Усовершенствование адресной доставки БАВ к отдельным органам и клеткам-мишеням

Общая характеристика процесса (сущность, область применения, основные виды продуктов). Основные реагенты и их подготовка, механизм процесса. Современные методы совершенствования технологии. Основные подходы химико-технологической реализации процесса.

Рубрика Химия
Вид курсовая работа
Язык русский
Дата добавления 12.03.2010
Размер файла 357,5 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

9.5 Измерение протеолитической активности ХТР

Для изучения протеолитической активности иммобилизованного ХТР в водной среде (0,08 М ТРИС-буфер, рН 7,8, содержащий 0,1М CaCl2), использовали следующую методику. 40 мкл раствора ХТР или суспензии микросфер с ХТР добавляли в кювету на 1,5 мл, содержащую 0,15 мл 0,08 М ТРИС-буфера, рН 7,8 и 0,14 мл 0,00107 М BTEE в 50% растворе метанола (63 мл абсолютного метанола в 50 мл воды). Прирост оптической плотности регистрировали спектрофотометрически при длине волны 256 нм в течение 5 минут. При этом каждую минуту кювету встряхивали, чтобы избежать осаждения микросфер с включенным белком. Таким образом, прирост оптической плотности был обусловлен накоплением продукта ферментативного гидролиза.

9.6 Получение микрокапсул с ХТР на основе CaCO3-частиц

Полиэлектролитные микрокапсулы были получены ступенчатой адсорбцией противоположно заряженных Alg и PLL на твердых CaCO3-частицах. Впервые микрочастицы из карбоната кальция были получены и применены в качестве деградируемой матрицы для получения ПЭ микрочастиц в работе. Непосредственное взаимодействие эквимолярных растворов карбоната натрия и хлорида кальция при перемешивании приводит к кристаллизации малорастворимой соли CaCO3. Образующиеся в результате микрочастицы имеют сферическую форму и размер несколько микрон (микрометров?). Микрофотографии таких частиц, полученные с помощью сканирующего электронного микроскопа, представлены на рисунке 1. На фотографии можно видеть внутреннюю каналоподобную структуру частиц. Формирование такого рода архитектуры вызвано специфическим процессом роста частиц. Для получения микросфер (Alg/PLL)3, в качестве агента для растворения CaCO3 матрицы, была использована ЭДТА (рН 7,0). Использование CaCO3 частиц позволяет проводить процесс микрокапсулирования в физиологически оптимальных значениях рН, что особенно важно для иммобилизации БАВ, в частности - белков. Первым ПЭ наносился Alg в силу отрицательного заряда CaCO3 микрочастиц (о-потенциал поверхности составил -12,2±2,5 мВ). В процессе последовательной адсорбции макромолекулы ПЭ проникают в поры CaCO3 микрочастиц, так как размер пор (30-90 нм) в несколько раз больше размера макромолекул ПЭ. Таким образом, во внутренних каналах микрочастиц происходит формирование интерполиэлектролитного комплекса. После растворения CaCO3 матрицы ПЭ комплекс остается стабильным. Размер микросфер в растворе соответствовал размеру исходной матрицы - CaCO3 микрочастиц. Данный факт подтверждается наблюдениями за микрочастицами в процессе удаления карбонатной матрицы (оптическая микроскопия). На рисунке 2 представлены фотографии CaCO3 микрочастиц (А) и ПЭ микросфер, полученных на их основе (Б). Сохранение микросферами формы и размера, использованных для их получения матриц, говорит о придании полиэлектролитным «каркасом» существенной прочности ПЭ микросферам, в том числе по отношению к осмотическому давлению, возникающему при растворении твердой CaCO3 матрицы. Это особенно ценно, так как «осмотический шок» при растворении матрицы, покрытой оболочкой из ПЭ комплекса, вызывает увеличение размера образующихся микросфер, состоящих из ПЭ оболочки, или даже деформацию и разрушение таких ПЭ микрокапсул. Известно, что адсорбция белков из раствора на твердой поверхности является результатом нескольких основных процессов: а) электростатического взаимодействия между белком и поверхностью; б) взаимодействия между молекулами белков; в) изменения структуры белка. Таким образом, контакт белка с твердой поверхностью определяется как межмолекулярными, так и внутримолекулярными силами. В процессе получения микрокапсул наносилось по 3 слоя каждого ПЭ, исходная концентрация ХТР составляла 5 мг/мл и 10 мг/мл. Анализ полученных результатов показал, что процент сорбции на 100 мг частиц при начальной концентрации 5 мг/мл составил 80% (4 мг/мл ХТР), 10 мг/мл - 41% (4,1 мг/мл ХТР). Включение ХТР в CaCO3 микрочастицы проводили методом адсорбции в порах (АП). О равномерном распределении фермента

