Свойства и применение кальция
Исследование физических и химических свойств кальция. Электролитическое и термическое получение кальция и его сплавов. Алюминотермический способ восстановления кальция. Влияние температуры на изменение равновесной упругости паров кальция в системах.
Рубрика | Химия |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 23.10.2013 |
Размер файла | 863,5 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Содержание
Введение
1. Свойства и применение кальция
1.1 Физические свойства
1.2 Химические свойства
1.3 Применение
2. Получение кальция
2.1 Электролитическое получение кальция и его сплавов
2.2 Термическое получение
2.3 Вакуум-термический способ получения кальция
2.3.1 Алюминотермический способ восстановления кальция
2.3.2 Силикотермический способ восстановления кальция
3. Практическая часть
Список используемой литературы
Введение
Ca, химический элемент II группы периодической системы Менделеева, атомный номер 20, атомная масса 40,08; серебряно-белый легкий металл. Природный элемент представляет смесь шести стабильных изотопов: 40Ca, 42Ca, 43Ca, 44Ca, 46Ca и 48Ca, из которых наиболее распространен 40Ca (96, 97%).
Соединения Ca - известняк, мрамор, гипс (а также известь - продукт обжига известняка) уже в глубокой древности применялись в строительном деле. Вплоть до конца 18 века химики считали известь простым телом. В 1789 году А. Лавуазье предположил, что известь, магнезия, барит, глинозем и кремнезем - вещества сложные. В 1808 году Г. Дэви, подвергая электролизу с ртутным катодом смесь влажной гашеной извести с оксидом ртути, приготовил амальгаму Ca, а отогнав из нее ртуть, получил металл, названный "Кальций" (от лат. calx, род. падеж calcis - известь).
Способность кальция связывать кислород и азот позволила применить его для очистки инертных газов и как геттер (Геттер - вещество, служащее для поглощения газов и создания глубокого вакуума в электронных приборах.) в вакуумной радиоаппаратуре.
Кальций используют и в металлургии меди, никеля, специальных сталей и бронз; им связывают вредные примеси серы, фосфора, избыточного углерода. В тех же целях применяют сплавы кальция с кремнием, литием, натрием, бором, алюминием.
В промышленности кальций получают двумя способами:
1) Нагреванием брикетированной смеси СаО и порошка Аl при 1200 °С в вакууме 0,01 - 0,02 мм. рт. ст.; выделяющиеся по реакции:
6СаО + 2Аl = 3CaO · Al2O3 + 3Ca
Пары кальция кондонсируются на холодной поверхности.
2) Электролизом расплава СаСl2 и КСl с жидким медно-кальциевым катодом приготовляют сплав Сu - Ca (65% Ca), из которого кальций отгоняют при температуре 950 - 1000 °С в вакууме 0,1 - 0,001 мм.рт.ст.
3) Разработан также способ получения кальция термической диссоциацией карбида кальция СаС2.
Кальций весьма распространен в природе в форме различных соединений. В земной коре он занимает пятое место, составляя 3,25 %, и чаще всего встречается в виде известняка CaCO3, доломита CaCO3· Mg CO3, гипса CaSO4· 2H2O, фосфорита Ca3(PO4)2 и плавикового шпата CaF2, не считая значительной доли кальция в составе силикатных пород. В морской воде содержится в среднем 0,04% (вес.) кальция. [1]
В данной курсовой работе изучены свойства и применение кальция, а так же подробно рассмотрена теория и технологии вакуум-термических способов его получения.
