Обмены веществ, происходящие в клетках человека

Прокариоты и эукариоты, строение и функции клетки. Наружная клеточная мембрана, эндоплазматическая сеть, их основные функции. Обмен веществ и превращения энергии в клетке. Энергетический и пластический обмен. Фотосинтез, биосинтез белка и его этапы.

Рубрика Биология и естествознание
Вид реферат
Язык русский
Дата добавления 06.07.2010
Размер файла 20,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Реферат на тему:

"Обмены веществ, происходящие в клетках человека"

Строение и функции клетки

По наличию оформленного ядра все клеточные организмы делятся на две группы: прокариоты и эукариоты.

Прокариоты (безъядерные организмы) -- примитивные организмы, не имеющие четко оформленного ядра. В таких клетках выделяется лишь ядерная зона, содержащая молекулу ДНК. Кроме того, в клетках прокариотов отсутствуют многие органоиды. У них имеются только наружная клеточная мембрана и рибосомы. К прокариотам относятся бактерии и синезеленые водоросли (цианеи).

Эукариоты -- истинно ядерные, имеют четко оформленное ядро и все основные структурные компоненты клетки. К эукариотам относятся растения, животные, грибы. Эукариотная клетка имеет сложное строение. Она состоит из трех неразрывно связанных частей:

1) наружной клеточной мембраны, у некоторых дополнительно имеется оболочка;

2) цитоплазмы и ее органоидов;

3) ядра.

Наружная клеточная мембрана -- двумем-бранная клеточная структура, которая ограничивает живое содержимое клетки всех организмов. Обладая избирательной проницаемостью, она защищает клетку, регулирует поступление веществ и обмен с внешней средой, поддерживает определенную форму клетки. Клеточная мембрана состоит из двойного слоя фосфолипидов, обращенных друг к другу своими гидрофобными концами из радикалов высших жирных кислот; снаружи располагаются гидрофильные остатки фосфорной кислоты и глицерина. В билипид-ный слой мозаично вкраплены молекулы белков, одна часть которых пронизывает мембрану, а другая -- располагается на поверхности или частично погружена в нее. С наружной стороны с белками и липидами соединены углеводы.

Вещества поступают в клетку различными путями: диффузно (низкомолекулярные ионы); осмосом (вода); активным транспортом (через специальные белковые каналы) с затратой энергии; с помощью эндоцитоза (крупные частицы).

Клетки растительных организмов, грибов кроме мембраны снаружи имеют еще и оболочку. Эта неживая клеточная структура состоит из целлюлозы, придает прочность клетке, защищает ее, является «скелетом» растений и грибов. В оболочке имеются поры, через которые идет поступление веществ.

В цитоплазме, полужидком содержимом клетки, находятся все органоиды.

Эндоплазматическая сеть (ЭПС) -- одномембранная система канальцев, трубочек, цистерн, которая пронизывает всю цитоплазму. Она разделяет ее на отдельные отсеки, в которых идет синтез различных веществ, обеспечивает сообщение между отдельными частями клетки и транспорт веществ. Различают гладкую и гранулярную ЭПС. На гладкой -- идет синтез липидов, на гранулярной -- располагаются рибосомы и синтезируется белок.

Рибосомы -- мелкие тельца грибовидной формы, в которых идет синтез белка. Они состоят из рибосомальной РНК и белка, образующих большую и малую субъединицы.

Аппарат Гольджи -- одномембранная структура, связанная с ЭПС, обеспечивает упаковку и вынос синтезируемых веществ из клетки. Кроме того, из его структур образуются лизосомы.

Лизосомы -- шарообразные тельца, содержащие гидролитические ферменты, которые расщепляют высокомолекулярные вещества, т. е. обеспечивают внутриклеточное переваривание.

Митохондрии -- полуавтономные двумем-бранные структуры продолговатой формы. Наружная мембрана гладкая, а внутренняя имеет складки -- кристы, увеличивающие ее поверхность. Внутри митохондрия заполнена матриксом, в котором находятся кольцевая молекула ДНК, РНК, рибосомы.

Количество митохондрий в клетках различно, с ростом клеток их число увеличивается в результате деления. Митохондрии -- это «энергетические станции» клетки. В процессе дыхания в них происходит окончательное окисление веществ кислородом воздуха. Выделяющаяся энергия запасается в молекулах АТФ, синтез которых происходит в этих структурах.

