Производство серной кислоты

Описание промышленных способов получения серной кислоты. Термодинамический анализ процесса конденсации и окисления диоксида серы. Представление технологической схемы производства кислоты. Расчет материального и теплового баланса химических реакций.

Рубрика Химия
Вид реферат
Язык русский
Дата добавления 31.01.2011
Размер файла 125,1 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

16

Содержание

1. Введение

2. Общая характеристика установки производства серной кислоты

3. Сырьевые источники получения серной кислоты

4. Краткое описание промышленных способов получения серной кислоты

5. Выбор катализатора

6. Обоснование способа производства

7. Стадии и химизм процесса

8. Термодинамический анализ

9. Кинетика процесса окисления SO2

10. Конденсация серной кислоты

11. Термодинамический анализ процесса конденсации

12. Описание технологической схемы процесса

13. Расчет материального баланса

14. Расчет теплового баланса

15. Расчет контактного аппарата

16. Меры безопасности при эксплуатации производственного объекта

17. Список литературы

1. Введение

Серная кислота - один из основных многотоннажных продуктов химической промышленности. Ее применяют в различных отраслях народного хозяйства, поскольку она обладает комплексом особых свойств, облегчающих ее технологическое использование. Серная кислота не дымит, не имеет цвета и запаха, при обычной температуре находится в жидком состоянии, в концентрированном виде не корродирует черные металлы. В то же время, серная кислота относится к числу сильных минеральных кислот, образует многочисленные устойчивые соли и дешева.

В технике под серной кислотой понимают системы, состоящие из оксида серы (VI) и воды различного состава: п SО3 · т Н2О.

Моногидрат серной кислоты - бесцветная маслянистая жидкость с температурой кристаллизации 10,37 оС, температурой кипения 296,2 оС и плотностью 1,85 т/м3. С водой и оксидом серы (VI) он смешивается во всех отношениях, образуя гидраты состава Н24 · Н2О, Н24 · 2Н2О, Н24 · 4Н2О и соединения с оксидом серы Н24 · SО3 и Н24 ·2SО3.

Эти гидраты и соединения с оксидом серы имеют различные температуры кристаллизации и образуют ряд эвтектик. Некоторые из этих эвтектик имеют температуру кристаллизации ниже нуля или близкие к нулю. Эти особенности растворов серной кислоты учитываются при выборе ее товарных сортов, которые по условиям производства и хранения должны иметь низкую температуру кристаллизации.

Температура кипения серной кислоты также зависит от ее концентрации, то есть состава системы "оксид серы (VI) - вода". С повышением концентрации водной серной кислоты температура ее кипения возрастает и достигает максимума 336,5 оС при концентрации 98,3 %, что отвечает азеотропному составу, а затем снижается. Температура кипения олеума с увеличением содержания свободного оксида серы (VI) снижается от 296,2 оС (температура кипения моногидрата) до 44,7 оС, отвечающей температуре кипения 100 %-ного оксида серы (VI).

При нагревании паров серной кислоты выше 400 оС она подвергается термической диссоциации по схеме:

400оС 700 оС

2 Н24 <=> 2Н2О + 2SО3 <=> 2Н2О + 2SО2 + О2.

Среди минеральных кислот серная кислота по объему производства и потребления занимает первое место. Мировое производство ее за последние 25 лет выросло более чем в три раза и составляет в настоящее время более 160 млн. т в год.

Области применения серной кислоты и олеума весьма разнообразны. Значительная часть ее используется в производстве минеральных удобрений (от 30 до 60 %), а также в производстве красителей (от 2 до 16 %), химических волокон ( от 5 до 15 %) и металлургии (от 2 до 3 %). Она применяется для различных технологических целей в текстильной, пищевой и других отраслях промышленности.

2. Общая характеристика установки производства серной кислоты

Установка предназначена для получения технической серной кислоты из сероводородсодержащего газа. Сероводородный газ поступает с установок гидроочистки, блока сероочистки газов, установки регенерации амина и отпарки кислых стоков.

Ввод установки в эксплуатацию - 1999 г.

Установка производства серной кислоты рассчитана на переработку 24 тыс. тонн в год сероводородсодержащего газа.

Проектная производительность установки по серной кислоте составляет 65 тыс. тонн в год.

Проект установки выполнен ОАО "ВНИПИнефть" на основании технологии датской фирмы "Хальдор Топсе АС" и ОАО "НИУИФ" г. Москва.

Российская часть установки представлена секцией подготовки сырья, котлами-утилизаторами КУ-А,В,С сжигания сероводородсодержащего газа, блоками деаэрации обессоленной воды, нейтрализации сернокислотных сбросов и обеспечения установки воздухом КИП.

Датской стороной предоставлен блок WSA в составе:

контактного аппарата (конвертера);

конденсатора;

системой циркуляции и откачки серной кислоты;

системой воздуходувок подачи воздуха на сжигание H2S, охлаждения и разбавления технологического газа;

системой подачи силиконового масла (блок управления кислотными парами) в технологический газ с целью снижения выбросов SOx в атмосферу.

3. Сырьевые источники получения серной кислоты

Сырьем в производстве серной кислоты могут быть элементарная сера и различные серусодержащие соединения, из которых может быть получена сера или непосредственно оксид серы (IV).

Природные залежи самородной серы невелики, хотя кларк ее равен 0,1 %. Чаще всего сера находится в природе в форме сульфидов металлов и сульфатов метало, а также входит в состав нефти, каменного угля, природного и попутного газов. Значительные количества серы содержатся в виде оксида серы в топочных газах и газах цветной металлургии и в виде сероводорода, выделяющегося при очистке горючих газов.

Таким образом, сырьевые источники производства серной кислоты достаточно многообразны, хотя до сих пор в качестве сырья используют преимущественно элементарную серу и железный колчедан. Ограниченное использование таких видов сырья, как топочные газы тепловых электростанций и газы медеплавильного производства, объясняется низкой концентрацией в них оксида серы (IV).

При этом доля колчедана в балансе сырья уменьшается, а доля серы возрастает.

В общей схеме сернокислотного производства существенное значение имеют две первые стадии - подготовка сырья и его сжигание или обжиг. Их содержание и аппаратурное оформление существенно зависят от природы сырья, которая в значительной степени, определяет сложность технологического производства серной кислоты.

4. Краткое описание промышленных способов получения серной кислоты

Производство серной кислоты из серусодержащего сырья включает несколько химических процессов, в которых происходит изменение степени окисления сырья и промежуточных продуктов. Это может быть представлено в виде следующей схемы:

где I - стадия получения печного газа (оксида серы (IV)),

II - стадия каталитического окисления оксида серы (IV) до оксида серы (VI) и абсорбции его (переработка в серную кислоту).

