхании растений получается углекислота, которая в тканях образует катион Н+ и анион НСО3-. В процессе питания катион водорода обменивается на катионы почвенного раствора (калий, кальций, магний, ион аммония), а карбонатный анион - на анионы азотной, серной, фосфорной и других кислот. Поглощение ионов происходит из сильно разбавленных растворов, что определяет технологию внесения минеральных удобрений.

Растение всегда будет более активно поглощать ионы, содержащие азот, чем все другие ионы, поскольку азот относится к наиболее важным органогенным элементам и требуется в большем количестве, чем другие минеральные элементы. При таком избирательном поглощении растениями ионов будет происходить и изменение реакции почвенного раствора. В связи с этим все минеральные соли, используемые в качестве минеральных удобрений подразделяют на три группы:

физиологически кислые, которые в большей степени поглощаются растением в катионной части (например, (NH4) 2SO4),

физиологически щелочные, которые в большей степени поглощаются растением в анионной части (например, NaNO3),

физиологические нейтральные, которые поглощаются как в катионной, так и в анионной части с одинаковой скоростью (например, NH4NO3).

Поэтому при внесении удобрений в почву всегда необходимо учитывать характеристику свойств почвы на конкретном поле и подбирать соответствующие соли так, чтобы обеспечить растениям максимально благоприятные условия питания.

Корень как орган поглощения минеральных элементов.

Корень - один из основных вегетативных органов растения. К его функциям относятся:

прикрепление к субстрату,

поглощение воды,

поглощение минеральных веществ,

синтез органических веществ,

выделение продуктов обмена,

запасание питательных веществ.

Тонкая оболочка корневого волоска плотно склеивается с комочками почвы. Корневые волоски служат опорой для растущей верхушки корня, выполняют функцию поглощения воды и минеральных веществ из почвы. Длина корневого волоска - 0,6-10 мм, но общая длина волосков весьма значительна и может достигать в сумме 20 км. Волоски выделяют в почву различные вещества, растворяющие труднодоступные растению соединения в почве. Продолжительность жизни корневого волоска - 15-20 дней.

Функционально поглотительной тканью корня являются корневые волоски (у водных растений - ризодермис), а первичная ассимиляция ионов происходит в коре корня.

Корневая система поглощает из почвенного поглощающего комплекса через почвенный раствор все необходимые элементы, причем способна растворять и нерастворимые соединения за счет выделения органических кислот. Это явление подтверждается опытами с использованием мраморной пластинки в сосуде, на которой ясно образуется отпечаток корневой системы растения, растворяющей мрамор в местах соприкосновения с корневыми волосками. Лучшему усвоению минеральных веществ способствует внесение физиологически кислых солей (при этом происходит освобождение анионов из трудно растворимых соединений), например, внесение сульфата аммония в почвы высвобождает фосфорную кислоту из фосфоритов, а внесение натриевой селитры не производит такого действия.

Корневые выделения при бессменном возделывании одной культуры могут влиять на растения отрицательно, создавая неблагоприятную рН почвенного раствора. При этом происходит накопление вредной микрофлоры, возбудителей корневых гнилей, что приводит к увеличению степени поражаемости культуры болезнями.

Корневые выделения состоят из:

веществ, которые отчуждаются клетками в обмен на поглощаемые ионы питательных солей,

веществ, теряемых корнем вследствие выщелачивания наружным раствором и "вытягиваемых" их корня электростатическими силами,

веществ, которые освобождаются отмирающими клетками чехлика, эпидермиса и коры.

Корневая система растений - это и место синтеза многих важных органических соединений, таких как аминокислоты, алкалоиды, гормоны и ряд других веществ. О синтетической роли корневой системы свидетельствует факт прекращения жизнедеятельности срезанных растений, даже если их помещают в питательный раствор. Только если у срезанного побега образуются новые придаточные корни, рост растения возобновляется. В культуре in vitro рост корневой ткани неограничен, а культуру клеток из стебля получить не удается.

Количественные показатели поглощения минеральных элементов.

Между клетками корня могут существовать значительные электрические градиенты, которые возникают и исчезают, по-видимому, вследствие включения и выключения ионных насосов и изменения концентрационных градиентов в тканях корня.

Поглощенные ионы должны сначала пересечь плазмалемму, чтобы проникнуть в цитоплазму, а затем и в мембрану, окружающую вакуоль, или другую органеллу, чтобы попасть затем во внутренний компартмент цитоплазмы.

Ионы могут проникать через мембрану активно или пассивно, при этом они перемещаются благодаря своей кинетической энергии, не потребляя при этом энергию АТФ. Липидорастворимые молекулы проходят сквозь мембраны легко, многие неорганические ионы, не растворимые в липидах, проникают, по-видимому, через специальные водные белковые каналы в мембране, то есть используется механизм облегченной диффузии с участием пермеаз.