Пластиды характерны для растительных клеток. Существуют три вида пластид: хлоропласты, лейкопласты и хромопласты.

Хлоропласты -- полуавтономные двумембранные органоиды продолговатой формы, зеленого цвета. Внутренняя часть заполнена стромой, в которую погружены граны. Граны образованы из мембранных структур -- тилакоидов. В строме имеются кольцевая молекула ДНК, РНК, рибосомы. На мембранах располагается фотосинтезирующий пигмент -- хлорофилл. В хлоропластах протекает процесс фотосинтеза. На мембране тилакоида идут реакции световой фазы, а в строме -- темновой.

Хромопласты -- двумембранные органоиды шарообразной формы, содержащие красный, оранжевый и желтый пигменты. Хромопласты придают окраску цветкам и плодам, образуются из хлоропластов.

Лейкопласты -- бесцветные пластиды, находящиеся в неокрашенных частях растения. Содержат запасные питательные вещества, могут на свету переходить в хлоропласты.

Кроме хлоропластов растительные клетки имеют и вакуоли -- мембранные тельца, заполненные клеточным соком и питательными веществами.

Клеточный центр обеспечивает процесс деления клетки. Он состоит из двух центриолей и центросферы, которые образуют нити веретена деления и способствуют равномерному распределению хромосом в делящейся клетке. Характерны для животных клеток. -

Ядро -- центр регуляции жизнедеятельности клетки. Ядро отделено от цитоплазмы двойной ядерной мембраной, пронизанной порами. Внутри оно заполнено кариоплазмой, в которой находятся молекулы ДНК. Ядерный аппарат регулирует все процессы жизнедеятельности клетки, обеспечивает передачу наследственной информации. Здесь происходит синтез ДНК, РНК, рибосом. Часто в ядре можно увидеть одно или несколько темных округлых образований -- ядрышек, в которых формируются и скапливаются рибосомы. Молекулы ДНК несут наследственную информацию, которая определяет признаки данного организма, органа, ткани, клетки. В ядре молекулы ДНК не видны, так как находятся в виде тонких нитей хроматина. Во время деления ДНК сильно спирализуются, утолщаются, образуют комплексы с белком и превращаются в хорошо заметные структуры -- хромосомы.

Кроме перечисленных некоторые клетки имеют специфические органоиды -- реснички и жгутики, которые обеспечивают движение, преимущественно одноклеточных организмов. Имеются они и у некоторых клеток многоклеточных организмов (ресничный эпителий). Реснички и жгутики представляют собой выросты цитоплазмы, окруженные клеточной мембраной. Внутри выростов находятся микротрубочки, сокращение которых приводит в движение клетку.

Обмен веществ и превращения энергии в клетке

Основой жизнедеятельности клетки является обмен веществ и превращение энергии. Обмен веществ -- совокупность всех реакций синтеза и распада, протекающих в организме, связанных с выделением или поглощением энергии. Обмен веществ и энергии состоит из двух взаимосвязанных и противоположных процессов: ассимиляции и диссимиляции.

Ассимиляция, или пластический обмен, -- совокупность реакций синтеза высокомолекулярных органических веществ, сопровождающихся поглощением энергии за счет распада молекул АТФ.

Диссимиляция, или энергетический обмен, -- совокупность реакций распада и окисления органических веществ, сопровождающихся выделением энергии и запасанием ее в синтезируемых молекулах АТФ.

Все реакции обмена веществ идут в присутствии ферментов. АТФ является основным веществом, которое обеспечивает все энергетические процессы в клетке, запасает энергию в процессе энергетического обмена и отдает в процессе пластического обмена.

Единственным источником энергии на земле является солнце. Клетки растений с помощью хлоропластов улавливают энергию солнца, превращая ее в энергию химических связей молекул синтезированных органических веществ. В растениях идет первичный синтез органических веществ из неорганических: углекислого газа и воды за счет энергии солнца. Все остальные организмы используют готовые органические вещества, расщепляют их, а выделяющаяся энергия запасается в молекулах АТФ. Запасенная энергия расходуется в процессе пластического обмена на синтез органических веществ, специфичных для каждого организма. Часть энергии в процессе обмена веществ постоянно теряется в виде тепла, поэтому в системы живых организмов необходим постоянный приток энергии. Таким образом, солнечная энергия аккумулируется в органических веществах, а затем используется в процессе жизнедеятельности организма.

По способу питания, источнику получения органических веществ и энергии организмы делятся на автотрофные и гетеротрофные.

