Теоретические основы химической технологии

Значение химической промышленности для технического прогресса и удовлетворения потребностей населения. Направления развития химической техники и технологии. Проблемы жизнеобеспечения и химическая промышленность. Качество и себестоимость продукции.

Рубрика Химия
Вид лекция
Язык русский
Дата добавления 05.04.2009
Размер файла 53,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Обычно равновесный выход определяют по известной константе равновесия, с которой он связан в каждом конкретном случае определенным соотношением.

Выход продукта можно изменить, сместив равновесие реакции в обратимых процессах, воздействием таких факторов, как температура, давление, концентрация.

В соответствии с принципом Ле Шателье равновесная степень превращения увеличивается с повышением давления в ходе простых реакций, а др. случае объем реакционной смеси не меняется и выход продукта не зависит от давления.

Влияние температуры на равновесный выход, так же как и на константу равновесия, определяется знаком теплового эффекта реакции.

Для более полной оценки обратимых процессов используют так называемый выход от теоретического (выход от равновесного), равный отношению действительно полученного продукта со к количеству, которое получилось бы в состоянии равновесия.

Степень превращения и выход продукта зависят от многих параметров, т.е. являются нелинейной функцией ряда переменных x=f(T, P, т, с а, Св, Си,...). Поэтому их применяют обычно лишь для сравнительной оценки нескольких аналогичных производств, осуществляемых, например, по разным технологическим схемам или с применением катализаторов различной активности. Влияние одной переменной, например Т, экспериментально определяют при постоянстве других действующих параметров.

Для количественной оценки интенсивности работы различных аппаратов и для технологического расчета производственных процессов лучше пользоваться константой скорости процесса k, которая в гетерогенных процессах называется также коэффициентом массопередачи. Константа скорости процесса в отличие от степени превращения не зависят от времени и от концентрации реагирующих веществ, и ее зависимость от температуры определяется по уравнению Аррениуса.

СПОСОБЫ УВЕЛИЧЕНИЯ СКОРОСТИ ПРОЦЕССА

Одной из основных задач технологии является использование всех путей для увеличения скорости технологического процесса и соответствующего повышения производительности аппаратуры. Анализ направлений интенсификации химико-технологических процессов производится при помощи основных формул скорости процесса, согласно которым для повышения скорости процесса следует найти способы увеличения определяющих величин Ac, k и F(v). Увеличение движущей силы процесса Дс может быть достигнуто: а) возрастанием концентраций взаимодействующих компонентов в исходных материалах (сырье); б) повышением давления; в) регулированием температуры процесса; г) отводом продуктов реакции из реакционного объема с целью сдвига равновесия в сторону продукта. Движущая сила химических реакций, процессов абсорбции, адсорбции и конденсации выражается через разности действительных с и равновесных с* концентраций реагирующих веществ (с--с*). Поэтому увеличение движущей силы процесса может осуществляться или увеличением с, или уменьшением с*, или одновременным соответствующим изменением обеих величин.

Увеличение концентрации взаимодействующих компонентов в исходном сырье повышает с и пропорционально увеличивает скорость процесса. Способ увеличения концентрации взаимодействующих компонентов в исходном сырье зависит от агрегатного состояния материала. Увеличение содержания полезного составляющего в твердом сырье называется обогащением, а в жидком и газообразном -- концентрированием. Увеличение концентрации взаимодействующих веществ -- это один из самых распространенных приемов для интенсификации процессов.

Повышение давления влияет на скорость процесса (скорость достижения равновесного состояния обратимых процессов) и состояние равновесия. Давление сильно влияет на скорость процессов, идущих в газовой фазе или же при взаимодействии газов с жидкостями и твердыми телами. В гомогенных процессах, протекающих в газовой фазе или в гетерогенных с участием газообразных компонентов, повышение давления уменьшает объем газовой фазы и соответственно увеличивает концентрации взаимодействующих веществ. Таким образом, повышение давления равносильно росту концентрации реагентов. Влияние давления определяется кинетическими уравнениями.