В реальном производстве к этим химическим процессам добавляются процессы подготовки сырья, очистки печного газа и другие механические и физико-химические операции.

В общем случае производство серной кислоты может быть выражено в следующем виде:

Сырье подготовка сырья сжигание (обжиг) сырья

очистка печного газа контактирование абсорбция

контактированного газа СЕРНАЯ КИСЛОТА

Конкретная технологическая схема производства зависит от вида сырья, особенностей каталитического окисления оксида серы (IV), наличия или отсутствия стадии абсорбции оксида серы (VI).

В зависимости от того, как осуществляется процесс окисления SО2 в 3, различают два основных метода получения серной кислоты.

В контактном методе получения серной кислоты процесс окисления SО2 в 3 проводят на твердых катализаторах.

Триоксид серы переводят в серную кислоту на последней стадии процесса - абсорбции триоксида серы, которую упрощенно можно представить уравнением реакции:

3 + Н2О Н24

При проведении процесса по нитрозному (башенному) методу в качестве переносчика кислорода используют оксиды азота.

Окисление диоксида серы осуществляется в жидкой фазе и конечным продуктом является серная кислота:

3 + N2О3 + Н2О Н24 + 2NО

В настоящее время в промышленности в основном применяют контактный метод получения серной кислоты, позволяющий использовать аппараты с большей интенсивностью.

1) Химическая схема получения серной кислоты из колчедана включает три последовательные стадии:

- окисление дисульфида железа пиритного концентрата кислородом воздуха:

4FеS2 + 11О2 = 2Fе2S3 + 8SО2,

- каталитическое окисление оксида серы (IV) избытком кислорода печного газа:

2SО2 + О2 2SО3

- абсорбция оксида серы (VI) с образованием серной кислоты:

3 + Н2О Н24

По технологическому оформлению производство серной кислоты из железного колчедана является наиболее сложным и состоит из нескольких последовательно проводимых стадий.

2) Технологический процесс производства серной кислоты из элементарной серы контактным способом отличается от процесса производства из колчедана рядом особенностей. К ним относятся:

- особая конструкция печей для получения печного газа;

- повышенное содержание оксида серы (IV) в печном газе;

- отсутствие стадии предварительной очистки печного газа.

Последующие операции контактирования оксида серы (IV) по физико-химическим основам и аппаратурному оформлению не отличаются от таковых для процесса на основе колчедана и оформляются обычно по схеме ДКДА. Термостатирование газа в контактном аппарате в этом методе осуществляется обычно путем ввода холодного воздуха между слоями катализатора

3) Существует также способ производства серной кислоты из сероводорода, получивший название "мокрого" катализа, состоит в том, что смесь оксида серы (IV) и паров воды, полученная сжиганием сероводорода в токе воздуха, подается без разделения на контактирование, где оксид серы (IV) окисляется на твердом ванадиевом катализаторе до оксида серы (VI). Затем газовая смесь охлаждается в конденсаторе, где пары образующейся серной кислоты превращаются в жидкий продукт.

Таким образом, в отличие от методов производства серной кислоты из колчедана и серы, в процессе мокрого катализа отсутствует специальная стадия абсорбции оксида серы (VI) и весь процесс включает только три последовательные стадии:

1. Сжигание сероводорода:

Н2S + 1,5О2 = SО2 + Н2О

с образованием смеси оксида серы (IV) и паров воды эквимолекулярного состава (1 : 1).

2. Окисление оксида серы (IV) до оксида серы (VI):

2+ 0,5О2 <=> SО3

с сохранением эквимолекулярности состава смеси оксида серы (IV) и паров воды (1 : 1).

3. Конденсация паров и образование серной кислоты:

3 + Н2О <=> Н24

таким образом, процесс мокрого катализа описывается суммарным уравнением:

Н2S + 2О2 = Н24

Существует схема получения серной кислоты при повышенном давлении. Влияние давления на скорость процесса возможно оценить в кинетической области, где практически отсутствует влияние физических факторов. Повышение давления влияет как на скорость процесса, так и на состояние равновесия. Скорость реакции и выход продукта с повышением давления увеличиваются за счет повышения действующих концентраций SO2 и О2 и увеличения движущей силы процесса. Но при увеличении давления так же возрастают производственные затраты на сжатие инертного азота. Так же увеличивается температура в контактном аппарате, т.к. при высоком давлении и невысокой температуре значение константы равновесия мало, по сравнению со схемой под атмосферным давлением.

Большие масштабы производства серной кислоты особенно остро ставят проблему его совершенствования. Здесь можно выделить следующие основные направления:

1. Расширение сырьевой базы за счет использования отходящих газов котельных теплоэлектроцентралей и различных производств.

2. Повышение единичной мощности установок. Увеличение мощности в два-три раза снижает себестоимость продукции на 25 - 30%.

3. Интенсификация процесса обжига сырья путем использования кислорода или воздуха, обогащенного кислородом. Это уменьшает объем газа, проходящего через аппаратуру, и повышает ее производительность.

4. Повышение давления в процессе, что способствует увеличению интенсивности работы основной аппаратуры.

5. Применение новых катализаторов с повышенной активностью и низкой температурой зажигания.

6. Повышение концентрации оксида серы (IV) в печном газе, подаваемом на контактирования.

7. Внедрение реакторов кипящего слоя на стадиях обжига сырья и контактирования.

8. Использование тепловых эффектов химических реакций на всех стадиях производства, в том числе, для выработки энергетического пара.

Важнейшей задачей в производстве серной кислоты является повышение степени превращения SО2 в SО3. Помимо увеличения производительности по серной кислоте выполнение этой задачи позволяет решить и экологические проблемы - снизить выбросы в окружающую среду вредного компонента SО2.

Для решения этой проблемы велось много различных исследований в различных областях: абсорбция SO2, адсорбция, исследования в изменении конструкции контактного аппарата.

Существую различные конструкции контактных аппаратов:

- Контактный аппарат с одинарным контактированием: такой аппарат характеризуется невысокой степенью превращения диоксида серы в триоксид. Недостаток этого аппарата заключается в том, что газ, выходящий из контактного аппарата, имеет высокое содержание диоксида серы, что отрицательно сказывается с экологической точки зрения. Используя данный аппарат, отходящие газы необходимо очистить от SO2. Для утилизации SO2 существует много различных способов: абсорбция, адсорбция,…. Это, конечно, снижает количество выбросов SO2 в атмосферу, но это увеличивает, в свою очередь, количество аппаратов в технологическом процессе, высокое содержание SO2 в газе после контактного аппарата показывает низкую степень использования SO2 , поэтому данные аппараты в производстве серной кислоты не используюися.