Автотрофные организмы синтезируют органические вещества в процессе фотосинтеза из неорганических (углекислого газа, воды, минеральных солей), используя энергию солнечного света. К ним относятся все растительные организмы, синезеленые водоросли (цианобактерии). К автотрофному питанию способны и хемо-синтезирующие бактерии, использующие энергию, которая выделяется при окислении неорганических веществ: серы, железа, азота.

Гетеротрофные организмы получают готовые органические вещества от автотрофов. Источником энергии являются органические вещества, которые распадаются и окисляются в процессе диссимиляции. К ним относятся животные, грибы, многие бактерии.

Автотрофы способны усваивать неорганический углерод и другие элементы. Гетеротрофы усваивают только органические вещества, получая энергию при их расщеплении. Автотрофные и гетеротрофные организмы связаны между собой процессами обмена веществ и энергии.

Энергетический обмен

Энергетический обмен состоит из трех этапов.

I этап -- подготовительный. На первом этапе происходит расщепление высокомолекулярных органических веществ до низкомолекулярных в процессе реакций гидролиза, идущих при участии воды. Он протекает в пищеварительном тракте, а на клеточном уровне -- в лизосомах. Вся энергия, выделяющаяся на подготовительном этапе, рассеивается в виде тепла.

Реакции подготовительного этапа:

белки + Н20--» аминокислоты + С; углеводы + Н20 --»глюкоза + ф; жиры + Н20 --> глицерин + высшие жирные + кислоты

II этап -- гликолиз, бескислородное окисление. Глюкоза является ключевым веществом обмена в организме. Все остальные вещества на разных стадиях втягиваются в процессы ее превращения. Дальнейшее расщепление органических веществ рассматривается на примере обмена глюкозы.

Процесс гликолиза протекает в цитоплазме. Глюкоза расщепляется до 2 молекул пировиноградной кислоты (ПВК), которые в зависимости от типа клеток и организмов могут превращаться в молочную кислоту, спирт или другие органические вещества. При этом выделяющаяся энергия частично запасается в 2 молекулах АТФ, а частично расходуется в виде тепла. Бескислородные процессы называются брожением.

Реакции гликолиза:

С6Н1206-+>2С3Н403+4Н-глюкоза

ПВК2АТФ

3Н603 (молочная кислота) молочнокислое брожение

2Н5ОН + 2С02 (этиловый спирт) спиртовое брожение

В результате ступенчатого расщепления глюкозы образуются 2 молекулы ПВК -- С3Н403. При этом освобождаются еще 4 атома Н, которые соединяются с переносчиком НАД+, и образуются 2НАД * Н + Н+. Дальнейшая судьба ПВК зависит от наличия кислорода. В анаэробных условиях ПВК превращается в молочную кислоту или этанол с участием тех же двух молекул НАД * Н + Н+, которые возвращают водород. Если же процесс идет в аэробных условиях, то ПВК и 2НАД * Н + Н+ вступают в реакции биологического окисления.

III этап -- кислородный. Биологическое окисление протекает в митохондриях. Пировиноградная кислота поступает в митохондрии, где преобразуется в уксусную кислоту, соединяется с ферментом-переносчиком и входит в серию циклических реакций -- цикл Кребса. В результате этих реакций при участии кислорода образуются углекислый газ и вода, а на кристах митохондрий за счет выделяющейся энергии синтезируется 36 молекул АТФ.

Реакции кислородного этапа:

3Н403 + 602 + 4Н - 6С02 + 6Н20.

Таким образом, при расщеплении глюкозы на двух этапах образуется суммарно 38 молекул АТФ, причем основная часть -- при кислородном окислении.

Процесс биологического окисления органических веществ называется дыханием.

Пластический обмен. Фотосинтез

Фотосинтез -- процесс первичного синтеза органических веществ из неорганических (углекислого газа и воды) под действием солнечного света. Протекает у растений в хлоропластах. Выделяют две фазы фотосинтеза.

1. Световая фаза. Фотолиз воды. Синтез АТФ. Протекает на мембранах тилакоидов только при участии солнечного света. За счет энергии солнца протекают три группы реакций:

1) возбуждение хлорофилла, отрыв электронов и синтез АТФ за счет энергии возбужденных электронов;

2) фотолиз воды -- расщепление молекулы воды;

3) связывание ионов водорода с переносчиком НАДФ.