О скорости диффузии ионов сквозь мембрану судят по коэффициенту проницаемости Р.

Наибольшей скоростью диффузии обладает К+, поэтому значение Р для К+ принято за 1,0.

Существуют белки, способные образовывать каналы в мембранах для определенных ионов, их называют ионофорами. Ионофоры способны увеличивать скорость диффузии иона в миллион раз. Ряд специфических веществ, например, антибиотики (грамицидин), способны проникать именно через ионофоры, вызывая быструю гибель клетки.

Так как ионы заряжены, то скорость из диффузии определяется не только химическим потенциалом (концентрация ионов по обе стороны мембраны), но и электрическим потенциалом внешней и внутренней стороны мембраны. Обычно растительные клетки на внутренней стороне мембраны имеют отрицательный потенциал, поэтому катионы поглощаются в большей степени, чем анионы. Разность потенциалов внутри и снаружи клетки колеблется от 50 до 200 мВ. Эта разница в заряде сторон мембраны называется трансмембранным потенциалом.

Совокупность химического и электрического потенциала составляет электрохимический градиент, согласно которому и происходит диффузия ионов в клетку.

Когда транспорт осуществляется по электрохимическому градиенту ионы сначала присоединяются к особым участкам на мембране (пермеазам). Затем они проникают в клетку в соответствии с уравнением нернста, если общий эффект градиента их концентрации по обе стороны мембраны и электрический трансмембранный потенциал обеспечивают движущую силу, направленную внутрь.

Уравнение Нернста связывает электрический потенциал внутри клетки с распределением заряженных ионов:

Е = - 58/n. lgСi/Co,

где

Е - трансмембранный коэффициент, измеряемый в мВ, определяемый с использованием заземленного электрода вне клетки, n - валентность и заряд иона, Сi - концентрация (молярность) иона внутри клетки, Co - концентрация (молярность) иона вне клетки.

При перемещении ионов через ионофоры происходит транспорт ионов против электрохимического градиента благодаря использованию энергии АТФ. При этом происходит обмен одноименных ионов, например: в клетку перемещается поток К+, а из клетки - поток Н+, в клетку - поток NO3-, а из клетки - поток НСО3-.

Кроме того, существует еще диффузия нейтральных молекул, например, сахарозы, глюкозы, которые проникают обычно с ионами Н+. Этот процесс называется котранспортом и происходит при перемещении веществ в флоэму или из нее.

Трансмембранные потенциалы образуются двумя путями;

в результате диффузии анионов и катионов, движущихся сквозь мембрану с разными скоростями,

благодаря электрогенному транспорту с прямым использованием энергии для прокачивания протонов, анионов или катионов через0 мембрану против их электрохимических градиентов.

Оба этих процесса всегда действуют таким образом, что внутри клетки создается более отрицательный заряд по сравнению с зарядом вне ее.

Поглощенные корневыми волосками ионы и молекулы вследствие движения протоплазмы постепенно переносятся на внутреннюю сторону клетки и поступают в клетки коры корня, затем в паренхиму, затем в ксилему. передвижение ионов и молекул от клетки к клетке может происходить и без воды, но по неживым элементам ксилемы ионы переносятся с током поступающей воды. Во время передвижения от клетки к клетке многие вещества метаболизируются и в ксилемный сок (пасоку) поступают уже в виде нужных растению соединений.

Особенности поглощения отдельных элементов у различных сельскохозяйственных культур.

Для растений, образующих корнеплоды и клубни на первом году жизни характерно растянутое поступление фосфора и калия. Более сжаты сроки поступления азота и магния. В сахарную свеклу азот, фосфор и калий поступают за 150-170 дней. Поглощение магния заканчивается у свеклы за 30-40 дней до конца вегетации.

Из злаковых культур наиболее растянут период поглощения питательных веществ у озимых хлебов. У озимой пшеницы и ржи содержание азота и калия достигает максимума после окончания цветения - в начале созревания зерна, а поступление фосфорной кислоты продолжается вплоть до достижения семенами полной спелости. Таким образом у озимых хлебов период поглощения питательных веществ длится 7 месяцев. У яровых хлебов активное поглощение питательных веществ крайне сжато во времени, например, у овса оно продолжается всего 40-55 дней.

Соотношение между генеративными и вегетативными органами в урожае у злаковых культур, число зерен, абсолютный вес зерен определяются в первую очередь степенью обеспеченности растений фосфатами к началу дифференциации колосовых бугорков. При недостатке фосфора в этот период продуктивность растения снижается и уже никакое обильное снабжение злаков фосфором после выброса колоса не может исправить положение. Поэтому столь важно обеспечить растения нужным элементов в соответствующую фазу развития.