1. Свойства и применение кальция
1.1 Физические свойства
Кальций -- серебристо-белый металл, но на воздухе тускнеет из-за образования оксида на его поверхности. Это пластичный металл тверже свинца. Кристаллическая решетка б-формы Ca (устойчивой при обычной температуре) гранецентрированная кубическая, а = 5,56Е. Атомный радиус 1,97Е, ионный радиус Ca2+, 1,04Е. Плотность 1,54 г/см3(20 °C). Выше 464 °C устойчива гексагональная в-форма. tпл 851 °C, tкип 1482 °C; температурный коэффициент линейного расширения 22·10-6 (0-300 °C); теплопроводность при 20 °C 125,6 Вт/(м·К) или 0,3 кал/(см·сек·°C); удельная теплоемкость (0-100 °C) 623,9 дж/(кг·К) или 0,149 кал/(г·°C); удельное электросопротивление при 20 °C 4,6·10-8 ом·м или 4,6·10-6 ом·см; температурный коэффициент электросопротивления 4,57·10-3 (20 °C). Модуль упругости 26 Гн/м2 (2600 кгс/мм2); предел прочности при растяжении 60 Мн/м2 (6 кгс/мм2); предел упругости 4 Мн/м2 (0,4 кгс/мм2), предел текучести 38 Мн/м2 (3,8 кгс/мм2); относительное удлинение 50%; твердость по Бринеллю 200-300 Мн/м2 (20-30 кгс/мм2). Кальций достаточно высокой чистоты пластичен, хорошо прессуется, прокатывается и поддается обработке резанием [3].
1.2 Химические свойства
Кальций - активный металл. Так при обычных условиях он легко взаимодействует с кислородом воздуха и галогенами:
2 Са + О2 = 2 СаО (оксид кальция) (1)
Са + Вr2 = СаВr2 (бромид кальция). (2)
С водородом, азотом, серой, фосфором, углеродом и другими неметаллами кальций реагирует при нагревании:
Са + Н2 = СаН2 (гидрид кальция) (3)
3 Са + N2 = Са3N2 (нитрид кальция) (4)
Са + S = СаS (сульфид кальция) (5)
3 Са + 2 Р = Са3Р2 (фосфид кальция) (6)
Са + 2 С = СаС2 (карбид кальция) (7)
С холодной водой кальций взаимодействует медленно, а с горячей - очень энергично, давая сильное основание Са(ОН)2:
Са + 2 Н2О = Са(ОН)2 + Н2 (8)
Будучи энергичным восстановителем, кальций может отнимать кислород или галогены от оксидов и галогенидов менее активных металлов, т. е. обладает восстановительными свойствами:
5 Са + Nb2О5 = СаО + 2 Nb; (9)
5 Са + 2 NbСl5 = 5 СаСl2 + 2 Nb (10)
Кальций энергично взаимодействует с кислотами с выделением водорода, реагирует с галогенами, с сухим водородом с образованием гидрида СаН2. При нагревании Кальций с графитом образуется карбид СаС2. Кальций получают электролизом расплавленного CaCl2 или алюминотермическим восстановлением в вакууме:
6СаО + 2Al = 3Ca + 3CaO·Al2О3 (11)
Чистый металл используют для восстановления соединений Cs, Rb, Cr, V, Zr, Th, U до металлов, для раскисления сталей [4].
1.3 Применение
Кальций находит все возрастающее .применение в различных отраслях производства. В последнее время он приобрел большое значение как восстановитель при получении ряда металлов.
Чистый металлический. уран получается восстановлением металлическим кальцием фтористого урана. Кальцием или его гидридами можно восстанавливать окислы титана, а также окислы циркония, тория, тантала, ниобия, других редких металлов.
Кальций является хорошим раскислителем и дегазатором при получении меди, никеля, хромоникелевых сплавов, специальных сталей, никелевых и оловянистых бронз; он удаляет из металлов и сплавов серу, фосфор, углерод.
Кальций образует с висмутом тугоплавкие соединения, поэтому его применяют для очистки свинца от висмута.
Кальций добавляют в различные легкие сплавы. Он способствует улучшению поверхности слитков, мелкозернистости и понижению окисляемости.
Большое распространение имеют содержащие кальций подшипниковые сплавы. Свинцовые сплавы (0,04 % Са) могут применяться для изготовления оболочек кабеля [1].
В технике применяются антифрикционные сплавы Кальция со свинцом. Широко применяются минералы Кальция. Так, известняк используют в производстве извести, цемента, силикатного кирпича и непосредственно как строительный материал, в металлургии (флюс), в химической промышленности для производства карбида кальция, соды, едкого натра, хлорной извести, удобрений, в производстве сахара, стекла.