Кванты света, попав на хлорофилл, приводят молекулу в возбужденное состояние. При этом электроны переходят в возбужденное состояние и проходят по электронной цепи на мембране до места синтеза АТФ. Одновременно под действием света идет расщепление молекулы воды и образование ионов водорода. На мембране тилакоидов происходит соединение ионов водорода с переносчиком НАДФ за счет электронов хлорофилла, а выделившаяся энергия идет на синтез АТФ. Образовавшиеся при фотолизе воды ионы кислорода отдают электроны на хлорофилл и превращаются в свободный кислород, который выделяется в атмосферу.

2. Темновая фаза. Фиксация углерода. Синтез глюкозы. Для протекания реакций второй стадии наличие света необязательно. Источником энергии являются синтезированные на первой стадии молекулы АТФ.

В строме хлоропластов, куда поступают НАДФ * Н 4- Н+, АТФ и углекислый газ из атмосферы, протекают циклические реакции, в результате которых идет фиксация углекислого газа, его восстановление водородом за счет НАДФ х х Н + Н+ и синтез глюкозы. Эти реакции идут за счет энергии АТФ, запасенной в световой фазе.

Схематично уравнение темновой фазы можно представить следующим образом:

С6Н1206 + НАДФ+С02 + НАДФ * Н + Н+2АДФ

Суммарное уравнение фотосинтеза:

6С02 + 6Н20 -222+ С6Н1206 + 602Т.

Пластический обмен. Биосинтез белка

Наиболее важным процессом пластического обмена является биосинтез белка. Он протекает во всех клетках организмов.

Генетический код. Аминокислотная последовательность в молекуле белка зашифрована в виде нуклеотидной последовательности в молекуле ДНК и называется генетическим кодом. Участок молекулы ДНК, ответственный за синтез одного белка, называется геном.

Характеристика генетического кода.

1.Код триплетен: каждой аминокислоте соответствует сочетание из 3 нуклеотидов. Всего таких сочетаний -- 64 кода. Из них 61 код смысловой, т. е. соответствует 20 аминокислотам, а 3 кода -- бессмысленные, стоп-коды, которые не соответствуют аминокислотам, а заполняют промежутки между генами.

2. Код однозначен -- каждый триплет соответствует только одной аминокислоте.

3. Код вырожден -- каждая аминокислота имеет более чем один код. Например, у аминокислоты глицин -- 4 кода: ЦЦА, ЦЦГ, ЦЦТ, ЦЦЦ, чаще у аминокислот их 2--3.

4. Код универсален -- все живые организмы имеют один и тот же генетический код аминокислот.

5. Код непрерывен -- между кодами нет промежутков.

6. Код неперекрываем -- конечный нуклеотид одного кода не может служить началом другого.

Условия биосинтеза. Для биосинтеза белка необходима генетическая информация молекулы ДНК; информационная РНК -- переносчик этой информации из ядра к месту синтеза; рибосомы -- органоиды, где происходит собственно синтез белка; набор аминокислот в цитоплазме; транспортные РНК, кодирующие аминокислоты и переносящие их к месту синтеза на рибосомы; АТФ -- вещество, обеспечивающее энергией процесс кодирования и биосинтеза.

Этапы биосинтеза

Транскрипция -- процесс биосинтеза всех видов РНК на матрице ДНК, который протекает в ядре.

Определенный участок молекулы ДНК деспирализуется, водородные связи между двумя цепочками разрушаются под действием ферментов. На одной цепи ДНК, как на матрице, по принципу комплементарное из нуклеотидов синтезируется РНК-копия. В зависимости от участка ДНК таким образом синтезируются рибосомные, транспортные, информационные РНК.

После синтеза иРНК она выходит из ядра и направляется в цитоплазму к месту синтеза белка на рибосомы.

Трансляция -- процесс синтеза полипептидных цепей, осуществляемый на рибосомах, где иРНК является посредником в передаче информации о первичной структуре белка.

Биосинтез белка состоит из ряда реакций.

1. Активирование и кодирование аминокислот. тРНК имеет вид клеверного листа, в центральной петле которого располагается триплет-ный антикодон, соответствующий коду определенной аминокислоты и кодону на иРНК. Каждая аминокислота соединяется с соответствующей тРНК за счет энергии АТФ. Образуется комплекс тРНК--аминокислота, который поступает на рибосомы.

2. Образование комплекса иРНК--рибосома. иРНК в цитоплазме соединяется рибосомами на гранулярной ЭПС.

