Энергетические ресурсы Мирового океана

Источники энергии в Мировом океане. Основные формы энергии морей и океанов. Особенности энергии волн, приливно-отливных движений воды, течений. Использование температурного градиента, ресурсы тепловой энергии океана. Соленая энергия морей и океанов.

Рубрика Экология и охрана природы
Вид реферат
Язык русский
Дата добавления 10.07.2011
Размер файла 43,2 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Содержание

  • Введение
  • 1. Энергетические ресурсы Мирового океана
  • 2. Основные формы энергии морей и океанов
  • 2.1 Энергия волн
  • 2.2 Энергия приливов
  • 2.3 Энергия течений
  • 2.5 Ресурсы тепловой энергии океана
  • 2.6 Солёная энергия морей и океанов
  • Заключение
  • Список используемой литературы

Введение

Человечеству нужна энергия, причем потребности в ней увеличиваются с каждым годом. Вместе с тем запасы традиционных природных топлив (нефти, угля, газа и др.) конечны. Ограничены также и запасы ядерного топлива - урана и тория, из которого можно получать в реакторах-размножителях плутоний. И здесь есть два пути: ресурсосбережение и использование нетрадиционных возобновляемых источников энергии.

Многие тысячелетия служит человеку энергия, заключенная в воде. Известно, что запасы энергии в Мировом океане колоссальны, ведь две трети земной поверхности (361 млн км2) занимают моря и океаны.

Акватория Тихого океана составляет 180 млн км2. Атлантического - 93 млн км2, Индийского - 75 млн км2. Так, тепловая (внутренняя) энергия, соответствующая перегреву поверхностных вод океана по сравнению с донными, скажем, на 20 градусов, имеет величину порядка 1026 Дж. Кинетическая энергия океанских течений оценивается величиной порядка 1018 Дж.

Однако пока люди умеют использовать лишь ничтожные доли этой энергии, да и то ценой больших и медленно окупающихся капиталовложений. Тем не менее, в качестве потенциального резерва энергетические ресурсы Мирового океана имеют большое значение, т.к. запасы энергии, аккумулированной в мировом океане, практически неисчерпаемы.

Вопрос лишь в том, как поставить их на службу человечеству. Этот факт побуждает технологов и инженеров активно работать над самыми разными концепциями ее практического использования.

Цель данной работы: рассмотреть источники энергии мирового океана.

Работа состоит из введения, основной части, заключения и списка литературы.

1. Энергетические ресурсы Мирового океана

В Мировом океане заключены огромные, поистине неисчерпаемые ресурсы механической и тепловой энергии, к тому же постоянно возобновляющейся.

Особенно привлекает внимание энергия приливов (точнее, приливно-отливных движений воды). Общеизвестно, что приливы и отливы происходят два раза в сутки. В открытом океане амплитуда между полной и малой водой составляет примерно 1 м, но в пределах континентального шельфа, особенно в заливах и эстуариях рек, она бывает значительно большей. Суммарную энергетическую мощность приливов обычно оценивают от 2,5 млрд до 4 млрд кВт. Добавим, что энергия только одного приливно-отливного цикла достигает примерно 8 трлн кВт-ч, а это лишь немногим меньше общей мировой выработки электроэнергии в течение целого года. Следовательно, энергия морских приливов - неисчерпаемый источник энергии.

Добавим и такую отличительную черту приливной энергии, как ее постоянство. К тому же он "работает по графику" с точностью до нескольких минут. Тем не менее ученые считают, что технически возможно и экономически выгодно использовать лишь очень небольшую часть приливного потенциала Мирового океана (по некоторым оценкам, только 2 %). При определении технических возможностей большую роль играют такие факторы, как характер береговой линии, форма и рельеф дна, сила волн и ветра.

Опыт показывает, что для эффективной работы ПЭС высота приливной волны должна быть не менее 5 м. Чаще всего такие условия возникают в узких заливах и эстуариях рек. Но подобных мест на земном шаре не так уж много: по разным источникам 25, 30 или 40.

Считается, что наибольшими запасами приливной энергии обладает Атлантический океан. В его северо-западной части, на границе США и Канады, находится залив Фанди, представляющий собой внутреннюю суженную часть более открытого залива Мэн. Этот залив знаменит самыми высокими в мире приливами, достигающими 18 м. Очень высоки приливы и у берегов Канадского Арктического архипелага. Например, у побережья Баффиновой Земли они поднимаются на 15,6 м. В северо-восточной части Атлантики приливы до 10 и даже 13 м наблюдаются в проливе Ла-Манш у берегов Франции, в Бристольском заливе и Ирландском море у берегов Великобритании и Ирландии.