Практическое значение имеют мел, мрамор, исландский шпат, гипс, флуорит и др. [2]. Благодаря способности связывать кислород и азот кальций или сплавы кальция с натрием и другими металлами применяют для очистки благородных газов и как геттер в вакуумной радиоаппаратуре. Кальций так же применяется для получения гидрида, который является источником водорода в полевых условиях [1].
2. Получение кальция
Существует несколько способов получения кальция, это электролитическое, термическое, вакуум-термическое.
2.1 Электролитическое получение кальция и его сплавов
Сущность метода заключается в том, что катод первоначально касается расплавленного электролита. В месте соприкосновения образуется хорошо смачивающая катод жидкая капля металла, которая при медленном и равномерном поднятии катода выводится вместе с ним из расплава и застывает. При этом застывающая капля покрывается твердой пленкой электролита, защищающий металл от окисления и азотирования. Путем непрерывного и осторожного подъема катода кальций вытягивается в стержни.
2.2 Термическое получение
кальций химический электролитический термический
· Хлоридный процесс: технология состоит из расплавления и обезвоживания хлористого кальция, расплавления свинца, получения двойного сплава свинец - натрий, получение тройного сплава свинец - натрий - кальций и разбавления тройного сплава свинцом после удаления солей. Реакция с хлористым кальцием протекает согласно уравнению
CaCl2 + Na2Pb5=2NaCl + PbCa + 2Pb (12)
· Карбидный процесс: в основе получения свинцово-кальциевого сплава лежит реакция между карбидом кальция и расплавленным свинцом согласно уравнению
CaC2 + 3Pb = Pb3Ca + 2C [1]. (13)
2.3 Вакуум-термический способ получения кальция
Сырье для вакуум-термического способа
Сырьем для термического восстановления окиси кальция является известь, получаемая обжигом известняка. Основные требования к сырью заключаются в следующем: известь должна быть как можно чище и содержать минимум примесей, способных восстанавливаться и переходить в металл наряду с кальцием, особенно щелочных металлов и магния. Обжиг известняка должен производиться до полного разложения карбоната, однако не до его спекания, так как восстановимость спеченного материала ниже. Обожженный продукт необходимо предохранять от поглощения им влаги и углекислоты, выделение которых при восстановлении снижает показатели процесса. Технология обжига известняка и переработки обожженного продукта аналогична обработке доломита для силикотермического способа получения магния.
2.3.1 Алюминотермический способ восстановления кальция
На диаграмме температурной зависимости изменения свободной энергии окисления ряда металлов (рис. 1) видно, что окись кальция является одним из наиболее прочных и трудно восстанавливаемых окислов. Она не может быть восстановлена другими металлами обычным путем -- при относительно невысокой температуре и атмосферном давлении. Напротив, кальций сам является отличным восстановителем других трудно восстанавливаемых соединений и раскислителем для многих металлов и сплавов. Восстановление окиси кальция углеродом вообще невозможно вследствие образования карбидов кальция. Однако благодаря тому, что кальций обладает относительно высокой упругостью пара, его окись может быть восстановлена в вакууме алюминием, кремнием или их сплавами согласно реакции
CaO + Me - Ca + MeO (14).
Практическое применение пока нашел только алюминотермический способ получения кальция, поскольку восстановить СаО алюминием значительно легче, чем кремнием. По вопросу химизма восстановления окиси кальция алюминием имеются разные взгляды. Л. Пиджен и И. Эткинсон полагают, что реакция протекает с образованием моноалюмината кальция:
4СаО + 2Аl = СаО·Al2O3 + 3Са. (15)
В. А. Пазухин и А. Я. Фишер указывают, что процесс идет с образованием трехкальциевого алюмината:
6СаО + 2Аl = 3СаО·Al2O3 + 3Са. (16)
По А. И. Войницкому [6], преобладающим в реакции является образование пятикальциевого трехалюмината:
14СаО + 6Аl = 5СаО ·3Al2O3 + 9Са. (17)
Новейшими исследованиями, А. Ю. Тайца и А. И. Войницкого установлено, что алюминотермическое восстановление кальция протекает ступенчато. Вначале выделение кальция сопровождается образованием ЗСаО·AI2O3, который затем реагирует с окисью кальция и алюминием с образованием ЗСаО·3AI2O3. Реакция протекает по следующей схеме:
14СаО + 6Аl = 2 (3СаО·Al2O3) + 2СаО + 2Аl + 6Са
2 (3СаО·Al2O3) + 2СаО + 2Аl = 5СаО·3Al2O3 + 3Са
14CaO+ 6А1 = 5СаО·3Al2O3 + 9Са
Так как восстановление окиси происходит с выделением парообразного кальция, а остальные продукты реакции находятся в конденсированном состоянии, удается легко отделить и сконденсировать его в охлаждаемых участках печи. Основными условиями, необходимыми для вакуум-термического восстановления окиси кальция, являются высокая температура и низкое остаточное давление в системе. Ниже приводится зависимость между температурой и равновесной упругостью паров кальция. Свободная энергия реакции (17), вычисленная для температур 1124-1728° К выражается
?FT = 184820 + 6,95Т--12,1 T lg Т.
