Звуковые колебания в интенсификации химико-технологических процессов

Понятие о звуке. Звуковые волны в воздухе. Движение частиц при ее распространении. Сущность кавитации и магнитострикции. Методы изучения звукохимических реакций. Использование инфра- и ультразвука в качестве способа интенсификации химических процессов.

Рубрика Химия
Вид реферат
Язык русский
Дата добавления 24.05.2015
Размер файла 258,2 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Содержание

  • Введение
    • 1. Понятие о звуке. Звуковые волны
      • 1.1 Область изучения звуковых воздействий на химические процессы
      • 1.2 Методы звукохимии
    • 2. Использование инфразвука в качестве способа интенсификации процессов химической технологии
    • 3. Использование ультразвука в качестве способа интенсификации химических процессов
    • Заключение
    • Список использованных источников
    • Введение
    • Двадцать первый век - век био- и нанотехнологий, всеобщей информатизации, электроники, инфразвука и ультразвука. Ультразвук и инфразвук представляют собой волнообразно распространяющееся колебательное движение частиц среды и характеризуются рядом отличительных особенностей по сравнению с колебаниями слышимого диапазона. В ультразвуковом диапазоне частот сравнительно легко получить направленное излучение; ультразвуковые колебания хорошо поддаются фокусировке, в результате чего повышается интенсивность ультразвуковых колебаний в определенных зонах воздействия. При распространении в газах, жидкостях и твердых телах звуковые колебания порождают уникальные явления, многие из которых нашли практическое применение в различных областях науки и техники, появились десятки высокоэффективных, ресурсосберегающих звуковых технологий. В последние годы использование звуковых колебаний начинает играть все большую роль в промышленности и научных исследованиях. Успешно проведены теоретические и экспериментальные исследования в области ультразвуковой кавитации и акустических течений, позволившие разработать новые технологические процессы, протекающие при воздействии ультразвука в жидкой фазе.
    • В настоящее время формируется новое направление химии - звуковая химия, позволяющая ускорить многие химико-технологические процессы и получить новые вещества, наряду с теоретическими и экспериментальными исследованиями в области звукохимических реакций выполнено много практических работ. Развитие и применение звуковых технологий открывает в настоящее время новые перспективы в создании новых веществ и материалов, в придании известным материалам и средам новых свойств и поэтому требует понимания явлений и процессов, происходящих под действием ультразвука и инфразвука, возможностей новых технологий и перспектив их применения.
    • 1. Понятие о звуке. Звуковые волны

Звук -- физическое явление, представляющее собой распространение в виде упругих волн механических колебаний в твёрдой, жидкой или газообразной среде. В узком смысле под звуком имеют в виду эти колебания, рассматриваемые в связи с тем, как они воспринимаются органами чувств животных и человека.

Как и любая волна, звук характеризуется амплитудой и спектром частот. Обычный человек способен слышать звуковые колебания в диапазоне частот от 16--20 Гц до 15--20 кГц. Звук ниже диапазона слышимости человека называют инфразвуком; выше: до 1 ГГц, -- ультразвуком, от 1 ГГц -- гиперзвуком. Громкость звука сложным образом зависит от эффективного звукового давления, частоты и формы колебаний, а высота звука -- не только от частоты, но и от величины звукового давления [1].

Звуковые волны в воздухе -- чередующиеся области сжатия и разрежения. Звуковые волны могут служить примером колебательного процесса. Всякое колебание связано с нарушением равновесного состояния системы и выражается в отклонении её характеристик от равновесных значений с последующим возвращением к исходному значению. Для звуковых колебаний такой характеристикой является давление в точке среды, а её отклонение -- звуковым давлением [5].

Если произвести резкое смещение частиц упругой среды в одном месте, например, с помощью поршня, то в этом месте увеличится давление. Благодаря упругим связям частиц давление передаётся на соседние частицы, которые, в свою очередь, воздействуют на следующие, и область повышенного давления как бы перемещается в упругой среде. За областью повышенного давления следует область пониженного давления, и, таким образом, образуется ряд чередующихся областей сжатия и разрежения, распространяющихся в среде в виде волны. Каждая частица упругой среды в этом случае будет совершать колебательные движения.

а)

б)

Рисунок 1 - Движение частиц при распространении волны а) движение частиц среды при распространении продольной волны; б) движение частиц среды при распространении поперечной волны.

Рисунок 2 - Характеристики колебательного процесса

В жидких и газообразных средах, где отсутствуют значительные колебания плотности, акустические волны имеют продольный характер, то есть направление колебания частиц совпадает с направлением перемещения волны. В твёрдых телах, помимо продольных деформаций, возникают также упругие деформации сдвига, обусловливающие возбуждение поперечных (сдвиговых) волн; в этом случае частицы совершают колебания перпендикулярно направлению распространения волны. Скорость распространения продольных волн значительно больше скорости распространения сдвиговых волн [3].