Велики также запасы приливной энергии в Тихом океане. В его северо-западной части особенно выделяется Охотское море, где в Пенжинской губе (северо-восточная часть залива Шелихова) высота приливной волны составляет 9-13 м. На восточном побережье Тихого океана благоприятные условия для использования приливной энергии имеются у берегов Канады, Чилийского архипелага на юге Чили, в узком и длинном Калифорнийском заливе Мексики.

В пределах Северного Ледовитого океана по запасам приливной энергии выделяются Белое море, в Мезенской губе которого приливы имеют высоту до 10 м, и Баренцево море у берегов Кольского полуострова (приливы до 7 м).

В Индийском океане запасы такой энергии значительно меньше. В качестве перспективных для строительства ПЭС здесь обычно называют залив Кач Аравийского моря (Индия) и северо-западное побережье Австралии.

К числу энергетических ресурсов Мирового океана относят кинетическую энергию волн. Энергию ветровых волн суммарно оценивают в 2,7 млрд кВт в год. Опыты показали, что ее следует использовать не у берега, куда волны приходят ослабленными, а в открытом море или в прибрежной зоне шельфа. В некоторых шельфовых акваториях волновая энергия достигает значительной концентрации: в США и Японии - около 40 кВт на 1 м волнового фронта, а на западном побережье Великобритании - даже 80 кВт на 1 м.

Еще один энергетический ресурс Мирового океана - океанические (морские) течения, которые обладают огромным энергетическим потенциалом. Достаточно вспомнить, что расход Гольфстрима даже в районе Флоридского пролива составляет 25 млн м3/с, что в 20 раз превышает расход всех рек земного шара. А после того как Гольфстрим уже в океане соединяется с Антильским течением, его расход возрастает до 82 млн м3/с. Уже не раз предпринимались попытки подсчитать потенциальную энергию этого потока шириной 75 км и толщиной 700-800 м, двигающегося со скоростью 3 м/с.

Использование температурного градиента, подразумевает источник не механической, а тепловой энергии, заключенной в массе океанских вод.

Мировой океан - крупнейший естественный коллектор солнечного излучения. В нем между теплыми, поглощающими солнечное излучение поверхностными водами и более холодными придонными достигается разность температур в 20С. Это обеспечивает непрерывно пополняемый запас тепловой энергии, которая принципиально может быть преобразована в другие виды. Сам термин "преобразование тепловой энергии океана" (ОТЕС) - "ocean termal energy conversion" - означает преобразование некоторой части этой тепловой энергии в работу и далее в электроэнергию. Преобразование тепловой энергии, запасенной океаном, в механическую энергию и далее в электроэнергию требует создания тепловой машины, тем или иным способом использующей естественный перепад температур между прогретыми поверхностными и охлажденными глубинными слоями вод.

В целом же энергетические ресурсы Мирового океана правильнее было бы отнести к ресурсам будущего.

2. Основные формы энергии морей и океанов

Основные виды энергии морей и океанов - энергия приливов, волн, океанических (морских) течений и температурного градиента. Рассмотрим основные формы энергии, которые могут быть доступны на современном уровне технического развития или в ближайшем будущем.

2.1 Энергия волн

Огромные количества энергии можно получить от морских волн. Идея получения электроэнергии от морских волн была изложена еще в 1935 г. советским ученым К.Э. Циолковским. В основе работы волновых энергетических станций лежит воздействие волн на рабочие органы, выполненные в виде поплавков, маятников, лопастей, оболочек и т.п. Механическая энергия их перемещений с помощью электрогенераторов преобразуется в электрическую.

В этом классе преобразователей остановимся в первую очередь на разработке профессора Эдинбургского университета Стефана Солтера, названной в честь создателя "утка Солтера". Техническое название такого преобразователя - колеблющееся крыло. Форма преобразователя обеспечивает максимальное извлечение мощности.