9.7 Изучение активности иммобилизованного ХТР и биодеградации микрокапсул

Иммобилизованный в ПЭ микрокапсулы, ХТР практически полностью сохраняет свою активность (86±9% по сравнению с нативным ферментом).Данные, полученные в результате сравнения гидролиза субстрата нативным ХТР и ХТР, включенным в ПЭ микрокапсулы, представлены в виде графика на рисунке 3. Изменение оптической плотности во времени обусловлено накоплением продукта ферментативного гидролиза. Полученные данные позволяют сделать следующие выводы: а) в процессе гидролиза отсутствуют стерические затруднения при диффузии субстрата через оболочку к молекулам иммобилизованного ХТР; б) равномерное распределение фермента в частицах при адсорбции, способствует практически полному гидролизу субстрата молекулами ХТР; в) при иммобилизации не происходит изменения конформации активного центра молекул фермента. Комлексообразование ферментов с ПЭ приводит к снижению активность или не оказывает влияния, которое зависит от природы реагирующих веществ и условий. Так, авторы работы по иммобилизации лактатдегидрогеназы в сетку ПЭ комплекса, отмечают семикратное падение активности иммобилизованного фермента. В нашем случае, включение белков в ПЭ микрокапсулы, способствует сохранению их активности и получению стабильных при хранении препаратов. С целью изучения проницаемости оболочек к действию протеолитических ферментов было исследовано влияние растворов ТР на ПЭ микрокапсулы. Как известно, ТР входит в состав секрета поджелудочной железы и является эндопептидазой, т.е. он расщепляет пептидные связи, образованные основными аминокислотами, такими, как лизин. Были использованы следующие концентрации ТР: 0,05%, 0,1% и 0,2%. Результаты показали, что микрокапсулы растворились в течение часа (оптическая микроскопия). С целью доказательства сохранения активности ХТР, после биодеградации микрокапсул был проведен гидролиз субстрата полученными растворами. Спектрофотометрическое изучение показало, что ХТР сохранил активность после разрушения ТР. Результаты этого исследования представлены на рисунке 4. Прирост оптической плотности, обусловленный накоплением продукта ферментативного гидролиза, свидетельствует о сохранении активности ХТР после разрушения ПЭ микрокапсул.

Заключение

Проведенные эксперименты позволяют сделать вывод, что в качестве исходной матрицы для получения ПЭ микрокапсул, содержащих ХТР, наиболее приемлемыми являются CaCO3 микрочастицы. Использование последних позволяет проводить процесс микрокапсулирования в физиологически оптимальных значениях рН на всех этапах. Это открывает большие возможности для иммобилизации широкого спектра белков с сохранением их активности. Кроме того, при растворении твердой CaCO3 матрицы, микросферы сохраняют размер и форму, что свидетельствует об их существенной прочности, в том числе по отношению к осмотическому давлению. Полученные микрочастицы с узким распределением по размерам (3-5 мкм) имеют пористую структуру, что позволяет иммобилизовать на их основе различные белки методоми физической сорбции. Высокое содержание по белку (80% в случае исходной концентрации ХТР 5 мг/мл), а также биосовместимость и биодеградация полученных ПЭ микросфер, позволяют использовать их в качестве систем доставки включенного препарата.

Экспериментальные данные, полученные при изучении активности иммобилизованного ХТР, свидетельствуют об отсутствии стерических затруднений при диффузии субстрата к молекулам фермента, равномерном распределении белка в частицах при адсорбции, сохранении конформации молекул фермента при иммобилизации. Результаты позволяют сделать вывод о сохранении активности и получении стабильных при хранении препаратов БАВ, включенных в ПЭ микрокапсулы.

Разрушение микрокапсул, полученных последовательной адсорбцией PLL и Alg на CaCO3 микрочастицах, под действием фермента поджелудочной железы - ТР, открывает широкие возможности использования полученных препаратов в медицинской биотехнологии. Использование природных и биодеградируемых ПЭ позволит создать микрокапсулы, обладающие такими свойствами, как избирательная проницаемость, контролируемая доставка и высвобождение заключенных в них БАВ, биодеградация, биосовместимость, что позволит расширить тем самым область их потенциального применения.

Полученные результаты будут использованы в дальнейшей работе по исследованию модели поведения микрокапсул при переходе через биологические барьеры для обеспечения адресной доставки БАВ к отдельным органам и клеткам-мишеням.

Литература

1. Бобрешова М, Сухоруков Г.Б., Сабурова Е.А., Елфимова Л.И., Шабарчина Л.И., Сухоруков Б.И. (1999) Лактатдегидрогеназа в интерполиэлектролитном комплексе. Функция и стабильность, Биофизика, 44(5): 813-820.