1.1 Область изучения звуковых воздействий на химические процессы

Раздел химии, который изучает взаимодействие мощных акустических волн и возникающие при этом химические и физико-химические эффекты, называется звукохимией (сонохимией). Звукохимия исследует кинетику и механизм звукохимических реакций, происходящих в объёме звукового поля. К области звукохимии так же относятся некоторые физико-химические процессы в звуковом поле: сонолюминесценция, диспергирование вещества при действии звука, эмульгирование и другие коллоидно-химические процессы. Сонолюминесцемнция -- явление возникновения вспышки света при схлопывании кавитационных пузырьков, рождённых в жидкости мощной ультразвуковой волной. Типичный опыт по наблюдению сонолюминесценции выглядит следующим образом: в ёмкость с водой помещают резонатор и создают в ней стоячую сферическую ультразвуковую волну. При достаточной мощности ультразвука в самом центре резервуара появляется яркий точечный источник голубоватого света -- звук превращается в свет [6]. Основное внимание сонохимия уделяет исследованию химических реакций, возникающих под действием акустических колебаний -- звукохимическим реакциям.

Как правило, звукохимические процессы исследуют в ультразвуковом диапазоне (от 20 кГц до нескольких МГц). Звуковые колебания в килогерцовом диапазоне и инфразвуковой диапазон изучаются значительно реже.

Звукохимия исследует процессы кавитации. Кавитамция (от лат. cavita -- пустота) -- процесс парообразования и последующей конденсации пузырьков пара в потоке жидкости, сопровождающийся шумом и гидравлическими ударами, образование в жидкости полостей (кавитационных пузырьков, или каверн), заполненных паром самой жидкости, в которой возникает. Кавитация возникает в результате местного понижения давления в жидкости, которое может происходить либо при увеличении её скорости (гидродинамическая кавитация), либо при прохождении акустической волны большой интенсивности во время полупериода разрежения (акустическая кавитация), существуют и другие причины возникновения эффекта. Перемещаясь с потоком в область с более высоким давлением или во время полупериода сжатия, кавитационный пузырёк схлопывается, излучая при этом ударную волну.

1.2 Методы звукохимии

Для изучения звукохимических реакций применяют следующие методы: обратный пьезоэлектрический эффект и эффект магнитострикции для генерирования высокочастотных звуковых колебаний в жидкости, аналитическая химия для исследования продуктов звукохимических реакций, обратный пьезоэлектрический эффект -- возникновение механических деформаций под действием электрического поля (используется в акустических излучателях, в системах механических перемещений - активаторах).

Магнитостримкция -- явление, заключающееся в том, что при изменении состояния намагниченности тела его объём и линейные размеры изменяются (используют для генерации ультразвука и гиперзвука).

Инфразвумк -- звуковые волны, имеющие частоту ниже воспринимаемой человеческим ухом. Поскольку обычно человеческое ухо способно слышать звуки в диапазоне частот 16--20'000 Гц, за верхнюю границу частотного диапазона инфразвука обычно принимают 16 Гц. Нижняя же граница инфразвукового диапазона условно определена как 0,001 Гц.

Инфразвук обладает целым рядом особенностей, связанных с низкой частотой колебаний упругой среды: имеет гораздо большие амплитуды колебаний; гораздо дальше распространяется в воздухе, поскольку его поглощение в атмосфере незначительно; проявляет явление дифракции, вследствие чего он легко проникает в помещения и огибает преграды, задерживающие слышимые звуки; вызывает вибрацию крупных объектов вследствие резонанса [2].

волна ультразвук химический кавитация

2. Использование инфразвука в качестве способа интенсификации химико-технологических процессов

Физическое воздействие на химические реакции в данном случае осуществляется в инфразвуковых аппаратах, - устройствах, в которых для интенсификации технологических процессов в жидких средах используются низкочастотные акустические колебания (собственно инфразвуковые частотой до 20 Гц, звуковые частотой до 100 Гц). Колебания создаются непосредственно в обрабатываемой среде с помощью гибких излучателей различной конфигурации и формы или жестких металлических поршней, соединенных со стенками технологических емкостей через упругие элементы (напр., резиновые). Это дает возможность разгрузить от колебаний источника стенки инфразвукового аппарата, значительно уменьшает их вибрацию и уровень шума в производственных помещениях. В инфразвуковых аппаратах возбуждаются колебания с большими амплитудами (от единиц до десятков мм).

Однако малое поглощение инфразвука рабочей средой и возможность ее согласования с излучателем колебаний (подбор соответствующих параметров источника) и размерами аппаратов (для обработки заданных объемов жидкости) позволяют распространить возникающие при воздействии инфразвука нелинейные волновые эффекты на большие технологические объемы. Благодаря этому инфразвуковые аппараты принципиально отличаются от ультразвуковых, в которых жидкости обрабатываются в небольшом объеме.