Отсюда логарифмическая зависимость равновесной упругости пара кальция (мм рт. ст.)
Lg p = 3,59 - 4430\Т.
Л. Пиджен и И. Эткинсон определили экспериментально равновесную упругость пара кальция. Обстоятельный термодинамический анализ реакции восстановления окиси кальция алюминием выполнен И. И. Матвеенко, который дал следующие температурные зависимости равновесного давления паров кальция:
Lg p Ca(1)=8,64 - 12930\T мм рт.ст.
Lg p Ca(2)=8,62 - 11780\Т мм рт.ст.
Lg p Ca(3')=8,75 - 12500\Т мм рт.ст.
Вычисленные и экспериментальные данные сопоставлены в табл. 1.
Таблица 1- Влияние температуры на изменение равновесной упругости паров кальция в системах (1), (2), (3), (3'), мм рт.ст.
Температура °С |
Опытные данные |
Вычисленные в системах |
||||
(1) |
(2) |
(3) |
(3') |
|||
1401 1451 1500 1600 1700 |
0,791 1016 - - - |
0,37 0,55 1,2 3,9 11,0 |
1,7 3,2 5,6 18,2 49 |
2,7 3,5 4,4 6,6 9,5 |
0,66 1,4 2,5 8,5 25,7 |
Из приведенных данных видно, что в наиболее благоприятных условиях находятся взаимодействия в системах (2) и (3) или (3'). Это отвечает наблюдениям, так как в остатках шихты после восстановления окиси кальция алюминием преобладают пятикальциевый трехалюминат и трехкальциевый алюминат.
Данные о равновесной упругости показывают, что восстановление окиси кальция алюминием возможно при температуре 1100-1150° С. Для достижения практически приемлемой скорости реакции остаточное давление в системе Рост должно быть ниже равновесного Рравн, т. е. должно соблюдаться неравенство Рравн>Рост, и процесс должен проводиться при температурах порядка 1200°. Исследованиями установлено, что при температуре 1200-1250° достигается высокое использование (до 70-75%) и низкий удельный расход алюминия (около 0,6-0,65 кг на кг кальция).
Согласно приведенной выше трактовке химизма процесса, оптимальной по составу является шихта, рассчитанная на образование в остатке 5СаО·3Al2O3. Для повышения степени использования алюминия полезно давать некоторый избыток окиси кальция, однако не слишком большой (10-20%), иначе это отрицательно скажется на других показателях процесса. С увеличением степени измельчения алюминия от частиц 0,8-0,2 мм до минус 0,07 мм (по данным В. А. Пазухина и А. Я. Фишера) использование алюминия в реакции возрастает от 63,7 до 78%.
На использование алюминия влияет также режим брикетирования шихты. Смесь извести и порошкового алюминия следует брикетировать без связующих (чтобы избежать выделения газов в вакууме) при давлении 150 кг/см2. При меньших давлениях использование алюминия уменьшается вследствие ликвации расплавленного алюминия в излишне пористых брикетах, а при больших давлениях -- из-за плохой газопроницаемости. Полнота и скорость восстановления также зависят от плотности укладки брикетов в реторте. При укладке их без зазоров, когда газопроницаемость всей садки мала, использование алюминия значительно снижается.