Таким образом, скорость реакции взаимодействия газовых ком-понентов пропорциональна давлению в степени, равной порядку реакции. Давление наиболее сильно интенсифицирует реакции высокого порядка. Однако рост давления может привести к изменению порядка реакции и уменьшению константы скорости процесса k.

В промышленности широко применяют повышенное давление для ускорения абсорбции. Для процессов десорбции газов и испарения жидкостей ускорение процесса и повышение выхода достигается снижением давления, т. е. применением вакуума.

Значения равновесных парциальных давлений (концентраций) компонентов рА* и рв* рассчитываются для заданного состава газовой смеси по известным константам равновесия.

Для обратимых газовых реакций, протекающих с уменьшением объема, скорость реакции и выход, продукта будут возрастать с повышением давления за счет увеличения действительных концентраций (парциальных давлений) компонентов р\ и рв и понижения равновесных парциальных давлений /?л* и рв*, т.е. сдвига равновесия в сторону продукта. Выход продукта по такой реакции непрерывно увеличивается при повышении давления. Однако градиент увеличения выхода с повышением давления непрерывно снижается, поэтому, слишком высокие давления применять невыгодно, особенно в тех случаях, когда газовая смесь содержит значительные количества инертных примесей.

Рациональное давление колеблется для различных процессов от одной десятой до нескольких десятков мегапаскалей (от одной до нескольких сотен атмосфер). Многие важные производственные процессы, такие, как синтез аммиака, метанола, производство бензина гидрированием тяжелого топлива и ряд других реакций газовых компонентов, которые проходят с уменьшением объема, осуществлены в промышленности только благодаря приме-Пению высоких давлений (свыше 10 МПа).

Для обратимых газовых реакций, идущих с увеличением объема, давление сказывается положительно вдали от состояния равновесия за счет роста действительных парциальных давлений исходных компонентов рА и рв. Однако при приближении к равновесию выход продукта проходит через максимум и затем снижается.

В промышленности применение повышенного давления при проведении газовых реакций, идущих с увеличением объема, как правило, связано с теми выгодами, которые получают от использования давления в предыдущих или последующих операциях производства. Например, конверсию метана с водяным паром или окисление аммиака экономично проводить под давлением, так как оно благоприятно влияет на последующие процессы технологической системы.

Для процессов с участием газовой фазы применяются давления порядка одной и нескольких десятков мегапаскалей (десятков и сотен атмосфер). Для процессов полимеризации и других синтезов в жидкой фазе эффективны давления в сотни МПа.

В твердофазных процессах ввиду незначительной сжимаемости твердых тел эффективными являются лишь сверхвысокие давления, вызывающие перестройку электронных оболочек, деформацию кристаллов и сдвиг фазового равновесия. Так, из углерода, растворенного в металлических расплавах при сверхвысоких давлениях до 10 тыс. МПа и температурах до 2400°С, производят искусственные алмазы.

3. Регулирование температуры процесса как средство повышения движущей силы применяется главным образом в сорбционных и десорбционных процессах. Понижая температуру жидкой фазы, уменьшают парциальное давление паров газового (парового) компонента над ней, и со-ответственно увеличивают движущую силу Дс и общую скорость процесса.

4. Отвод продуктов реакции из реакционной зоны увеличивает суммарную скорость обратимой реакции за счет уменьшения или увеличивает движущую силу гетерогенного процессов.

В химических реакциях повышение температуры увеличивает скорость благодаря росту константы скорости к.