- Контактный аппарат с двойным контактированием: ДК позволяет достичь того же минимального содержания SO2 в выхлопных газах, что и после химической очистки. Метод основан на известном принципе Ле-Шателье, согласно которому удаление одного из компонентов реакционной смеси сдвигает равновесие в сторону образования этого компонента. Сущность метода заключается в проведении процесса окисления диоксида серы с выделением триоксида серы в дополнительном абсорбере. Метод ДК позволяет перерабатывать концентрированные газы.

- Контактный аппарат с промежуточным охлаждением. Сущность метода заключается в том, что газ, поступающий в контактный аппарат, пройдя через слой катализатора, попадает в теплообменник, там газ охлаждается, затем поступает на следующий слой катализатора. Этот метод так же увеличивает степень использования SO2 и содержание его в выхлопных газах.

5. Выбор катализатора

Наиболее активным катализатором является платина, однако она вышла из употребления вследствие дороговизны и легкой отравляемости примесями обжигового газа, особенно мышьяком. Окись железа дешевая, но при обычном составе газа - 7% SO2 и 11% О2 она проявляет каталитическую активность только при температурах выше 625 оС, т.е. когда хр 70%, и поэтому применялась лишь для начального окисления SO2 до достижения хр 50-60%. Ванадиевый катализатор менее активен, чем платиновый, но дешевле и отравляется соединениями мышьяка в несколько тысяч раз меньше, чем платина; он оказался наиболее рациональным и только он применяется в производстве серной кислоты. Ванадиевая контактная масса содержит в среднем 7% V2O5; активаторами являются окислы щелочных металлов, обычно применяют активатор К2О; носителем служат пористые алюмосиликаты. В настоящий момент катализатор применятся в виде соединения SiO2, K и/или Cs, V в различных пропорциях. Такое соединение оказалось наиболее устойчивым к кислоте и наиболее стабильным. Во всем мире его более корректное названия "ванадий - содержащий". Такой катализатор разработан специально для работы с невысокими температурами, что приводит в меньшим выбросам в атмосферу. Кроме того - такой катализ дешевле нежели калий/ванадиевый. Обычные ванадиевые контактные массы представляют собой пористые гранулы, таблетки или кольца.

6. Обоснование способа производства

Получение серной кислоты из сероводорода (мокрый катализ) на Пермском нефтеперерабатывающем заводе является малотоннажным производством (65тыс. тонн в год). В основном, это производство создано для того, чтобы снизить выбросы серосодержащих газов и максимально перерабатывать сырье, которое в данном случае является отходом процесса гидроочистки нефти.

Помимо использования сероводорода, в процессе получения серной кислоты протекают 3 реакции:

Н2S + 1,5О2 = SО2 + Н2О

2 + 0,5О2 <=> 3

3 + Н2О <=> Н24

Эти три реакции протекают с выделением значительного количества тепла, которое используется для различных нужд цеха производства серной кислоты и в различных целях предприятия: получение пара, который используется в данном производстве, получение пара высокого давления, который используют другие установки, подогрев воздуха, поступающий в котлы для сжигания сероводорода и в контактный аппарат.

Преимущество получения серной кислоты из сероводорода заключается в том, что данный процесс максимально использует и сероводород, и диоксид серы, что в значительной мере снижает выбросы в атмосферу, при проведении процесса, состоящего из 3 реакций, используются невысокие температуры и атмосферное давление, что значительно снижает энергозатраты по сравнению со схемой, которая применяет высокое давление. С учетом того, что в результате технологического процесса выделяется большое количество тепла, процесс, благодаря этому, протекает автотермично.

7. Стадии и химизм процесса

Процесс получения серной кислоты методом "мокрого" катализа состоит из следующих основных стадий.

1. Получение сернистого ангидрида (SO2) путем сжигания сероводородсодержащего газа по следующей реакции:

2H2S + 3O2 = 2SO2 + 2 H2O

2. Охлаждение дымовых газов и утилизация тепла реакции горения сероводорода в котле-утилизаторе с получением водяного пара.

3. Окисление сернистого ангидрида до серного ангидрида (SO3) на ванадиевом катализаторе в контактном аппарате (конвертере) R-104 по следующей реакции:

2SO2 + O3 = 2 SO3

4. Получение серной кислоты (H2SO4) путем конденсации в конденсаторе WSA У-109 по реакции:

SO3 + H2O = H2SO4

5. Для получения улучшенной серной кислоты (содержание окислов азота N2O3 менее 0,5 ppm) предусмотрена схема подачи гидразингидрата в поток серной кислоты, поступающей на участок концентрирования серной кислоты.

Гидразинсульфат, полученный при добавлении гидразина к серной кислоте, взаимодействует с нитрозилсернистой кислотой, обуславливающей содержание N2О3 в продуктовой кислоте:

4NOSO3H + N2H4· H2SO4 3N2 + 5H2SO4

Избыток гидразина окисляется с образованием элементарного азота:

N2H4·H2SO4 + O2 N2 +2H2O + H2SO4

Химический состав серной кислоты выражается формулой H2SO4. Структурная формула серной кислоты выглядит следующим образом:

Относительная молекулярная масса серной кислоты - 98,08 кг/кмоль.

Безводная серная кислота содержит 100 % H2SO4 или 81,63 % SO3 и 18,37 % мас. H2O. Это бесцветная маслянистая жидкость не имеющая запаха с температурой кристаллизации 10,37 ?С. Температура кипения безводной серной кислоты при давлении 1,01·105 Па (760 мм рт.ст.) составляет 298,2 ?С. Плотность при 20 ?С составляет 1830,5 кг/м3.

С водой и сернистым ангидридом серная кислота смешивается в любых пропорциях.

В процессе производства серной кислоты для окисления сернистого ангидрида в серный применяются ванадиевый катализатор. Он представляет собой пористое вещество, на которое нанесено активное комплексное соединение, содержащее пятиокись ванадия V2O5.

В данном случае применяется катализатор марки VK-WSA фирмы "Хальдор Топсе".

Температура зажигания катализатора 400-430 ?С. При температуре выше 620 ?С активность катализатора быстро снижается, т.к. при этом распадается активный комплекс, содержащий пятиокись ванадия (V2O5), а также разрушается структура носителя, что приводит к разрушению катализатора и образованию пыли.