В инфразвуковых аппаратах реализуются следующие физические эффекты (один или несколько одновременно): кавитация, высокоамплитудное знакопеременное и радиационное (звукового излучения) давления, знакопеременные потоки жидкости, акустические течения (звуковой ветер), дегазация жидкости и образование в ней множества газовых пузырьков и их равновесных слоев, сдвиг фаз колебаний между взвешенными частицами и жидкостью. Эти эффекты значительно ускоряют окислительно-восстановительные, электрохимические и другие реакции, интенсифицируют в 2-4 раза промышленные процессы перемешивания, фильтрования, растворения и диспергирования твердых материалов в жидкостях, разделения, классификации и обезвоживания суспензий, а также очистку деталей и механизмов и т.д.

Применение инфразвука позволяет в несколько раз снизить удельные энерго- и металлоемкость и габаритные размеры аппаратов, а также обрабатывать жидкости непосредственно в потоке при транспортировании их по трубопроводам, что исключает установку смесителей и других устройств [2].

Рисунок 3 - Инфразвуковой аппарат для перемешивания суспензий: 1 - мембранный излучатель колебаний; 2 - модулятор сжатого воздуха; 3 - загрузочное устройство; 4 - компрессор

Одна из наиболее распространенных областей применения инфразвука - перемешивание суспензий посредством, например, трубных инфразвуковых аппаратов. Такая машина состоит из одного или нескольких последовательно соединенных гидропневматических излучателей и загрузочного устройства.

3. Использование ультразвука в интенсификации химических процессов

Ультразвумк -- звуковые волны, имеющие частоту выше воспринимаемым человеческим ухом, обычно, под ультразвуком понимают частоты выше 20 000 Герц. Высокочастотные колебания, используемые в промышленности обычно создают с помощью пьезокерамических преобразователей. В тех случаях, когда основное значение имеет мощность ультразвуковых колебаний, используются механические источники ультразвука [7].

Воздействие ультразвука на химические и физико-химические процессы, протекающие в жидкости, включает: инициирование некоторых химических реакций, изменение скорости, а иногда и направления реакций, возникновение свечения жидкости (сонолюминесценция), создание в жидкости ударных волн, эмульгирование несмешивающихся жидкостей и коалесценцию (слияние частиц внутри подвижной среды или на поверхности тела) эмульсий, диспергирование (тонкое измельчение твёрдых тел или жидкостей) твердых тел и коагуляцию (объединение мелких диспергированных частиц в бомльшие по размеру агрегаты) твердых частиц в жидкости, дегазацию жидкости и т.д. Для осуществления технологических процессов используют ультразвуковые аппараты [2].

Влияние ультразвука на различные процессы связано с кавитацией (образованием в жидкости при прохождении акустической волны полостей (кавитационных пузырьков), заполненных газом, паром или их смесью) [4].

Химические реакции, возникающие в жидкости под действием ультразвука (звукохимические реакции), можно условно подразделить на: а) окислительно-восстановительные, реакции, протекающие в водных растворах между растворенными веществами и продуктами разложения молекул воды внутри кавитационного пузырька (H, ОН, , ), например:

(1)

б) Реакции между растворенными газами и веществами с высоким давлением пара, находящимися внутри кавитационного пузырька:

(2)

(3)

(4)

в) Цепные реакции, инициируемые не радикальными продуктами разложения воды, а каким-либо другим веществом, диссоциирующимся в кавитационном пузырьке, например, изомеризация малеиновой к-ты в фумаровую под действием Br, образующегося в результате звукохимической диссоциации .

г) Реакции с участием макромолекул. Для этих реакций важна не только кавитация и связанные с нею ударные волны и кумулятивные струи, но и механические силы, расщепляющие молекулы. Образующиеся при этом макрорадикалы в присутствии мономера способны инициировать полимеризацию.

д) Инициирование взрыва в жидких и твердых взрывчатых веществах.

е) Реакции в жидких неводных системах, например, пиролиз и окисление углеводородов, окисление альдегидов и спиртов, алкилирование ароматических соединений и др. [2].

Основная энергетическая характеристика звукохимических реакций - энергетический выход, который выражается числом молекул продукта, образовавшихся при затрате 100 эВ поглощенной энергии. Энергетический выход продуктов окислительно-восстановительных реакций обычно не превышает нескольких единиц, а для цепных реакций достигает нескольких тысяч.

Под действием ультразвука во многих реакциях возможно увеличение скорости в несколько раз (например, в реакциях гидрирования, изомеризации, окисления и др.), иногда одновременно возрастает и выход.

Воздействие ультразвука важно учитывать при разработке и проведении различных технологических процессов (напр., при воздействии на воду, в которой растворен воздух, образуются оксиды азота и ), для понимания процессов, сопровождающих поглощение звука в средах [2].