Из газовой смеси продукт реакции может отводиться конденсацией, избирательной абсорбцией или адсорбцией. Во многих производствах для этого газовую смесь выводят из реакционного аппарата, а затем после отделения продукта (конденсации, абсорбции) вновь вводят в аппарат - получаются замкнутые (циклические, круговые) процессы, например синтез аммиака, синтезы спиртов и т.п. В этих случаях реакция в газовой фазе происходит стадиями. В каждой стадии концентрация продукта с* возрастает до максимально допустимой величины, а затем снижается до величины, близкой к нулю при абсорбции (в меньшей мере при конденсации), затем цикл может повторяться многократно. Из жидкий смеси продукт реакции отводится в зависимости от его свойств осаждением в виде кристаллов, десорбцией (испарением) в виде паров или адсорбцией на твердом поглотителе. Осаждение кристаллов с последующим возвратом маточного раствора в процесс часто применяется в технологии минеральных солей, например в производстве хлорида калия, сульфата аммония и в других производствах. Десорбция паров растворенного вещества используется для повышения емкости (Ас) растворителя при очистке газов.

Увеличение константы скорости процесса может достигаться повышением температуры взаимодействующей системы; применением катализаторов; усилением перемешивания реагирующих масс (турбулизацией системы).

1. Повышение температуры приводит к сильному увеличению констант скоростей реакций и в меньшей степени к увеличению коэффициентов диффузии. В результате суммарная скорость процесса увеличивается при повышении температуры до некоторого предела, при котором большое значение приобретают скорости обратной или побочных реакций, точнее увеличиваются константы скорости. Влияние температуры реагирующих масс на константу скорости реакции для большинства процессов, идущих в кинетической области, определяется формулой Аррениуса.

Согласно правилу Вант-Гоффа, температурный коэффициент обычно равен 2-4, т.е. при повышении температуры на 10° скорость реакции увеличивается в 2-4 раза. Однако это правило приближенно применимо лишь в области средних температур (10-200°С) при энергиях активации порядка 60000-120000 Дж/моль. Температурный коэффициент у уменьшается с понижением энергии активации и повышением температуры, приближаясь к единице в области высоких температур.

Влияние температуры на скорость процессов в диффузионной области меньше, чем в кинетической.

Диффузия в жидкостях протекает еще медленнее, чем в газах, вследствие высокой вязкости жидкостей. Значения коэффициента диффузии в растворах в 104-105 раз меньше, чем в газах..

Наиболее медленна диффузия в твердой среде. При обычной температуре коэффициент диффузии для твердых веществ имеет порядок см2/год - см2/век. Повышение температуры, увеличивая скорость и амплитуду колебания атомов в кристаллах, резко повышает скорость диффузии. Так, при 900-1000°С диффузия углерода в железо при термической обработке металлов происходит за несколько часов.

Вследствие большего температурного коэффициента скорости реакции, чем диффузии, некоторые химико-технологические процессы (например, газификация топлива, обжиг сульфидных руд) при повышении температуры переходят из кинетической области в диффузионную. Однако диффузия не влияет на равновесие химических процессов.

Как известно, скорость прямой реакции должна все время увеличиваться при повышении температуры. Однако в производственной практике имеется много причин, ограничивающих возможность интенсификации процесса повышением температуры. Для всех обратимых экзотермических процессов, протекающих с выделением теплоты, с повыше-нием температуры уменьшается константа равновесия, соответственно снижается равновесный выход продукта и при некотором повышении температуры кинетика процесса вступает в противоречие с термодинамикой его; несмотря на повышение скорости прямого процесса, выход ограничивается равновесием. При низких температурах действительный выход определяется скоростью прямого процесса и потому растет с повышением температуры; при высоких температурах скорость обратного процесса увеличивается сильнее, чем прямого процесса; выход, ограниченный равновесием, снижается с ростом температуры. Следовательно, беспредельное повышение температуры нецелесообразно.

В ряде процессов, особенно в технологии органических веществ, повышение температуры ограничивается возникновением побочных реакций с большим температурным коэффициентом, чем в основной реакции. При этом выход продукта может сильно снижаться еще до приближения к состоянию равновесия. Такой характер имеют кривые синтеза метанола, высших спиртов и многих других продуктов органического синтеза.