Срок службы катализатора не менее 4 лет.

8. Термодинамический анализ

Расчет теплового эффекта реакции окисления SO2 в SO3:

2SO2 + O2 = 2 SO3

кДж

Q=-?Н=196,6 кДж

Реакция экзотермическая - протекает с выделением тепла.

?S=

?G=?H-T?S=-196,6-298*17,66=-5459,28

Энергия Гиббса значительно меньше нуля. Это значит, что реакция термодинамически возможна.

Расчет теплового эффекта реакции конденсации SO3:

SO3 + H2O = H2SO4

кДж

Q=-?Н=174,26 кДж

Реакция экзотермическая- протекает с выделением тепла.

?S=Дж

?G=?H-T?S=-174,26-298*-288,07=-86019,12

Энергия Гиббса значительно меньше нуля. Это значит, что реакция термодинамически возможна.

Таблица 1

Значения термодинамических величин

2SO2 + O2 = 2 SO3

-196,6 кДж

?S

17,66

Q

196,6

?G

-5459,28

Таблица 2

Значения Кр для реакции окисления SO2 при различных температурах

Температура, 0С

Температура, К

Константа равновесия, Кр

400

673

539,4

450

723

158,0

500

773

55,5

550

823

22,2

600

873

9,8

Вывод: реакция окисления SO2 наиболее полно протекает при невысоких температурах. Из этого следует, реакцию окисления SO2 целесообразно проводить при невысоких температурах. Повышение давления, по принципу Ле-Шателье, влияет положительно.

9. Кинетика процесса окисления диоксида серы

Константа скорости реакции: определяется из уравнения Аррениуса.

К=К0(-Еа/RT)=9,3*105*е(-79000/430*8,31)=0,13

Еа- энергия активации (79000Дж/моль)

R- газовая постоянная (8,31)

Е- температура

К0 - предэкспоненциальный множитель (9,3*105сек)

Расчет равновесной степени превращения

Таблица 3

Значения равновесной степени превращения при разных температурах

T, 0C

T, K

Kp

xp %

100

373

8,78

99,99

200

473

5,9

98,82

300

573

4,04

94,47

400

673

2,72

86,54

500

773

1,74

79,23

Таблица 4

Значения равновесной степени при различном содержании О2 и SO2 в газовой смеси

Т, оС

Содержание О2

Содержание SO2

хр

400

4

12

98,57

6

12

93,29

8

12

86,57

Исходя из полученных данных таблиц 3 и 4, можно сделать следующий вывод: с точки зрения равновесной степени превращения, процесс окисления диоксида серы нужно вести при низком содержании SO2 в газовой смеси и при низких температурах.

Расчет времени контактирования газовой смеси в контактном аппарате

Для того, чтобы рассчитать время контактирования, разделим слой катализатора на 5 частей.

Таблица 5

Время контактирования газа на первом слое катализатора

№ слоя

a

b

t

?, сек

1

4

12

430

0,362

2

4

12

0,827

3

4

12

0,407

4

4

12

0,752

5

4

12

0,84

? = ??? =3,188 сек

Общее время контактирования на первом слое котализатора? =3,188 сек.

Таблица 5

Время контактирования газа на втором слое катализатора

№ слоя

a

b

t

?, сек

1

4

12

400

0,953

2

4

12

1,124

3

4

12

1,352

4

4

12

1,448

5

4

12

1,503

? = ??? =6,38 сек

Расчет увеличения температуры

Тк= Тн + ??х=787,26 К

Тн, Тк -начальная и конечная температуры, К

? -коэффициент повышения температуры газа при изменении степени превращения на 1 % в адиабатических условиях

?х - повышение степени превращения

10. Конденсация серной кислоты

Конденсация парой серной кислоты. В некоторых случаях, газ, используемый для получения серной кислоты, не содержит вредных примесей (мышьяка, фтора). Тогда экономически целесообразно не подвергать такой газ промывке в специальной аппаратуре, а передавать сразу на контактирование. Обычно его не подвергают также осушке, поэтому такой процесс называют мокрым катализом (например, получение серной кислоты из сероводорода). Газ, поступающий на стадию получения серной кислоты, содержит SO3 и Н20, и образование серной кислоты происходит не в результате абсорбции серного ангидрида растворами кислоты, а вследствие образования паров H2SO4 и конденсации их в башне с насадкой или другой аппаратуре, предназначенной для этого процесса.

Процесс конденсации более интенсивен (идет с большой скоростью), чем процесс абсорбции. Кроме того, конденсация протекает при высокой температуре, что облегчает отвод и использование тепла.

При медленном охлаждении газа, содержащего SO3 и Н2О, можно провести процесс конденсации паров серной кислоты без образования тумана. Однако скорость процесса при этом мала и часто экономически выгоднее вести охлаждение с большей скоростью, допуская образование некоторого количества тумана, а затем выделить этот туман из газовой смеси. Чтобы туман легче осаждался в фильтрах, процесс ведут при таких условиях, в которых образуются крупные капли. Этому соответствует невысокое значение возникающего пересыщения и более высокая температура орошающей кислоты, чем при обычном процессе абсорбции ("горячая" абсорбция).

Конденсация кислоты идет внутри стеклянных трубок, в которые поступает технологический газ, содержащий пары кислоты. Внутри стеклянных трубок расположены спирали, служащие в качестве центров для осаждения серной кислоты. На конце каждой трубки установлен патронный фильтр (каплеотбойник), предназначенный для улавливания тумана серной кислоты. Внешняя поверхность труб (межтрубное пространство) охлаждается атмосферным воздухом. Очищенный газ с остаточной концентрацией серной кислоты менее 20 ррм и температурой не более 120 градусов цельсия сбрасывается в дымовую трубу.

Около 35 % (масс.) серной кислоты конденсируется в объеме, при этом пары превращаются в капли жидкости, переходят в туман и уносятся потоком газа.

Давление пара в котле-утилизаторе поддерживается достаточно высоким, чтобы температура теплообменных поверхностей. котла была выше точки росы серной кислоты (275 °С).

Несконденсированный газ из башни-конденсатора по футерованному газоходу через гидравлический затвор поступает в мокрые электрофильтры. Последние предназначены для улавливания изгазов тумана серной кислоты концентрацией 93-- 94 % (масс.). Гидравлический затвор может также служить брызгоуловителем. Очищенный газ выводится в атмосферу. Для первоначального прогрева катализатора в контактном аппарате используют пусковой подогреватель, в котором воздух нагревается за счет сжигания топливного газа.