У бобовых культур период поглощения питательных веществ вдвое превышает таковой у яровых хлебов, особенно растянуто поступление фосфора, так как у этих культур период цветения и плодообразования сильно растянут по времени.

Роль растений в круговороте азота в природе.

Среди органогенов азот занимает одно из важнейших мест. Без азота не могут синтезироваться белки, нуклеиновые кислоты, а следовательно, и протопласт живой клетки. На азот приходится всего около 3% сухого вещества, но без достаточного его количества в почве жизнедеятельность растений невозможна. Низкая урожайность многих сельскохозяйственных культур чаще всего определяется недостатком именно азота. Для формирования урожая зерна в 20-30 ц/га нужно внести 150-200 кг азота в доступной растениям форме, т.е. от 50 до 150 ц/га в виде азотных удобрений. Молекулярный азот воздуха растениям, как известно из курса микробиологии, недоступен. В почве азот содержится в виде органических и минеральных соединений. Минеральные соединения представлены аммиачными (аммонийными) и нитратными солями.

Основная масса азота в почве - это органический азот. Он представлен продуктами разложения органики (компостов, навоза, естественных растительных остатков) мочевиной, аминокислотами, гуминовыми кислотами, витаминами, ауксинами. Наиболее легко усваиваются растениями мочевина и аспарагиновая кислота, другие аминокислоты более трудноусвояемы для растений, так же как и гуминовые кислоты, ауксины, витамины, однако они поглощаются растениями с помощью специфических механизмов поглощения, например ионофорных каналов.

Наиболее легко усваиваются растениями неорганические формы азота. При этом процесс взаимопревращения аммиачных соединений в нитратные определяется процессом нитрификации, а интенсивность процесса регулируется деятельностью соответствующей группы микрофлоры в почве. Интенсивность нитрификации свидетельствует о том, что почвы имеют хорошую комковатую структуру, обеспечены кислородом, что определяет процесс нитрификации (окисление аммиака). В плохо аэрируемых почвах накапливаются аммонийные соли.

Корневая система растений поглощает достаточно интенсивно и аммиачные катионы, и нитратные анионы. Определяющим фактором в этом процессе является рН среды. В слабокислой среде лучше усваиваются нитраты, а при рН=7 - аммиачные соли. Для использования аммиачных солей необходимо достаточное количество углеводов в растениях, иначе их превращение в амиды задерживается, накапливается аммиак, действующий на растения токсично. Преимущественное поглощение аммиачных солей свойственно растениям, склонным к усиленному образованию органических кислот.

У бобовых растений, образующих бактериоризу с родом бактерий Rhizobium имеется специфический механизм узнавания вида бактерии. Процесс определяется наличием на поверхности корневых волосков белка лектина, который обеспечивает "узнавание" соответствующего вида бактерий. После проникновения бактерий внутрь корневых тканей в коре корня синтезируется повышенное количество ауксина, что приводит к активному разрастанию тканей корня вокруг проникших и размножившихся бактерий и к образованию клубенька.

В круговороте азота в природе растения активно участвуют в качестве автотрофов на стадии превращения аммиака в органические соединения и на стадии ассимиляционной денитрификации.

При этом, поглощая аммиак, как правило в виде иона аммония, растения осуществляют реакции синтеза через соединение аммиачного катиона с -кетоглутаровой кислотой в цикле Кребса, в результате чего образуется глутаминовая кислота, а затем глутамин. Другие аминокислоты синтезируются в ходе реакций переаминирования. Азот транспортируется по растению от клеток корня в основном в форме глутаминовой кислоты, глутамина, аспарагиновой кислоты и аспарагина.

В процессе ассимиляционной денитрификации поглощенные корнем растения нитраты восстанавливаются до аммиака с помощью фермента нитратредуктазы. При этом, если необходимых для синтеза аминокислот углеводов не хватает, нитраты могут накапливаться в клетках растений.

Диагностика различных видов минерального голодания и меры борьбы с ними.

Наиважнейшим условием для благополучного развития растений является наличие комплекса минеральных веществ в почве. Недостаток какого-либо элемента приводит к голоданию растений, при этом признаки голодания зависят от той физиологической роли, которую играет элемент в растительной клетке. Определение по внешним симптомам, проявляющимся у растения, типа минерального голодания называется диагностикой и применяется в практической деятельности при выращивании сельскохозяйственных культур. Для каждого типа голодания характерны свои симптомы, при этом некоторые симптомы могут совпадать при различных типах голодания, например, "желтый цвет листьев", и в этом случае необходимо оценивать всю совокупность признаков, чтобы правильно диагностировать тип голодания.