3. Сборка полипептидной цепи. тРНК с аминокислотами по принципу комплементарности антикодона с кодоном соединяются с иРНК и входят в рибосому. В пептидном центре рибосомы между двумя аминокислотами образуется пептидная связь, а освободившаяся тРНК покидает рибосому. При этом иРНК каждый раз продвигается на один триплет, внося новую тРНК -- аминокислоту и вынося из рибосомы освободившуюся тРНК. Весь процесс обеспечивается энергией АТФ. Одна иРНК может соединяться с несколькими рибосомами, образуя полисому, где идет одновременно синтез многих молекул одного белка. Синтез заканчивается, когда на иРНК начинаются бессмысленные кодоны (стоп-коды). Рибосомы отделяются от иРНК, с них снимаются полипептидные цепи. Так как весь процесс синтеза протекает на гранулярной эндо-плазматической сети, то образовавшиеся полипептидные цепи поступают в канальца ЭПС, где приобретают окончательную структуру и превращаются в молекулы белка.

Все реакции синтеза катализируются специальными ферментами с затратой энергии АТФ. Скорость синтеза очень велика и зависит от длины полипептида. Например, в рибосоме кишечной палочки белок из 300 аминокислот синтезируется приблизительно за 15--20 с.


Подобные документы

  • Биологическое значение нуклеиновых кислот. Строение ДНК, взгляд на нее с химической точки зрения. Обмен веществ и энергии в клетке. Совокупность реакций расщепления, пластический и энергетический обмены (реакции ассимиляции и диссимиляции) в клетке.

    реферат [31,6 K], добавлен 07.10.2009

  • Обмен веществ и энергии как совокупность физических, химических и физиологических процессов превращения веществ и энергии в организме человека. Знакомство с основными составляющими рационального питания: энергетический баланс, сбалансированность.

    презентация [463,5 K], добавлен 13.02.2015

  • Энергетический обмен как часть общего метаболизма клетки, совокупность реакций окисления органических веществ и синтеза богатых энергией молекул АТФ. Основные этапы энергетического обмена: подготовительный, гликолиз, кислородный (клеточное дыхание).

    презентация [363,9 K], добавлен 03.12.2011

  • Уровни организации живой материи. Клеточная мембрана, поверхностный аппарат клетки, ее части и их назначение. Химический состав клетки (белки, их структура и функции). Обмен веществ в клетке, фотосинтез, хемосинтез. Мейоз и митоз – основные различия.

    контрольная работа [58,3 K], добавлен 19.05.2010

  • Превращения веществ и энергии, происходящие в живых организмах и лежащие в основе их жизнедеятельности. Назначение обмена веществ и энергии, взаимосвязь анаболических и катаболических процессов. Энергетическая ценность углеводов и жиров в организме.

    реферат [21,9 K], добавлен 28.05.2010

  • Изучение проблемы обмена веществ как основной функции организма человека в научной литературе. Обмен углеводов как совокупность процессов их превращения в организме, его фазы. Источник образования и поступления витаминов. Регуляция обмена веществ.

    курсовая работа [415,4 K], добавлен 01.02.2014

  • Сущность понятия "биоэнергетика". Существенные признаки живого. Внешний и промежуточный обмен веществ и энергии. Метаболизм: понятие, функции. Три стадии катаболических превращений основных питательных веществ в клетке. Отличия катаболизма от анаболизма.

    презентация [3,9 M], добавлен 05.01.2014

  • Метаболизм (обмен веществ и энергии) как совокупность химических реакций, протекающих в клетках и в целостном организме, заключающихся в синтезе сложных молекул и новой протоплазмы (анаболизм) и в распаде молекул с освобождением энергии (катаболизм).

    реферат [221,8 K], добавлен 27.01.2010

  • Понятие обмена веществ, анаболизма и катаболизма. Виды обменных процессов в теле человека. Потребность организма в витаминах и пищевых волокнах. Обмен энергии в состоянии покоя и при условии мышечной работы. Регуляция обменных процессов веществ и энергии.

    презентация [18,7 K], добавлен 05.03.2015

  • Роль обмена веществ в обеспечении пластических и энергетических потребностей организма. Особенности теплопродукции и теплоотдачи. Обмен веществ и энергии при различных уровнях функциональной активности организма. Температура тела человека и ее регуляция.

    реферат [22,5 K], добавлен 09.09.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.