Использование башни-конденсатора в производстве серной кислоты позволяет снизить количество стадий: в место 4 стадий процесс протекает в 3.

1 стадия - это сжигание сероводорода в котлах-утилизаторах;

2 стадия - это окисление диоксида серы в контактном аппарате

3 стадия - это конденсация паров серной кислоты в конденсаторе.

Данный аппарат позволяет избежать процесса абсорбции, что, в свою очередь, снижает количество аппаратов

11. Термодинамический анализ процесса конденсации

Расчет теплового эффекта реакции конденсации SO3:

SO3 + H2O = H2SO4

кДж

Q=-?Н=174,26 кДж

Реакция экзотермическая- протекает с выделением тепла.

?S=Дж

?G=?H-T?S=-174,26-298*-288,07=-86019,12

Энергия Гиббса значительно меньше нуля. Это значит, что реакция термодинамически возможна.

Н2Ог = Н2Ож

Таблица 3

Значения термодинамических величин

SO3 + H2O = H2SO4

Н2Ог = Н2Ож

-130,26 кДж

-44 кДж

?S

-120,55Дж

-118,78 Дж

Q

130,26 кДж

44 кДж

?G

-165656,44

-8603,56

Таблица 4

?

Значение ? 2-ух реакций

-174,26 кДж

?S

-239,33 Дж

Q

174,26 кДж

?G

-174260

При стандартных условиях реакция конденсации воды термодинамически возможна.

Реакция конденсации серной кислоты термодинамически возможна.

Расчет константы равновесия

G=-R*T*lnKp

lgKp=-G/2,3*8,31*Т

Kp=10-G/19,113*Т

Таблица 5

Значения констант равновесия в зависимости от температуры

Т,0С

Т,К

G

Kp

100

373

-84989,9

5,8*10-4

200

473

-61056,9

0,528

300

573

-49090,4

45,43

400

673

-37123,9

1,043*103

Из таблицы 5 видно, что с увеличением температуры реакции конденсации константа равновесия Кр падает.

Поэтому процесс конденсации целесообразно вести при повышенных температурах.

12. Описание технологической схемы процесса

Сырье на установку поступает двумя потоками:

- сероводородный газ установок Л-24-6, Л-24-7, Л-24-9, ГФУ под давлением от 0,35 до 0,6 кг/см2;

- кислый газ с блока регенерации амина установки РАиОКС (тит.520) под давлением 0,6 кг/см2.

На входе установки потоки объединяются и направляются в сепаратор для выделения из него жидкой фазы. На трубопроводе сероводородного газа перед сепаратором установлен смеситель для впрыска деминерализованной воды для абсорбции аммиака и МЭА. Расход деминерализованной воды контролируется ротаметром FI-211.

Жидкая фаза из сепаратора по уровню поз.LISA-320 насосом Р-207А,С откачивается на блок сероочистки ГФУ или установку регенерации амина и отпарки кислых стоков.

Давление сероводорода на установку регулируется регулятором давления поз.PIC-165, клапан которого установлен на трубопроводе сброса H2S на факел.

Расход сероводорода на установку регистрируется прибором поз.FIQ-210, температура - прибором поз.TI-039.

Уровень в сепараторе оборудован сигнализацией по низкому и высокому уровню поз.LISA-320.

Из сепаратора сероводород поступает на сжигание в котлы-утилизаторы КУ-А,В,С через регуляторы расхода поз.FIC-404 (КУ-А), FIC-405 (КУ-В), FIC-406 (КУ-С) с клапанами-отсекателями USY-401 (КУ-А), USY-402 (КУ-В), USY-403 (КУ-С).

Давление сероводорода к котлам-утилизаторам регулируется приборами поз.PISA-401 (КУ-А), поз.PIСA-402 (КУ-В), поз.PIСA-403 (КУ-С) с сигнализацией и блокировкой по минимальному давлению в линии сероводорода на входе в котел-утилизатор.

Сжигание сероводорода в топке котлов-утилизаторов КУ-А,В,С до двуокиси серы (SO2) происходит в токе воздуха, подаваемого от воздуходувки К-131.

Розжиг, разогрев и вывод на режим котлов-утилизаторов производится на топливном газе.

Общий расход топливного газа на установку регистрируется прибором поз.FIQ-632, давление топливного газа - прибором поз.PI-622, температура - поз.TI-603.

Топливный газ из заводской сети через электрозадвижку МО-019 поступает в сепаратор топливного газа, где происходит отделение газа от конденсата.

Уровень конденсата в сепараторе В-211 регистрируется прибором поз.LISA-999 с сигнализацией по низкому и высокому уровням поз.LISA-999 и блокировкой по минимальному уровню.

Конденсат из В-211 насосом Р-211А,В автоматически по максимальному уровню поз.LISA-999 (по минимальному насос останавливается) откачивается в линию газового конденсата с факельного хозяйства на АТ-6.

После сепаратора топливный газ подогревается в паровом подогревателе и подается к котлам-утилизаторам КУ-А,В,С.

Давление в линии топливного газа регулируется прибором поз.PICА-176, клапан которого установлен на линии топливного газа после.

Расход топливного газа к каждому котлу-утилизатору регулируется приборами поз.FIC-414 (КУ-А), FIC-420 (КУ-В), FIC-421 (КУ-С), клапаны которых установлены на соответствующих линиях топливного газа к котлам-утилизаторам.

На входе топливного газа в каждый котел-утилизатор смонтированы клапаны-отсекатели USY-416 (КУ-А), USY-417 ( КУ-В), USY-418 (КУ-С), входящие в систему блокировок котла-утилизатора.

Предусмотрена блокировка по минимальному давлению топливного газа на подаче газа к форсункам котла-утилизатора - поз.PSA-416 (КУ-А), PSA-417 (КУ-В), PSA-418 (КУ-С).

Схемой предусмотрена подача азота в линию топливного газа для продувки системы перед розжигом котла и при подготовке его к ремонту.

Котел-утилизатор КУ-А,В,С состоит из циклонной топки, где происходит сжигание H2S, камеры охлаждения, системы выработки пара за счет утилизации тепла сгорания газов, в которую входят: двухбарабанный (верхний и нижний) котел, конвективный пучок и пароперегреватель.

Циклонная топка состоит из двойной металлической обшивки, образованной двумя концентрично расположенными цилиндрами из листовой стали. В полости между обшивками циркулирует горячий воздух, который поступает из межобшивочного пространства котла.