Азотное голодание.

Наблюдается сначала бледно-зеленая окраска листьев, которая при длительном голодании переходит в желтую, за счет недостатка хлорофилла, листья приобретают желтый, оранжевый или красный цвет, может наблюдаться высыхание и отмирание ткани. Образуются мелкие листья и плоды, задерживается рост растения, ослабляется образование боковых побегов, у злаков - кущение.

Азот является реутилизируемым элементом, поэтому симптомы пожелтения проявляются прежде всего на нижних листьях.

Азотное голодание приводит к ускорению фаз развития растений и вызывает более раннее созревание плодов и семян, но влияет на общую урожайность, резко снижая ее.

Особенно часто признаки азотного голодания отмечаются ранней весной, когда запасы нитратов в почве вымываются в глубокие слои, а микробиологические процессы еще идут слабо и азота в почве недостаточно.

Иногда у сортов с высокой урожайностью, активно выносящих азот, отмечаются признаки азотного голодания, что свидетельствует о необходимости подкормки их азотными удобрениями. Для таких сортов необходимо делать соответствующие поправки при использовании типовой технологии возделывания.

Меры борьбы с азотным голоданием: проводят подкормку аммиачной селитрой по 0,5-1,5 ц/га или навозной жижей по 5-10 т/га. Навозную жижу лучше вносить растениепитателем, тогда ее разбавлять не нужно, при поверхностном внесении ее нужно разбавлять водой в 2-3 раза.

Фосфорное голодание.

При фосфорном голодании содержание сахаров в листе повышается, так как меньше образуется фосфорорганических соединений. Накопление сахаров способствует накоплению антоциановых пигментов. Красная и лиловая окраска этих пигментов вместе с зеленой окраской хлорофилла придает листьям голубоватый оттенок, а при большом количестве антоцианов - лиловую окраску. Такой темный цвет листьев, часто зрительно воспринимаемый как темно-зеленый, производит обманчивое впечатление здоровых растений. Однако у них отмечается задержка фаз развития, особенно цветения, плодообразования, резко ослабляется скорость роста, задерживается образование новых побегов, ослабевает кущение, в итоге сильно снижается урожай. Связано это с недостатком нуклеиновых кислот и макроэргических соединений.

Причиной фосфорного голодания может быть антагонизм между фосфатами, нитратами и хлоридами, поскольку в сухой почве доступность фосфора для растений снижается, а хлор-ионы и нитрат-ионы поступают с прежней скоростью.

Меры борьбы с фосфорным голоданием: проводят подкормку суперфосфатом в дозе 1-2 ц/га во время междурядных обработок. При недостатке влаги иногда достаточно провести полив, чтобы восстановить доступность фосфатов для растений. Под культуры, требовательные к фосфору (сахарная свекла, кукуруза) необходимо под вспашку с осени вносить навоз или фосфорные удобрения. Кислые почвы следует известковать, так как это тоже повышает доступность фосфора для растений.

Калийное голодание.

Поскольку калий определяет проницаемость мембран клетки, то его недостаток сказывается прежде всего на транспорте веществ через мембраны. Поэтому первым признаком калийного голодания у большинства видов является изменение окраски листьев на темно-зеленую с голубоватым оттенком, так как в них происходит повышенное накопление азотных соединений и интенсивно синтезируется хлорофилл. Однако, у бобовых культур листья наоборот светлеют, то есть снижается эффективность метаболизма клубеньковых бактерий и поступление азота из клубеньков в листья замедляется. При значительном избытке азотных соединений в листе происходит повышение концентрации аммиачных форм азота, что ведет к отмиранию тканей прежде всего по краям листа, а затем между жилками. Признак "краевого ожога" или "запала" листьев является наиболее характерным симптомом калийного голодания. Характерны также нарушения тургора, наблюдается вялость и свисание листьев.

При сухой, жаркой погоде в связи с резким обезвоживанием тканей возможно отставание эпидермиса и появление на поверхности листьев серебристо-белых пятен и полос. Калийное голодание обуславлитвае6т недостаточное развитие поддерживающих тканей и элементов древесины, уменьшение толщины клеточных стенок.

Стебли становятся непрочными, с короткими междоузлиями, наблюдается полегание растений или поникание соцветий (колосьев, корзинок и головок). При калийном голодании листья по отношению к стеблю кажутся длинными и крупными. Неравномерный рост клеток вызывает морщинистость и закручивание краев листьев вниз. У растений с параллельным жилкованием (семейство злаковых) листья приобретают волнистый вид, скручиваются.