2. Кабанов В.А., Зезин А.Б, (2004) Водорастворимые нестехиометричные полиэлектролитные комплексы - новый класс синтетических полиэлектролитов, Итоги науки и техники, М.,. Сер. Органическая химия, 5: 131-189.

3. Кабанов В.А, (1999) Физико-химические основы и перспективы применения растворимых интерполиэлектролитных комплексов, Высокомолекулярные соединения, 36(2): 183-197.

4. Кольиан Я., Рем К.-Г., (1998) Наглядная биохимия, М., Мир, 262-263.

5. Основные правила безопасной работы в химической лаборатории. М.: “Химия”, 2004.

6. Охрана труда и техника безопасности в химической промышленности. Сборник новых нормативных материалов. М.: “Химия”, 2004.

7. Инструкция по технике безопасности на кафедре агрохимии МСХА.

8. Романова Э.П., Куракова Л.И., Ермаков Ю.Г. Природные ресурсы мира. М., 2003.

9. Колдин Е., Быстрые реакции в растворе, пер. с англ., М., 2002;

10. Проблемы теории и практики исследований в области катализа, под ред. В. А. Ройтера, К., 2003, гл. 3;

11. Уэйт Н., Химическая кинетика, пер. с англ., М., 2004.

12. Темкин О.Н. Промышленный катализ и экологические безопасные технологии // Cоросовский Образовательный Журнал. 2001. №3. С. 42-50.

13. Швец В.Ф. Совершенствование химических производств // Cоросовский Образовательный Журнал. 2003. №6. С. 49-55.


Подобные документы

  • Расчет и конструктивное оформление реакционного узла. Основные стадии химико-технологического процесса. Проблемы выбора и расчета оборудования реакторов и устройств. Уровни химического процесса, протекающего в реакторе, предъявляемые к ним требования.

    презентация [2,9 M], добавлен 17.03.2014

  • Основные маскирующие лиганды. Классификация и характеристика маскирующих реагентов. Основные маскирующие реагенты. Органические реагенты с донорными атомами кислорода. Окислительно-восстановительное маскирование. Галогенсодержащие маскирующие реагенты.

    курсовая работа [116,7 K], добавлен 16.10.2011

  • Характеристика химического продукта и методы его получения. Физико-химические основы процесса, описание технологической схемы, отходы производства и проблемы их обезвреживания. Перспективы совершенствования процесса получения химического продукта.

    курсовая работа [2,1 M], добавлен 20.06.2012

  • Общие сведения о процессе экстракционного разделения, область его применения. Основные схемы проведения экстракционных процессов. Равновесие в системе жидкость-жидкость. Основные группы промышленных экстрагентов. Материальный баланс процесса экстракции.

    контрольная работа [165,2 K], добавлен 15.10.2011

  • Сущность технологического процесса промышленного синтеза аммиака на установке 600 т/сутки. Анализ зависимости выхода аммиака от температуры, давления и времени контактирования газовой смеси. Оптимизация химико-технологического процесса синтеза аммиака.

    курсовая работа [963,0 K], добавлен 24.10.2011

  • Характеристика калийных руд. Главные особенности флотационного процесса. Гипотеза избирательной адсорбции кислорода воздуха, электростатическая, смачивания или краевого угла. Адсорбционная гипотеза Белоглазова. Основные флотационные машины и реагенты.

    реферат [31,6 K], добавлен 24.06.2013

  • Процессы химической технологии. Разработка схемы химико-технологического процесса. Критерии оптимизации. Топологический метод и ХТС. Понятия и определения теории графов. Параметры технологического режима элементов ХТС. Изучение стохастических процессов.

    лекция [46,2 K], добавлен 18.02.2009

  • Понятие, общая характеристика и предназначение процесса каталитического риформинга. Химические основы процесса риформинга: превращение алканов, циклоалканов, аренов. Катализаторы и макрокинетика процесса. Промышленные установки каталитического процесса.

    курсовая работа [1,2 M], добавлен 13.10.2011

  • Общая характеристика хлора как химического элемента, его хранение, транспортировка хлора и стандарты качества. Основные примеры применения и использования хлора. Электролиз: понятие и сущность процесса. Техника безопасности в хлорном производстве.

    реферат [617,6 K], добавлен 10.02.2015

  • Создание и описание технологической схемы получения сульфида натрия восстановлением сульфата. Составление материального баланса процесса. Расчет технико-экономических показателей процесса. Теоретический и фактический расходные коэффициенты по сырью.

    контрольная работа [150,9 K], добавлен 13.01.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.