Подвод горячей смеси из сероводорода и воздуха осуществляется тангенциально через сопловое устройство у переднего торца циклона. Сопловое устройство представляет собой воздушный канал, проходящий через обмуровку котла под углом 40 ? к горизонтальной оси.

Сероводород поступает в воздушный канал через отверстия в верхней стенке канала с давлением, большим, чем давление воздуха, и смешивается с ним.

Воспламенение смеси происходит на срезе канала, горение - внутри циклона при вращательном движении газового потока.

Для устранения неполного сжигания сероводорода в район пережима циклонной топки подается небольшое количество вторичного воздуха.

Розжиг сероводорода осуществляется с помощью топливного газа, поступающего в топку через запальное устройство.

Камера охлаждения образована левым и правым боковыми экранами и задней стенкой. В ней смонтировано три взрывных предохранительных клапана мембранного типа.

Пароперегреватель змеевикового типа расположен за конвективным пучком.

Верхний барабан с внутрибарабанным устройством предназначен для разделения пароводяной смеси на насыщенный пар и котловую воду, питания водой нижнего барабана и отвода насыщенного пара.

Нижний барабан предназначен для питания водой всех подъемных труб котла.

Обшивка котла двойная. Между внутренними и наружными листами обшивки проходит воздух, поступающий для горения. Давление воздуха между листами обшивки при всех режимах котла выше давления газа в котле, чем обеспечивается газовая плотность котла.

Обмуровка фронтальной стенки, потолка блока котла и обмуровка циклонной топки выполнена из огнеупорного бетона.

Расход воздуха в топку котла утилизатора КУ-А,В,С регулируется приборами поз.FIC-422 соответственно, клапаны которых установлены на подаче воздуха в котел-утилизатор. Регулирование расхода воздуха входит в каскадную схему управления сжигания сероводорода и поддерживает соотношение воздух-сероводород в интервале (10-12):1.

Давление воздуха на входе в котел-утилизатор КУ-А,В,С регистрируется прибором поз.PISА-420, PISА-421, PISА-422 соответственно. Предусмотрена сигнализация и блокировка по минимальному давлению на входе в каждый котел-утилизатор.

Предусмотрена блокировка "контроль наличия пламени" поз.BSA-401 (КУ-А), поз.BSA-402 (КУ-В), поз.BSA-403 (КУ-С), при срабатывании которой происходит останов котла-утилизатора.

Розжиг котла-утилизатора КУ-А,В,С на топливном газе и разогрев до перехода на сжигание сероводорода производится с выводом дымовых газов в атмосферу через свечу на выходе технологического газа из котла до шибера МО-22 (КУ-А), МО-23 (КУ-В), МО-24 (КУ-С).

Температура технологического газа на выходе КУ-А,В,С регулируется прибором поз.TICSA-407,408,409 посредством изменения расхода воздуха на сжигание сероводорода, выдерживая заданное соотношение воздух/газ. Если не выдерживается соотношение воздух/газ и температура выходит за пределы заданного диапазона температур, то происходит снижение (при увеличении температуры) и увеличение (при уменьшении температуры) расхода сероводорода в котел-утилизатор.

Ввод питательной воды, поступающей от насосов Р-201А,В,С, осуществляется в верхний барабан котла при помощи распределительной трубы на погруженный дырчатый лист.

Уровень питательной воды в верхний барабан котла-утилизатора регулируется приборами поз.LICА-304 (КУ-А), LICА-308 (КУ-В), LICА-312 (КУ-С), клапаны-регуляторы которых установлены на линии питательной воды в котел-утилизатор.

Расход питательной воды в котлы-утилизаторы КУ-А,В,С регистрируется приборами поз.FI-214,215,216, установленными на линии подачи питательной воды в котлы-утилизаторы соответственно.

Давление питательной воды на входе в котлы-утилизаторы регистрируется приборами поз.PI-115,116,117; температура - приборами поз.TI-016,019,026, установленными на входе питательной воды в котел.

Давление в барабане котла-утилизатора регистрируется прибором поз.PIА-155 (КУ-А), PIА-157 (КУ-В), PIА-159 (КУ-C) с сигнализацией по низкому и высокому давлению.

Уровень воды в верхнем барабане котла оборудован сигнализацией по низкому и высокому значению; блокировкой по минимальному и максимальному уровню воды поз.LSA-306, LSA-307 (КУ-А); LSA-310, LSA-311 (КУ-В); LSA-314, LSA-315 (КУ-С).

Вода из верхнего барабана котла опускается в нижний по пяти необогреваемым трубам (четыре из чистого и одна из солевого отсеков), на выходе которых установлены решетки для предотвращения захвата пара в опускные трубы. Затем котловая вода из нижнего барабана поступает в испарительные трубки радиантного экрана и конвекционного пучка. Пароводяная смесь из испарительных трубок поступает к отбойным щиткам верхнего барабана, которые обеспечивают отделение пара от капель воды. Насыщенный пар из верхней части барабана, пройдя сепарационное устройство, поступает в пароперегреватель, где нагревается до температуры 354 ?С. Пар из пароперегревателя поступает в редуцирующее устройство РОУ-40/15 для снижения давления с 34,0-38,5 кгс/см2 до 15 кгс/см2.

Давление в паровой системе котлов-утилизаторов КУ-А,В,С регулируется прибором поз.PICА-160, клапан-регулятор которого установлен на линии вывода пара в РОУ-40/15.

Вода непрерывной продувки из солевых отсеков верхнего барабана котла поступает в емкости продувок.

Вода периодической продувки при дренировании котлов также поступает в барбатер-расширитель периодических продувок.

Из емкостей вода, охладившись в теплообменнике, где подогревает питательную воду деаэратора B-201, поступает в емкость. Из емкости насосом вода откачивается на установку ЭЛОУ.

Отбор проб котловой воды из линии непрерывной продувки осуществляется через холодильник отбора проб.

Технологический газ из котла-утилизатора КУ-А,В,С с температурой 530-650 ?С с объёмной долей SO2 в пределах 7,5-8,5 % поступает в смеситель Х-103, где смешивается с воздухом и перегретым паром.

Для разбавления технологического газа используется воздух, выходящий после охлаждения конденсатора и нагнетаемый воздуходувкой. Разбавление технологического газа воздухом осуществляется до объёмной доли SO2 3,5-4,5 %, что необходимо для снижения точки росы кислоты, содержащейся в нем, и для повышения степени окисления SO2 в SO3.