Калий является реутилизируемым элементом, поэтому в начале голодания, он передвигается из нижних листьев в верхние. При дальнейшем голодании его признаки распространяются снизу вверх. При сильном калийном голодании снижается устойчивость растений к болезням и вредителям, вероятно в связи с ослаблением механических такней и накоплением не используемых в биосинтезе углеводов.

Жаркая, сухая погода ускоряет и усиливает проявление недостатка калия у растений. Преобладание в почвенном растворе катионов кальция и магния ослабляет поглощение растениями калия. Известкование и гипсование почв усиливает потребность растений в калии.

Меры борьбы с калийным голоданием: проводят подкормку такими веществами, как хлоридом калия в дозе 0,5-1 ц/га или калимагнезией в дозе 2-3 ц/га, или золой в дозе 5-10 ц/га, или навозной жижей в дозе 5-10 т/га.

Магниевое голодание.

Поскольку магний входит в состав хлорофилла и является реутилизируемым элементом, то прежде всего признаки голодания в виде пожелтения или "межжилкового хлороза" появляются на нижних листьях. Отток магния идет по жилкам, поэтому сами жилки сохраняют зеленую окраску. Последующий признак - некроз тканей между жилками. Магний весьма важен и при формировании семян, поэтому его недостаток сильнее влияет на урожай зерна, чем на урожай соломы. Во время цветения и образования семян происходит усиленный отток магния из вегетативных органов, поэтому при его недостатке цветение и созревание затягиваются. Магний участвует в виде кофактора ряда ферментов в синтезе углеводов, поэтому при его недостатке снижается содержание крахмала в картофеле и сахара в сахарной свекле.

Антагонистами магния выступают калий и натрий. Имеет значение и форма вносимых азотных удобрений. Так при использовании аммиачных солей действие недостатка магния усиливается, а применение нитратных форм азота способствует ослаблению признаков магниевого голодания.

Меры борьбы с магниевым голоданием: при раннем проявлении голодания проводят подкормку такими веществами, как калимагнезией в дозе 1-2 ц/га, или золой в дозе 3-6 ц/га, или сульфатом магния в дозе 1-2 ц/га, или каинитом в дозе 2-4 ц/га. Если магниевое голодание проявилось в поздней фазе развития растений, то необходимо внести магниевые удобрения на данном массиве перед вспашкой почвы, а на кислых почвах этот процесс нужно совмещать с известкованием. Внесение доломита под вспашку в дозе 10-15 ц/га обеспечивает растения магнием на 5-8 лет.

Кальциевое голодание.

Кальций входит в состав клеточных стенок, поэтому при его недостатке протопектин образуется в недостаточном количестве и стенки клеток и межклеточное вещество ослизняются. При недостатке кальция происходит побеление верхушек и молодых листьев, вновь образующиеся листья мелкие, искривленные, с неправильной формой краев. На этих листьях появляются пятна из отмерших тканей. При остром недостатке верхушечная почка отмирает.

У зерновых культур молодые листья слегка перекручиваются и засыхают. Позднее наблюдается засыхание кончиков и старых листьев. У растений с плодами, богатыми оксалатами и пектинами, признаки кальциевого голодания проявляются в усугублении течения таких поражений, как вершинная гниль томата и горькая ямчатость яблок.

При вершинной гнили, обычно проявляющейся при колебаниях влажности, применение калийных и магниевых удобрений ослабляют поглощение кальция и усугубляют заболевание.

Горькая ямчатость яблок вызывается недостатком кальция, при этом в мякоти плодов развиваются коричневые пятна, затем пятна появляются на кожице, при этом ухудшается вкус яблок и понижается их товарная ценность.

Меры борьбы с кальциевым голоданием: на кислых почвах используется прием известкования, т.е. внесение карбоната кальция, на нейтральных почвах рекомендуется вносить кальциевую селитру, фосфогипс, на щелочных почвах используют прием гипсования, т.е. внесение сульфата кальция.

Рекомендуется также при необходимости опрыскивание растений 0,5-1% раствором кальциевой селитры или хлорида кальция, особенно в период роста плодов томата прием можно использовать 1-2 раза в неделю, в период вегетации яблонь прием используют 3-6 раз за 1-2 месяца до уборки яблок.

Проявление недостатка железа.

Поскольку железо, нереутилизируемый элемент, входит в ферментные системы, определяющие прохождение процесса фотосинтеза и дыхания, то типичными симптомами являются хлороз и отмирание верхушечных листьев и побегов, при длительном голодании на краях листа и между жилками пожелтевших листьев появляются коричневые пятна, отдельные побеги отмирают.