Сильное повышение температуры во многих производственных процессах оказывается вредным, так как приводит к удалению реагирующих веществ из зоны реакции, например за счет десорбции компонентов, из жидкой реакционной среды, или к уменьшению поверхности соприкосновения газов с твердыми веществами вследствие спекания в агломераты твердых зернистых материалов. Повышение температуры часто ограничивается термостойкостью конструктивных материалов, из которых изготовлены реакционные аппараты, а также затратами энергии на повышение температуры, особенно в эндотермических процессах. Таким образом, регулирование температуры необходимо для увеличения константы скорости к и повышения движущей силы процесса Дс. Оптимальные температуры процессов зависят от природы реагентов и концентрации их, степени превращения исходных веществ в продукты реакции, давления, по-верхности соприкосновения реагирующих фаз и интенсивности их перемешивания, наконец, для многих процессов от активности применяемых катализаторов.

2. Применение катализаторов сильно повышает константу скорости реакции, не вызывая изменения движущей силы процесса Ас.

Катализаторы ускоряют химические реакции вследствие замены одностадийного процесса, требующего большой энергии активации Е, двух- или более стадийным процессом, в каждой последовательной стадии которого требуется энергия активации, значительно меньшая, чем энергия активации одностадийного процесса.

Энергию активации каталитических реакций можно вычислить из уравнения Аррениуса. Однако для твердых катализаторов получается не истинная, а кажущаяся энергия активации, которая больше истинной на величину теплоты адсорбции реагирующих веществ (вещества А) на катализаторе. Катализаторы не ускоряют диффузионные процессы, поэтому их применение целесообразно только для процессов, идущих в кинетической области. Применение катализаторов во многих производствах ог-раничивается их нестойкостью в условиях необходимого техноло-гического режима, т.е. потерей активности при повышенных или пониженных температурах, а также вследствие действия приме-сей, содержащихся в исходных материалах.

3. Перемешивание увеличивает коэффициент массопередачи или константу скорости процесса вследствие замены молекулярной диффузии конвективной, т.е. снижения диффузионных сопротивлений, препятствующих взаимодействию компонентов. Следовательно, усиление перемешивания взаимодействующих веществ. Целесообразно применять для процессов, идущих в диффузионной области до тех пор, пока общая константа скорости процесса k не перестанет зависеть от коэффициентов переноса D, т. е. вплоть до перехода процесса из диффузнойной области в кинетическую.

Дальнейшее усиление перемешивания в проточных аппаратах снижает движущую силу процесса и скорость реакции.

Из трех рассмотренных направлений увеличения константы скорости процесса используют, прежде всего, то, которое ускоряет наиболее медленную стадию процесса.

Увеличение поверхности соприкосновения фаз в гетерогенных системах производится различно в зависимости от вида системы: Г-Ж, Г-Т, Ж-Т, Ж-Ж (несмешивающиеся) и Т-Т, а также от необходимого режима процесса, т.е. применяемых давлений, температур, концентраций реагентов, катализаторов и т.п. Способ создания поверхности соприкосновения опре-деляет конструкцию аппарата для данной агрегатной системы.

Во всех случаях стремятся увеличить поверхность более тяжелой (плотной) фазы - твердой в системах Г-Т, Ж-Т и жидкой в системе Г-Ж; более же легкая фаза во всех типах аппаратов омывает поверхность тяжелой фазы.

ТЕХНОЛОГИЧЕСКИЕ РАСЧЕТЫ

Регулируя параметры технологического режима, инженер-технолог управляет действующим производством, добиваясь наиболее рационального использования сырья, максимального выхода готового продукта и наибольшей производительности реакционной аппаратуры.