Пар в технологический газ подается из системы пара среднего давления, предварительно подогретый в электроподогревателе Е-163 до температуры 250-300 ?С, и служит для поддержания влажности технологического газа с целью обеспечения достаточной конденсации серной кислоты в конденсаторе WSA E-109.

Общий расход технологического газа перед смешением с воздухом и паром регистрируется прибором поз.FI-702, температура - прибором поз.TIА-1103, объёмная доля SO2 - автоматическим газоанализатором AIА-501.

Расход пара на смешение регулируется прибором поз.FIC-701, клапан-регулятор которого установлен на линии пара в электроподогревателе.

Температура пара после электроподогревателя регистрируется прибором поз.TICА-1101и регулируется системой управления ТЭНами электроподогревателя.

Расход воздуха на смешение регулируется прибором поз.FIC-703, клапан которого управляет лопатками приемного шибера воздуходувки.

Приборы расхода воздуха и пара связаны в каскадную схему регулирования температуры поз.TICА-1105 технологического газа на входе в контактный аппарат (конвертер) для поддержания температуры в пределах 385-430 ?С.

Технологический газ из смесителя с температурой 400-430 ?С направляется в контактный аппарат (конвертер), где происходит каталитическое превращение двуокиси серы (сернистый ангидрид) в серный ангидрид на двух слоях ванадиевого катализатора VK-WSA с межслойным охлаждением контактного газа.

Контактный аппарат представляет собой цилиндрический аппарат из нержавеющей стали, с двумя слоями катализатора высотой 820 мм и 1640 мм соответственно.

На первом слое катализатора примерно 90-93 % SO2 превращается в SO3, при этом температура на выходе 1-го слоя повышается до 500-550 ?С. Для снятия тепла реакции газ с 1-го слоя охлаждается в рибойлере-газоохладителе Е-105 до температуры 380-410 ?С, где вырабатывается пар 62 кгс/см2, затем поступает в смеситель, а оттуда - на второй слой катализатора в. На втором слое происходит окончательное превращение SO2 в SO3, при этом температура на выходе повышается до 410-430 ?С.

Температура газа на выходе из газоохладителя регулируется прибором поз.TICА-1107, клапан-регулятор которого управляет шиберами на байпасе газа трубного пучка газоохладителя .

Предусмотрена блокировка по максимальной температуре газа на входе в контактный аппарат - поз.TISA-1104; сигнализация высокой температуры газа на выходе первого слоя - поз.TIА-1106; сигнализация низкой и высокой температуры на выходе из газоохладителя - поз.TICА-1107, сигнализация низкой и высокой температуры на входе в E-108 - поз.TIА-1109.

Газ после контактного аппарата, предварительно охладившись в рибойлере-газоохладителе, направляется в конденсатор WSA для конденсации серной кислоты из газа.

Температура общего потока на входе в конденсаторе регистрируется прибором поз.TIА-1111 с сигнализацией по низкой и высокой температуре. Предусмотрена блокировка по максимальной температуре поз.TISA-1110 газа на входе в конденсатор.

Для снижения выбросов SO3 в атмосферу вместе с отработанным газом на выходе конденсатора WSA предусмотрен блок управления кислыми парами. Снижение выбросов SO3 достигается за счет подачи в газовый поток на вход в рибойлер паров силиконового масла, которое служит центрами конденсации серной кислоты в газе и тем самым усиливает конденсацию кислоты в конденсаторе WSA.

Поступление котловой воды в рибойлеры-газоохладители, обеспечивается за счет естественной циркуляции воды из барабана-паросборника

За счет утилизации тепла газового потока в рибойлерах, вырабатывается пар с давлением 62 кгс/см2, который из барабана-паросборника выводится к РОУ-40/15 через регулятор давления поз.PICSА-902.

Подача питательной воды осуществляется насосом Р-161А,В из деаэратора.

Уровень воды регулируется прибором поз.LICА-801, клапан-регулятор которого установлен на линии питательной воды от насоса Р-161А,В, с сигнализацией по высокому и низкому уровню. Предусмотрена блокировка по минимальному уровню поз.LSA-802 в барабане-паросборнике В-162.

Для повышения надежности работы паросборника смонтирован дополнительный уровнемер поз.LIА-803.

Для поддержания химического состава котловой воды (уменьшения солесодержания) в системе предусмотрена автоматическая продувка из нижних точек по клапанам:

HIC-753 тип "НЗ"- В-162;

HV-791 - E-105;

HV-792, HV-793, HV-794, HV-795 - Е-108.

Продувочная вода из В-162, Е-105, Е-108 поступает в емкость продувок В-206А, откуда совместно с продувочной водой котлов-утилизаторов КУ-А,В,С через теплообменник Е-202 сбрасывается в емкость В-203 и насосом Р-203А,В откачивается на установку ЭЛОУ.

Газ в Е-109 поступает двумя потоками.

Температура поверхности трубопроводов входа газа регистрируется приборами поз.TIА-1112, TIА-1113, установленными на входе каждого потока в Е-109, снижение показаний которых определяет уровень серной кислоты в Е-109 и возможную забивку труб аппарата.

Конденсатор WSA Е-109 представляет собой вертикальный аппарат, состоящий из 5-ти модулей, каждый из которых содержит 720 стеклянных трубок, длиной 6,8 м и диаметром 40 мм. Внутри стеклянных трубок расположены металлические спирали, служащие центрами для осаждения серной кислоты. На конце каждой трубки установлен патронный фильтр (каплеотбойник), предназначенный для улавливания тумана серной кислоты. Сборник кислоты расположен в нижней части конденсатора WSA. Корпус Е-109 футерован кислотостойким кирпичом и плиткой.

В конденсаторе Е-109 газ поднимается вверх внутри стеклянных труб, на внутренних поверхностях которых происходит конденсация серной кислоты за счет охлаждения воздухом, поступающим от воздуходувки К-130А,В между трубками.

Очищенный газ с остаточной массовой долей SO3 менее 20 ррм и температурой не более 120 ?С сбрасывается в дымовую трубу.

Массовая доля SO3 в очищенном газе измеряется прибором AIА-652 с сигнализацией высокого содержания SO3.

Температура очищенного газа регулируется прибором поз.TICА-1115, клапан-регулятор которого установлен на линии охлаждающего воздуха в подогреватель ХОВ Е-133 (сброс воздуха помимо Е-109).

Предусмотрена блокировка по максимальной температуре газа на выходе из Е-109 поз.TISA-1116.