Меры борьбы с железным голоданием: поскольку недостаток железа наблюдается, как правило, у плодовых культур, способных истощать естественные запасы железа в почве, то часто используют внекорневые подкормки в виде опрыскивания 0,5% раствором железного купороса 2-3 раза за вегетационный сезон. Рекомендуется осенью, одновременно с внесением перегноя, вносить железный купорос из расчета на 40-60 кг перегноя 1-1,5 кг железного купороса, вся смесь разбавляется 5-10 литрами воды и выливается в кольцевую траншею вокруг дерева.

При сильном проявлении хлороза в период вегетации можно ввести железо в ствол или в корень путем вбивания ржавого гвоздя.

Диагностика нарушений в питании бором.

Бор относится к числу элементов, чей недостаток или избыток одинаково неблагоприятен для растения и вызывает соответствующие нарушения метаболизма. Бор входит в качестве кофактора в ферментные системы, определяющие процессы роста, поэтому

при недостатке бора проявляются:

у свеклы - гниль сердечка, отмирание молодых листьев и точки роста,

у яблони - в мякоти плодов образуются зеленоватые пятна диаметром до 1 см, которые затем буреют и плоды приобретают уродливую форму,

у томата - почернение точки роста стебля, черешки листьев становятся ломкими, плоды приобретают уродливую форму и покрываются бурыми пятнами.

При избытке бора:

у огурцов - листья среднего и нижнего ярусов желтеют, заворачиваются вниз, принимая куполообразный вид, позднее края листьев отмирают,

у картофеля - края долек листа заворачиваются вверх, затем буреют и отмирают.

Меры борьбы с нарушениями в питании бором:

При борном голодании нужно вносить до 6 - кг/га борнодатолитового удобрения или осажденного бората магния (обязательно соблюдать равномерность обработки), можно проводить внекорневую подкормку растений либо борнодатолитовым удобрением (в дозе 10-12 кг/га, растворив их в 500-600 л воды), либо 1,5 кг борной кислоты, растворив ее в 1000 литрах воды.

При избытке бора достаточно обильно полить растения, что вызывает вымывание бора в нижние слои почвы.

Марганцевое голодание.

Недостаток марганца вызывает хлороз между жилками листа, у листа окраска становится узорчато-пестрой, при длительном голодании хлорозные участки отмирают.

Меры борьбы с марганцевым голоданием: используют подкормки сернокислым марганцем в дозе 50-100 кг/га, можно использовать внекорневую подкормку, которую можно сочетать с обработкой бордосской жидкостью, часто используемой при борьбе с болезнями растений, при этом на 500 л бордосской жидкости добавляют 1 кг сернокислого марганца - этот объем рабочего раствора используют на 1 га.

Медное голодание.

Этот вид физиологического расстройства характерен для торфяных и кислых песчаных почв, может усиливаться при жаркой погоде. В южных регионах практически не встречается, так как в технологиях возделывания культур используются в достаточном объеме пестициды, имеющие в своем составе медь, и этого количества вполне достаточно для снабжения растений этим микроэлементом. Недостаток меди вызывает хлороз листьев, потерю тургора, увядание, задержку стеблевания, слабое образование семян.

Меры борьбы с медным голоданием: используют подкормки сернокислой медью в дозе 10-30 кг/га, добавляют медный купорос при обработке семян в дозе 50-100 г на 1 центнер семян, проводят опрыскивание растений 0,05% раствором медного купороса.

Цинковое голодание.

Поскольку цинк входит в состав ферментов, определяющих синтез гормонов роста, в частности, ауксинов, то его недостаток вызывает образование на молодых побегах розеток мелких узких листьев и укороченных междоузлий, у молодых листьев отмечается бледная окраска.

Меры борьбы с цинковым голоданием: используют подкормки сернокислым цинком в дозе 20-40 кг/га, проводят опрыскивание плодовых культур 0,05% раствором сернокислого цинка, при обработке семян добавляют до 100 г сернокислого цинка на 1 центнер семян.

Молибденовое голодание.

Поскольку молибден необходим для восстановления нитратов в аминную группу, то его недостаток вызывает образование симптомы нехватки азота, нарушается и азотфиксация у бобовых растений, имеющих развитые эффективные клубеньки, у листьев прежде всего отмечается бледная окраска.

Меры борьбы с молибденовым голоданием: проводят внекорневые подкормки 0,01 - 0,05% раствором молибденовокислого аммония, при обработке семян добавляют до 30 г молибденовокислого аммония (растворив его в 2 литрах воды) на 1 центнер семян.

Избыток хлора.

При избытке хлора, встречающемся иногда при внесении весной в больших дозах хлорсодержащих удобрений (сильвинит, хлористый калий, хлористый аммоний), могут наблюдаться такие симптомы, как свертывание лодочкой долек листа (у картофеля, малины), преждевременное усыхание листьев.