В еще большей степени эти знания необходимы при организации новых химических производств, которые разрабатываются или с использованием опыта действующих производств, или же в результате научных исследований. При организации нового производства необходимо произвести расчеты, которые в основном можно подразделить на технологические, выполняемые инженерами-технологами, конструктивные, которые выполняют инженеры-конструкторы, и технико-экономические, разрабатываемые инженерами-экономистами. Но так как любой химико-технологический процесс связан с потреблением электрической энергии, воды, пара, воздуха на сантехнические нужды (например, общеобменная вентиляция) и, кроме того, любое производство размещается в соответствующих зданиях и сооружениях, то наряду с перечисленными специальностями в проектировании производств участвуют инженеры-электрики, сантехники, строители и др. Все эти расчеты с соответствующими чертежами и схемами составляют проект нового технологического производства.

Проектирование любого производства, как правило, осуществляется в две стадии. На первой стадии выполняется технико-экономический расчет -- ТЭР или, в более сложных проектах, технико-экономическое обоснование -- ТЭО. При этом выбираются и обосновываются место строительства и метод производства, источники и расходы сырья и энергоресурсов, разрабатывается принципиальная технологическая схема, производится расчет основных процессов и аппаратов, определяются производственные штаты, строительные объемы и себестоимость готовой продукции. На этой стадии проектирования основу составляют технологические и технико-экономические расчеты. Завершающим этапом первой стадии проектирования является расчет экономики процесса. Если в результате расчета выяснится, что процесс оказался неэкономичным, проектирование начинают, сначала отыскивая способы улучшения экономических показателей.

После всестороннего рассмотрения и утверждения в соответствующих инстанциях приступают ко второй, завершающей стадии проектирования. Вторая стадия - рабочие чертеж и - выполняется детально по всем разделам, и проектная документация поступает непосредственно на строительную площадку, где осуществляется строительство зданий и сооружений, а также монтаж технологического оборудования, коммуникационных линий и средств автоматизации.

Технологические расчеты, как правило, начинаются с выбора метода производства, поскольку в задании на проектирование обычно указывается общая мощность будущего завода или цеха. При выборе метода производства проводится сравнительная оценка существующих методов с точки зрения качества получаемой продукции, расхода сырья и энергии, уровня механизации и автоматизации процесса, санитарно-технических условий труда, наличия побочных продуктов и отходов производства. Решающую роль в окончательном выборе того или иного метода играет эко-номика процесса. Если технологический процесс организован по непрерывной схеме так, что сырье расходуется достаточно полно, пет отходов производства, готовый продукт получается с большим выходом, все операции механизированы, а заданный режим поддерживается автоматически, то и экономические показатели этого процесса оказываются высокими. Поэтому технологи всегда стремятся к выбору именно такого совершенного метода производства. При этом широко используются новейшие достижения науки и техники. Выбор метода производства предполагает также и выбор основных параметров технологического режима.

После выбора метода производства технолог приступает к составлению технологической схемы, которая включает в себя все основные аппараты и коммуникации между ними, а также транспортные линии подачи сырья и готовой продукции. Технологическая схема составляется с учетом опыта работы аналогичных аппаратов на других производствах и последних достижений в области машино- и приборостроения. В основу нового производства всегда закладываются самые прогрессивные, интенсивные, высокопроизводительные аппараты, имеющие к тому же большой срок службы, простые в обслуживании и выполненные по возможности из легкодоступных, дешевых конструкционных материалов.

Составив технологическую схему производства и определив основные направления потоков сырья, полупродуктов или полуфабрикатов, а также готовой продукции, приступают к составлению материального и энергетического балансов.

Материальный и энергетический балансы. Составление материального и энергетического балансов производят при проектировании новых производств, а также для анализа работы существующих.

Материальный баланс -- отражает закон сохранения массы вещества:

во всякой замкнутой системе масса веществ, вступивших в реакцию, равна массе веществ, получившихся в результате реакции.

Применительно к материальному балансу любого технологического процесса это означает, что масса веществ, поступивших на технологическую операцию - приход, равна массе всех веществ, получившихся в результате ее, - расходу.