Рисунок 2 - Схема получения кальция вакуум-термическим способом.
Технология алюмино-термического способа
Технологическая схема производства кальция алюминотермическим способом изображена на рис. 2. В качестве исходного сырья применяется известняк, в качестве восстановителя -- алюминиевый порошок, приготовленный из первичного (лучше) или вторичного алюминия. Применяемый в качестве восстановителя алюминий, так же как и сырье, не должен содержать примесей легко летучих металлов: магния, цинка, щелочей и др., способных испаряться и переходить в конденсат. Это необходимо учитывать при выборе марок вторичного алюминия.
По описанию С. Лумиса и П. Штауба , в США на заводе фирмы Нью Ингленд Лайм Ко в Ханаане (штат Коннектикут), получают кальций алюминотермическим способом. Применяется известь следующего типичного состава, %: 97,5 СаО, 0,65 MgO, 0,7SiO2, 0,6 Fe2Оз + АlОз, 0,09 Na2О + K2О, 0,5 остальное. Обожженный продукт размалывается на мельнице Раймонда с центробежным сепаратором, тонкость помола составляет (60%) минус 200 меш. В качестве восстановителя применяют алюминиевую пыль, являющуюся отходом при производстве алюминиевого порошка. Обожженная известь из закрытых бункеров и алюминий из барабанов поступают на дозировочные весы и затем в смеситель. После смешения шихта брикетируется сухим способом. На упомянутом заводе восстанавливают кальций в ретортных печах, ранее применявшихся для получения магния силикотермическим способом (рис. 3). Печи обогревают генераторным газом. Каждая печь имеет 20 горизонтальных реторт из жароупорной стали, содержащей 28% Сг и 15% Ni.
Рисунок 3- Ретортная печь для получения кальция
Длина реторты 3 м, диаметр 254 мм, толщина стенки 28 мм. Восстановление происходит в обогреваемой части реторты, а конденсация в охлаждаемом конце, выступающем из речи. Брикеты вводятся в реторту в бумажных мешках, затем вставляются конденсаторы и реторту закрывают. Откачка воздуха производится механическими вакуум-насосами вначале цикла. Затем подключают диффузионные насосы и остаточное давление снижается до 20 мк.
Реторты нагревают до 1200°. Через 12 час. после загрузки реторты открывают и разгружают. Полученный кальций имеет форму пустотелого цилиндра из плотной массы больших кристаллов, осажденных на поверхности стальной гильзы. Основной примесью в кальции является магний, который восстанавливается в первую очередь и в основном концентрируется в прилегающем к гильзе слое. В среднем содержание примесей составляет; 0,5- 1% Mg, около 0,2% Аl, 0,005-0,02% Мn, до 0,02% N, остальные примеси - Си, РЬ, Zn, Ni, Si, Fe - встречаются в пределах 0,005-0,04%. А. Ю. Тайц и А. И. Войницкий для получения кальция алюминотермическим способом применяли полузаводcкую электрическую вакуумную печь с угольными нагревателями и достигали степени использования алюминия 60%, удельного расхода алюминия 0,78 кг, удельного расхода шихты соответственно 4,35 кг и удельного расхода электроэнергии 14 квт\ч на 1 кг металла.
Полученный металл, за исключением примеси магния, отличался относительно высокой чистотой. В среднем содержание примесей в нем составляло: 0,003-0,004% Fe, 0,005-0,008% Si, 0,04-0,15% Mn, 0,0025-0,004% Сu, 0,006-0,009% N, 0,25% Al.
2.3.2 Силикотермический способ восстановления кальция
Весьма заманчивым является силикотермический способ; восстановитель - ферросилиций, реагент значительно более дешевый, чем алюминий. Однако силикотермический процесс труднее осуществить, чем алюминотермический. Восстановление окиси кальция кремнием протекает согласно уравнению
4СаО + Si = 2СаО ·SiO2 + 2Са. (18)
Равновесная упругость пара кальция, вычисленная по величинам свободной энергии, составляет:
°С |
1300 |
1400 |
1500 |
1600 |
|
Р, мм рт. ст |
0,08 |
0,15 |
0,75 |
2,05 |
Следовательно, в вакууме порядка 0,01 мм рт. ст. восстановление окиси кальция термодинамически возможно при температуре 1300°. Практически для обеспечения приемлемой скорости процесс должен проводиться при температуре 1400-1500°.