Заключение

В настоящее время звуковые колебания широко применяются в промышленности, являясь перспективным технологическим фактором, позволяющим при необходимости резко интенсифицировать производственные процессы.

Использование мощного ультразвука в технологических процессах получения и обработки материалов и веществ позволяет:

- снизить себестоимость процесса или продукта,

- получать новые продукты или повысить качество существующих,

- интенсифицировать традиционные технологические процессы или стимулировать реализацию новых,

- способствовать улучшению экологической ситуации за счёт снижения агрессивности технологических жидкостей.

Необходимо, однако, отметить, что ультразвук оказывает крайне неблагоприятное воздействие на живые организмы. Для того, чтобы уменьшить такие воздействия, ультразвуковые установки рекомендуется размещать в специальных помещениях, используя для проведения технологических процессов на них системы дистанционного управления. Большой эффект дает автоматизация этих установок [3].

Более экономичный способ защиты от воздействия ультразвука заключается в использовании звукоизолирующих кожухов, ко­торыми закрываются ультразвуковые установки, или экранов, располагающихся на пути распространения ультразвука. Эти экраны изготавливают из листовой стали или дюралюминия, пластмассы либо из специальной резины.

Список использованных источников

1. Маргулис M.А. Основы звукохимии (химические реакции в акустических полях); учеб. пособие для хим. и хим.-технолог. Специальностей вузов / М.А. Маргулис. M.: Высшая школа, 1984. 272 с

2. Susliсk K.S. Ultrasound. Its chemical, physical and biological effects. Ed.: VCH, N. Y., 336 р.

3. Кардашев Г.А. Физические методы интенсификации процессов химической технологии. М.: Химия, 1990, 208 с.

4. Звук

5. Люминисценция

6. Ультразвук

Размещено на Allbest.ru


Подобные документы

  • Процессы химической технологии. Разработка схемы химико-технологического процесса. Критерии оптимизации. Топологический метод и ХТС. Понятия и определения теории графов. Параметры технологического режима элементов ХТС. Изучение стохастических процессов.

    лекция [46,2 K], добавлен 18.02.2009

  • Теория химических процессов органического синтеза. Решение: при алкилировании бензола пропиленом в присутствии любых катализаторов происходит последовательное замещение атомов водорода с образованием смеси продуктов разной степени алкилирования.

    курсовая работа [586,5 K], добавлен 04.01.2009

  • Органический синтез как раздел химии, предмет и методы его изучения. Сущность процессов алкилирования и ацилирования, характерные реакции и принципы протекания. Описание реакций конденсации. Характеристика, значение реакций нитрования, галогенирования.

    лекция [2,3 M], добавлен 28.12.2009

  • Этапы изучения процессов горения и взрывов. Основные виды взрывов, их классификация по типу химических реакций и плотности вещества. Реакции разложения, окислительно-восстановительные, полимеризации, изомеризации и конденсации, смесей в основе взрывов.

    реферат [99,8 K], добавлен 06.06.2011

  • Промышленная водоподготовка. Комплекс операций, обеспечивающих очистку воды. Гомогенные и гетерогенные некаталитические процессы в жидкой и газовой фазах, их закономерности и способы интенсификации. Сравнение различных типов химических реакторов.

    лекция [734,7 K], добавлен 29.03.2009

  • Методы получения красителей. Получение сульфанилата натрия синтезом. Характеристика исходного сырья и получаемого продукта. Расчет химико–технологических процессов и оборудования. Математическое описание химического способа получения сульфанилата натрия.

    дипломная работа [408,2 K], добавлен 21.10.2013

  • Понятие и расчет скорости химических реакций, ее научное и практическое значение и применение. Формулировка закона действующих масс. Факторы, влияющие на скорость химических реакций. Примеры реакций, протекающих в гомогенных и гетерогенных системах.

    презентация [1,6 M], добавлен 30.04.2012

  • Понятие и условия прохождения химических реакций. Характеристика реакций соединения, разложения, замещения, обмена и их применение в промышленности. Окислительно-восстановительные реакции в основе металлургии, суть валентности, виды переэтерификации.

    реферат [146,6 K], добавлен 27.01.2012

  • Значение воды для химической промышленности. Подготовка воды для производственных процессов. Каталитические процессы, их классификация. Влияние катализатора на скорость химико-технологических процессов. Материальный баланс печи для сжигания серы.

    контрольная работа [1,1 M], добавлен 18.01.2014

  • Механизмы воздействия ультразвука на химческие реакции. Учет его при разработке и проведении технологических процессов. Технологии, реализуемые с помощью ультразвука. Прецизионная очистка и обезжиривание. Дегазация расплавов и сварка полимеров и металлов.

    реферат [206,0 K], добавлен 20.02.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.