Материальный баланс - зеркало технологического процесса. Чем подробнее изучен процесс, тем более полно можно составить материальный баланс. Материальный баланс составляют по уравнению основной суммарной реакции с учетом параллельных и побочных реакций. Поскольку на практике приходится иметь дело не с чистыми веществами, а с сырьем сложного химического и механического состава, для составления материального баланса приходится учитывать массу всех компонентов. Для этого пользуются данными анализов.

Энергетический баланс составляют па основе закона сохранения энергии:

в замкнутой системе сумма всех видов энергии постоянна.

Обычно в химико-технологических процессах составляется тепловой баланс. Применительно к тепловому балансу закон сохранения энергии может быть сформулирован следующим образом:

приход теплоты в данном цикле производства должен быть точно равен расходу ее в этом же цикле.

При этом должна быть учтена вся теплота, подводимая в аппарат и выделяющаяся (поглощающаяся) в результате химической реакции или физического превращения; теплота, вносимая каждым компонентом, как входящим в процесс или аппарат, так и выходящим из него, а также теплообмен с окружающей средой.

Тепловой баланс, как и материальный, выражают в виде формул, таблиц и диаграмм.


Подобные документы

  • Предмет и история химической технологии. Процессы и аппараты - важнейший раздел химической технологии. Классификация основных производственных процессов по законам, управляющим их скоростью. Законы химической кинетики. Теория подобия и моделирования.

    презентация [103,9 K], добавлен 10.08.2013

  • Определение тематики задач дисциплины "Теоретические основы химической технологии", подбор и составление задач по выбранным темам. Основные трудности при решении задач по прикладной химии. Разработка и использование методики решения типовых задач.

    дипломная работа [224,3 K], добавлен 13.04.2009

  • Понятие и предмет изучения химической кинетики. Скорость химической реакции и факторы, влияющие на нее, методы измерения и значение для различных сфер промышленности. Катализаторы и ингибиторы, различие в их воздействии на химические реакции, применение.

    научная работа [93,4 K], добавлен 25.05.2009

  • Исследование возможности применения синтез–газа в виде альтернативного нефти сырья, его роль в современной химической технологии. Получение метанола, суммарная реакция образования. Продукты синтеза Фишера–Тропша. Механизм гидроформилирования олефинов.

    реферат [1,6 M], добавлен 27.02.2014

  • Процесс произведения нитробензола и составление материального баланса нитратора. Определение расхода реагентов и объёма реактора идеального смешения непрерывного действия при проведении реакции второго порядка. Расчет теплового эффекта химической реакции.

    контрольная работа [247,6 K], добавлен 02.02.2011

  • Химическая кинетика-наука о скоростях, механизмах химических превращений, о явлениях, сопровождающих эти превращения, о факторах, влияющих на них. Скорость, константа скорости, порядок и молекулярность химической реакции. Закон химической кинетики.

    реферат [94,9 K], добавлен 26.10.2008

  • Скорость химической реакции. Понятие про энергию активации. Факторы, влияющие на скорость химической реакции. Законы Бойля-Мариотта, Гей-Люссака, Шарля. Влияние температуры, давления и объема, природы реагирующих веществ на скорость химической реакции.

    курсовая работа [55,6 K], добавлен 29.10.2014

  • Тепловой эффект химической реакции или изменение энтальпии системы вследствие протекания химической реакции. Влияние внешних условий на химическое равновесие. Влияние давления, концентрации и температуры на положение равновесия. Типы химических связей.

    реферат [127,3 K], добавлен 13.01.2011

  • Изучение свойств воды и вариантов использования ее в химической промышленности. Суть промышленной водоподготовки - комплекса операций, обеспечивающих очистку воды - удаление вредных примесей, находящихся в молекулярно-растворенном, коллоидном состоянии.

    реферат [344,9 K], добавлен 07.06.2011

  • Основные понятия химической кинетики. Сущность закона действующих масс. Зависимость скорости химической реакции от концентрации веществ и температуры. Энергия активации, теория активных (эффективных) столкновений. Приближенное правило Вант-Гоффа.

    контрольная работа [41,1 K], добавлен 13.02.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.