Перепад между входом и выходом газа конденсатора Е-109 измеряется прибором поз.PDI-903.

Воздух на охлаждение конденсатора WSA Е-109 из атмосферы через воздушный фильтр А-133А,В забирается воздуходувкой К-130А,В и подается в межтрубное пространство Е-109 противотоком очищенному газу.

После конденсатора Е-109 охлаждающий воздух разделяется на потоки:

один поток поступает на прием воздуходувки К-131, которая подает воздух на разбавление технологического газа после КУ-А,В,С;

второй поток - воздуходувкой К-132 подается в топку котлов-утилизаторов КУ-А,В,С на сжигание сероводорода;

часть потока выводится на прием воздуходувки К-130А,В для поддержания температуры воздуха на нагнетании воздуходувки в пределах 20-35 ?С;

избыток воздуха сбрасывается на свечу через подогреватель ХОВ Е-133, утилизирующий тепло охлаждающего воздуха.

Температура воздуха на входе в Е-109 регулируется прибором поз.TIC-1117, шибер с пневмоприводом установлен на линии подачи части горячего воздуха на прием воздуходувки К-130А,В.

Температура воздуха после фильтра А-133А,В измеряется прибором поз.TIА-1123.

Предусмотрена сигнализация по низкому давлению воздуха на приеме воздуходувок К-130А,В - поз.PIA-911,912 соответственно.

Для предотвращения утечки технологического газа в охлаждающий воздух поддерживается перепад давления между системой охлаждающего воздуха и технологического газа в пределах 10-41 мм вод.ст. прибором поз.PDICSA-904, который управляет приемными шиберами воздуходувок К-130А,В. Предусмотрена сигнализация по низкому и блокировка по минимальному перепаду давления между системой охлаждающего воздуха и технологического газа конденсатора Е-109.

Сконденсированная серная кислота из конденсатора WSA Е-109 стекает вниз аппарата и направляется в емкость кислоты В-120.

Для снижения температуры кислоты, поступающей из Е-109, с 270 до 65 ?С в горячий поток кислоты добавляется холодный поток циркулирующей кислоты от насоса Р-121А,В.

Кислота из емкости В-120 насосом Р-121А,В прокачивается через пластинчатый холодильник кислоты Е-122, где охлаждается оборотной водой. и направляется:

основная часть - в качестве рециркулята на смешение с горячей кислотой из Е-109,

балансовое количество серной кислоты насосами Р-123А,В откачивается с установки.

Температура серной кислоты на приеме насосов Р-121А,В регистрируется прибором поз.TIА-1119 с сигнализацией по высокой температуре. Предусмотрена блокировка по максимальной температуре поз.TISA-1120 серной кислоты, поступающей на прием насосов Р-121А,В.

Уровень кислоты в емкости В-120 регулируется приборами поз.LICА-804, LISA-805, клапан установлен на линии откачки кислоты насосами Р-123А,В с установки на участок концентрирования серной кислоты тит.75-11 и на установку химводоподготовки тит.517 ПГПН. Существует два трубопровода откачки серной кислоты в парк 75-11, один из которых находится в резерве.

Предусмотрена сигнализация по низкому и высокому уровню - поз.LICА-804 и блокировка по минимальному и максимальному уровню - поз.LISA-805 емкости В-120.

Предусмотрена сигнализация по низкому и блокировка по минимальному давлению - поз.PICSА-906 в линии рециркуляции серной кислоты.

Массовая доля циркулирующей кислоты в пределах 93-98 % контролируется анализатором поз.AICА-653 и поддерживается автоматической подачей воды из емкости В-150 в линию циркуляции кислоты с помощью отсечного клапана USV 1207.


Подобные документы

  • Технология получения серной кислоты контактным методом. Разработка технологической схемы включающей, сжигания серы, окисления диоксида серы и его абсорбции с получением товарной серной кислоты. Выбор и расчет основного аппарата – контактного аппарата.

    дипломная работа [551,2 K], добавлен 06.02.2013

  • Структурная, химическая формула серной кислоты. Сырьё и основные стадии получения серной кислоты. Схемы производства серной кислоты. Реакции по производству серной кислоты из минерала пирита на катализаторе. Получение серной кислоты из железного купороса.

    презентация [759,6 K], добавлен 27.04.2015

  • Применение, физические и химические свойства концентрированной и разбавленной серной кислоты. Производство серной кислоты из серы, серного колчедана и сероводорода. Расчет технологических параметров производства серной кислоты, средства автоматизации.

    дипломная работа [1,1 M], добавлен 24.10.2011

  • Товарные и определяющие технологию свойства серной кислоты. Сырьевые источники. Современные промышленные способы получения серной кислоты. Пути совершенствования и перспективы развития производства. Процесса окисления сернистого ангидрида. Катализатор.

    автореферат [165,8 K], добавлен 10.09.2008

  • Анализ технологического процесса производства серной кислоты. Получение обжигового газа из серы. Контактное окисление диоксида серы. Материальный баланс для печи сжигания серы. Расчет сушильной башни, моногидратного абсорбера, технологических показателей.

    курсовая работа [1,1 M], добавлен 03.06.2014

  • Общая схема сернокислотного производства. Сырьевая база для производства серной кислоты. Основные стадии процесса катализа. Производство серной кислоты из серы, из железного колчедана и из сероводорода. Технико-экономические показатели производства.

    курсовая работа [7,1 M], добавлен 24.10.2011

  • Свойства, области использования, сырье и технология изготовления серной кислоты, а также характеристика прогрессивных способов и перспектив развития ее производства. Анализ динамики трудозатрат при развитии технологического процесса серной кислоты.

    контрольная работа [228,6 K], добавлен 30.03.2010

  • Расчет материального баланса печи кипящего слоя в процессе обжига колчедана, теплового баланса печи обжига колчедана. Вычисление концентраций в обжиговом газе перед контактным аппаратом. Сравнительное описание катализаторов производства серной кислоты.

    контрольная работа [94,4 K], добавлен 18.10.2012

  • Характеристика исходного сырья и готового продукта, требования к ним. Физико-химические основы производства, общее описание технологической схемы. Составление материального и теплового баланса печного отделения (для сжигания серы, котла-утилизатора).

    курсовая работа [348,9 K], добавлен 21.02.2016

  • Физико-химические основы процессов окисления SO2 в системе двойного контактирования и абсорбции. Расчет значения констант равновесия и выхода продукции. Материальный и тепловой балансы процессов. Разработка технологической схемы получения серной кислоты.

    дипломная работа [207,8 K], добавлен 23.06.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.