Несколько легче идет реакция восстановления окиси кальция силикоалюминием, в которой восстановителями служат и алюминий и кремний сплава. Опытами установлено, что вначале преобладает восстановление алюминием; причем реакция протекает с конечным образованием бСаО·3Al2Оз по схеме, изложенной выше (рис. 1). Восстановление кремнием становится значительным при более высокой температуре, когда большая часть алюминия прореагировала; реакция протекает с образованием 2CaO·SiO2. В суммарном виде реакция восстановления окиси кальция силикоалюминием выражается следующим уравнением:
mSi + п Аl + (4m +2 ?) СаО = m(2СаО ·SiO2) + ?n(5СаО·Al2O3) + (2m +1, 5n) Са.
Исследованиями A. Ю. Тайца и A. И. Войницкого установлено, что окись кальция восстанавливается 75%-ным ферросилицием с выходом металла 50-75% при температуре 1400-1450° в вакууме 0,01-0,03 мм рт. ст.; силикоалюминий, содержащий 60-30% Si и 32-58% Аl (остальное железо, титан и пр.), восстанавливает окись кальция с выходом металла примерно 70% при температурах 1350-1400° в вакууме 0,01-0,05 мм рт. ст. Опытами в полузаводском масштабе доказана принципиальная возможность получения кальция на извести ферросилицием и силикоалюминием. Основной аппаратурной трудностью является подбор стойкой в условиях этого процесса футеровки.
При решении этой задачи способ может быть реализован в промышленности. Разложение карбида кальция Получение металлического кальция разложением карбида кальция
СаС2 = Са + 2С
следует отнести к перспективным способам. При этом в качестве второго продукта получают графит. В. Маудерли, Е. Мозер, И В. Тредвелл вычислив свободную энергию образования карбида кальция из термохимических данных, получили следующее выражение для упругости пара кальция над чистым карбидом кальция:
lgpca= 1,35 - 4505\Т (1124- 1712° К),
lgpca = 6,62 - 13523\Т(1712-2000° К).
По-видимому, технический карбид кальция разлагается при значительно более высоких температурах, чем это следует из данных выражений. Те же авторы сообщают о термическом разложении карбида кальция в компактных кусках при 1600-1800° в вакууме 1 мм рт. ст. Выход графита составил 94%, кальций получался в виде плотного налета на холодильнике. А. С. Микулинский, Ф. С. Мории, Р. Ш. Шкляр для определения свойств графита, полученного разложением карбида кальция, нагревали последний в вакууме 0,3-1 мм рт. ст. при температуре 1630-1750°. Полученный графит отличается от ачесоновского более крупными зернами, большей электропроводностью и меньшим объемным весом [1].
3. Практическая часть
Суточная выливка магния из электролизера на силу тока 100 кА составила 960 кг при питании ванны хлористым магнием. Напряжение на шутне электролизера 0,6 В. Определить:
1) Выход по току на катоде;
2) Количество хлора, полученного за сутки, при условии, что выход по току на аноде равен выходу по току на ктоде;
3) Суточную заливку MgCl2 в электролизер при условии, что потери MgCl2 происходят в основном со шламом и возгоном. Количество шлама 0,1 на 1т Mg, содержащего MgCl2 в возгоне 50%. Количество возгона 0,05 т на 1т Mg. Состав заливаемого хлорида магния, %: 92 MgCl2 и 8 NaCl.
1. Определить выход по току на катоде:
mпр=I·з·kMg·ф
з=mпр\I·ф· kMg=960000\100000·0,454·24=0,881 или 88,1%
2. Определить количество Cl, полученного за сутки:
x=960000г \ 24 г\моль=40000 моль
Переводим в объем:
35,5•2 - 22,4
х - 40000
х=126785,7 м3
3. а) Находим чистый MgCl2, для производства 960 кг Mg.
x=95·960\24,3=3753 кг=37,53 т.