Меры борьбы с избытком хлора: необходимо провести подкормку аммиачной селитрой в дозе 1-2 ц/га с последующим поливом, при этом поступление нитратного азота усиливает рост растений и вызывает перераспределение хлора на большую массу растительной ткани, снимая таким образом его отрицательное влияние.

Влияние условий внешней среды на

поглощение минеральных элементов.

На поглощение растением минеральных элементов влияют многие абиотические факторы. Особенно важными являются такие факторы, как концентрация питательного раствора, температура воздуха и почвы, относительная влажность воздуха, интенсивность освещения, реакция почвенного раствора.

Концентрация питательного раствора.

Почвенный раствор должен содержать достаточное количество питательных элементов для создания концентрационного градиента, так чтобы элементы могли поступать в корневые волоски по механизму пассивной или облегченной диффузии. Однако, чрезмерно высокая концентрация почвенного раствора может вызвать физиологическую засуху у растений и вызвать их гибель. Оптимальная концентрация почвенного раствора варьирует не только в зависимости от вида растения, но и от фазы развития растения.

Поскольку передвижение растворимых удобрений в горизонтальной плоскости в почве практически отсутствует, то определенная мозаичность распределения удобрений наблюдается всегда, поэтому особенно важно тщательно соблюдать технологию внесения удобрений для достижения максимально возможной равномерности их заделки.

Благодаря наличию мозаичности почвенного раствора корневая система растений в очагах с повышенной концентрацией почвенного раствора поглощает минеральные элементы, а в очагах с пониженной концентрацией - поглощает воду.

Оптимальная концентрация почвенного раствора для каждой культуры определяется опытным путем и находит отражение в рекомендуемых для каждой зоны и фазы развития растений дозах удобрений.

Температура воздуха и почвы.

Оптимальные температуры изменяются в зависимости от фаз развития растений и они неодинаковы для надземных органов и корневой системы. Например:

Культура

оптимальная температура, Со

для надземных органов

для корневой системы

пшеница яровая

16-20

16

табак

29-31

23-25

лук

18-26

10-14

картофель

21

18

Интервал оптимальной температуры для корня и надземной части растения составляет 5-6 Со. При изменениях температуры немедленно изменяется и интенсивность поглощения растениями различных питательных элементов. Например, известно, что при низких температурах (10-12 Со) растения особенно трудно усваивают фосфор почвы. В этом случае неблагоприятное влияние пониженных температур можно преодолеть увеличением доз фосфорных удобрений.

Усвоение растениями питательных элементов в большей мере зависит от температуры корнеобитаемого пространства, чем от температуры воздуха. Кроме того, температура корнеобитаемого пространства сильнее влияет на передвижение питательных элементов, чем на их поглощение корневой системой.

Поглощение питательных элементов из почвенного раствора в значительной степени зависит от биологических особенностей вида, причем иногда теплолюбивые растения обладают лучшей способностью поглощать питательные элементы из растворов при низких температурах, чем холодовыносливые растения, но при этом передвижение элементов в надземную часть определяется именно температурой почвы. Например, огурец (теплолюбивая культура) поглощает 33% фосфора из почвенного раствора при температуре 0о, но почти весь фосфор при этом остается в корнях, тогда как лук (холодовыносливая культура), поглощая всего 2% фосфора при температуре 0о, переносит в листья более половины.

При крайних температурах, при которых жизнедеятельность изучаемого растения сильно подавлена, повышение концентрации питательных элементов в почве почти не улучшает его питания. Подкормка через листья может оказать положительное влияние на питание растений при низких температурах почвы в большей степени, чем подкормка, внесенная в почву.

Относительная влажность воздуха.

При высокой влажности воздуха надземная масса растения интенсивнее нарастает, чем при низкой, хотя масса корней может быть при этом меньше.

Влияние влажности воздуха, а, следовательно, и транспирации растений на поглощение питательных элементов растениями, в количественном выражении может сильно изменяться в зависимости от вида растений, интенсивности транспирации, концентрации питательного раствора.

Интенсивность освещения.

Снижение интенсивности освещения сильно уменьшает приросты массы как надземной части, так и корневой системы, причем у светолюбивых растений это угнетение проявляется значительнее, нежели у теневыносливых. При затенении хуже всего усваивается фосфор, затем азот, уменьшение освещенности меньше всего угнетает поступление калия.

Реакция почвенного раствора.

На почвах, обладающих большей емкостью поглощения и большей буферностью, растения легче переносят кислую реакцию (например, у чернозема лучшие буферные свойства, чем у подзолистых почв). Для развития растений решающее значение имеет РН в прикорневой зоне, этим в значительной мере обусловлено более резкое воздействие на растения кислой реакции на малобуферных почвах.

Еще Д.Н. Прянишниковым были получены данные о том, что при большом содержании кальция растения легче переносят кислую реакцию, и присутствие алюминия и железа усиливает вредное действие повышенной кислотности. При подщелачивании почвенного раствора наблюдается более интенсивное поступление катионов, тогда как при подкислении усиливается поглощение анионов.

Подщелачивание раствора снижает доступность микроэлементов, а значит затрудняется их поступление в растение. Изменение реакции почвы влияет и на почвенную микрофлору, что, в свою очередь, влияет на развитие растений. Например азотфиксация, осуществляемая свободноживущими бактериями, и нитрификация лучше всего проходят в почвенном растворе с рН, близкой к нейтральной.

В целом среди культурных растений можно выделить несколько групп:

1). Выносливые к кислой реакции почвы:

(выдерживают рН до 4,3, оптимальное значение рН - 6,3) - сельдерей и картофель,

(выдерживают рН до 4,8, оптимальное значение рН - 6,3) - брюква и кольраби,

2). Выносливые к щелочной реакции почвы (оптимальное значение рН - 7,2):

(выдерживают рН от 6,3 до 7,8 (лук, морковь),

(выдерживают рН от 6,3 до 8,0 (чеснок),

(выдерживают рН от 6,3 до 8,3 (томат).

Роль минерального питания в формировании урожая и регулировании роста и развития растений.

Минеральное питание является процессом, объединяющим совокупность ряда физиологических закономерностей в организме растения, обеспечивает прохождение других важнейших физиологических процессов, таких как водный обмен, фотосинтез, дыхание, накопление запасных питательных веществ.


Подобные документы

  • Клеточные структуры, строение, состав и свойства основных компонентов растительной клетки. Поглощение и выделение веществ и энергии клеткой. Хлоропласты, их строение, химический состав и функции. Строение молекулы хлорофилла, флавоноидные пигменты.

    контрольная работа [1,0 M], добавлен 05.09.2011

  • Углеводы – группа органических соединений. Строение и функции углеводов. Химический состав клетки. Примеры углеводов, их содержание в клетках. Получение углеводов из двуокиси углерода и воды в процессе реакции фотосинтеза, особенности классификации.

    презентация [890,0 K], добавлен 04.04.2012

  • Общая характеристика клетки: форма, химический состав, отличия эукариот от прокариот. Особенности строения клеток различных организмов. Внутриклеточное движение цитоплазмы клетки, метаболизм. Функции липидов, углеводов, белков и нуклеиновых кислот.

    лекция [44,4 K], добавлен 27.07.2013

  • Признаки и уровни организации живых организмов. Химическая организация клетки. Неорганические, органические вещества и витамины. Строение и функции липидов, углеводов и белков. Нуклеиновые кислоты и их типы. Молекулы ДНК и РНК, их строение и функции.

    реферат [13,5 K], добавлен 06.07.2010

  • Прокариоты и эукариоты, строение и функции клетки. Наружная клеточная мембрана, эндоплазматическая сеть, их основные функции. Обмен веществ и превращения энергии в клетке. Энергетический и пластический обмен. Фотосинтез, биосинтез белка и его этапы.

    реферат [20,8 K], добавлен 06.07.2010

  • Строение, состав и физиологическая роль отдельных органелл клетки. Классификация белков по степени сложности. Состояние воды в живых тканях, ее функции. Полисахариды морских водорослей: состав, строение. Биологическая роль и классификация липидов.

    контрольная работа [1014,7 K], добавлен 04.08.2015

  • Изучение строения и физиологических особенностей светолюбивых и теневыносливых растений. Влияние ризосферной микрофлоры на поглощение минеральных веществ корнями. Поступление воды в растение. Физиологические основы орошения. Химический состав клетки.

    реферат [31,1 K], добавлен 22.06.2012

  • Превращения веществ и энергии, происходящие в живых организмах и лежащие в основе их жизнедеятельности. Назначение обмена веществ и энергии, взаимосвязь анаболических и катаболических процессов. Энергетическая ценность углеводов и жиров в организме.

    реферат [21,9 K], добавлен 28.05.2010

  • Классификация процессов метаболизма и обмена. Виды организмов по различиям обменных процессов, методы их изучения. Метод учета веществ поступивших и выделившихся из организма на примере азотистого обмена. Основные функции и источники белков для организма.

    презентация [3,8 M], добавлен 12.01.2014

  • Клетка как основная единица живого. Химический состав клетки, ее элементарные частицы и характер протекающих внутри процессов. Роль и значение воды в жизнедеятельности клетки. Этапы энергетического обмена клетки, реакций расщепления (диссимиляции).

    реферат [28,2 K], добавлен 11.07.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.