б) потери со шламом. Из состава магниевых электролизеров, %: 20-35 MgO, 2-5 Mg, 2-6 Fe, 2-4 SiO2, 0,8-2 TiO2, 0,4-1,0 C, 35 MgCl2 [5].
100 кг - 1000 кг
Х - 960 кг
mшл=960 кг - масса шлама за сутки.
За сутки 96 кг шлама: 96·0,35 (MgCl2 со шламом).
в) потери с возгонами:
50кг - 1000 кг
Х - 960 кг
48 кг возгонов: 48·0,5=24 кг MgCl2 с возгонами.
Всего надо залить Mg:
3753+33,6+24=3810,6 кг MgCl2 в сут.
Список используемой литературы
[1] основы металлургии III
[2] http://www.chem100.ru/text.php?t=110b Кальций: Справочник химика
[3] http://www.chem100.ru/elem.php?n=20
[4] http://www.medkurs.ru/lecture1k/chemistry/qc23/2883.html
[5] металлургия Al и Mg. Ветюков М.М., Цыплоков А.М.
Размещено на Allbest.ru
Подобные документы
Хлорид кальция: физико-химические свойства. применение и сырье. Получение плавленого хлорида кальция из дистиллерной жидкости содового производства. Получение хлорида кальция и гидроксилохлорида из маточного щелока. Безводный кальций из соляной кислоты.
реферат [84,4 K], добавлен 09.08.2008Химические свойства кальция. Применение чистого карбоната кальция в оптике, известняка в металлургии - в качестве флюсов. Гипс как кристаллогидрат сульфата кальция. Кальциевая соль ортофосфорной кислоты как основной компонент фосфоритов и апатитов.
реферат [22,5 K], добавлен 23.01.2010Массовое производство и использование карбоната кальция - неорганического химического соединения, соли угольной кислоты и кальция. Полиморфные модификации карбоната кальция. Фазовая диаграмма кальцита, арагонита и фатерита при разных температурах.
реферат [1,1 M], добавлен 25.11.2015Элемент главной подгруппы второй группы, четвертого периода периодической системы химических элементов Д. И. Менделеева. История и происхождение названия. Нахождение кальция в природе. Физические и химические свойства. Применение металлического кальция.
реферат [21,9 K], добавлен 01.12.2012Кристаллическая структура гидроксилапатита. Описание методов синтеза фосфатов кальция. Рентгеновский фазовый анализ для определения фазового состава образца. Экспериментальное проведение синтеза фосфата кальция методом осаждения из водных растворов.
курсовая работа [2,8 M], добавлен 10.09.2012Расчет концентрации нитрата кальция в водном растворе для его применения в составе охлаждающей жидкости. Определение зависимости показателя преломления фаз системы вода-нитрат кальция при отрицательной температуре от концентрации методом рефрактометрии.
курсовая работа [780,0 K], добавлен 12.12.2012Биологическая костная ткань: состав, строение, свойства. Структура ортофосфатов кальция, изоморфные замещения. Термическая стабильность и особенности спекания фосфатно-кальциевой керамики. Материалы на основе фосфатов кальция: гранулы, покрытия, керамика.
книга [417,7 K], добавлен 14.01.2011Получение гидроксида кальция в промышленном масштабе процессом гашения. Внешний вид и свойства химического вещества. Применение гашеной извести в различных отраслях промышленности и быту. Возможные реакции организма человека при вдыхании порошка.
презентация [178,5 K], добавлен 14.12.2014История и происхождение названия, нахождение в природе, получение кальция, его физические и химические свойства. Применение металлического кальция и его соединений. Биологическая роль и потребность организма в кальции, его содержание в продуктах питания.
реферат [21,5 K], добавлен 27.10.2009Свойства н-бутилового спирта и применение его в качестве автомобильного топлива. Посуда и оборудование. Реакции бромида калия и н-бутанола с серной кислотой. Осушение кусочков хлорида кальция, отделение от твердого осадка хлорида кальция декантацией.
лабораторная работа [49,0 K], добавлен 04.05.2014