Волны, поступающие слева, заставляют утку колебаться. Цилиндрическая форма противоположной поверхности обеспечивает отсутствие распространения волны направо при колебаниях утки вокруг оси. Мощность может быть снята с оси колебательной системы с таким расчетом, чтобы обеспечить минимум отражения энергии. Отражая и пропуская лишь незначительную часть энергии волн (примерно 5%), это устройство обладает весьма высокой эффективностью преобразования в широком диапазоне частот возбуждающих колебаний.

энергетический ресурс мировой океан

Другой вариант волнового преобразователя с качающимся элементом - контурный плот Коккерелла. Его модель также в 1/10 величины испытывалась в том же, что и "утка Солтера", году в проливе Солент вблизи г. Саутгемптона. Контурный плот - многозвенная система из шарнирно соединенных секций. Как и "утка", он устанавливается перпендикулярно к фронту волны и отслеживает ее профиль. Детальные лабораторные испытания модели плота в масштабе 1/100 показали, что его эффективность составляет около 45 %. Это ниже, чем у "утки" Солтера (но плот привлекает другим достоинством: близость конструкции к традиционным судостроительным). Изготовление таких плотов не потребует создания новых промышленных предприятий и позволит поднять занятость в судостроительной промышленности.

Кроме того, существуют преобразователи, использующие энергию колеблющегося водяного столба. При набегании волны на частично погруженную полость, открытую под водой, столб жидкости в полости колеблется, вызывая изменения давления в газе над жидкостью. Полость может быть связана с атмосферой через турбину. Поток может регулироваться так, чтобы проходить через турбину в одном направлении, или может быть использована турбина Уэлса. Уже известны по крайней мере два примера коммерческого использования устройств на этом принципе - сигнальные буи, внедренные в Японии Масудой и в Великобритании сотрудниками Королевского университета Белфаста. Более крупное и впервые включенное в энергосеть устройство построено в Тофтестоллене (Норвегия) фирмой Kvaernor Brug A/S. Главное преимущество устройств на принципе водяного колеблющегося столба состоит в том, что скорость воздуха перед турбиной может быть значительно увеличена за счет уменьшения проходного сечения канала. Это позволяет сочетать медленное волновое движение с высокочастотным вращением турбины. Кроме того, здесь создается возможность удалить генерирующее устройство из зоны непосредственного воздействия соленой морской воды. Преимущества подводных устройств состоят в том, что эти устройства позволяют избежать штормового воздействия на преобразователи.

В настоящее время волноэнергетические установки используются для энергопитания автономных буев, маяков, научных приборов. Попутно крупные волновые станции могут быть использованы для волнозащиты морских буровых платформ, открытых рейдов, марикультурных хозяйств. Началось промышленное использование волновой энергии. В мире уже около 400 маяков и навигационных буев получают питание от волновых установок. В Индии от волновой энергии работает плавучий маяк порта Мадрас. В Норвегии с 1985 г. действует первая в мире промышленная волновая станция мощностью 850 кВт. Датская компания Wave Star Energy смонтировала экспериментальную установку в Северном море возле мыса Ханстхольм на северо-западе страны. Климат здесь суровый, сильные ветры и высокие волны - явление круглогодичное и практически постоянное. Сама установка представляет собой продолговатую металлическую конструкцию на четырех опорах, с одной стороны платформы выступают два рычага, к концам которых прикреплены огромные округлые поплавки диаметром 5 метров. Поплавки изготовлены из стекловолокна. В рабочем положении они опущены на воду и раскачиваются волнами, что заставляет рычаги перемещаться вверх-вниз. Каждый из рычагов соединен с гидравлическим цилиндром, и через них движение поплавков передается, в конечном счете, на вал электрогенератора. Каждый из поплавков способен производить от 25 до 50 киловатт электроэнергии - в зависимости от высоты волн. Создание волновых электростанций определяется оптимальным выбором акватории океана с устойчивым запасом волновой энергии, эффективной конструкцией станции, в которую встроены устройства сглаживания неравномерного режима волнения. Считается, что эффективно волновые станции могут работать при использовании мощности около 80 кВт/м. Опыт эксплуатации существующих установок показал, что вырабатываемая ими электроэнергия пока в 2-3 раза дороже традиционной, но в будущем ожидается значительное снижение ее стоимости.

2.2 Энергия приливов

Приливные колебания уровня в огромных океанах планеты вполне предсказуемы. Основные периоды этих колебаний - суточные продолжительностью около 24 ч и полусуточные - около 12 ч 25 мин. Разность уровней между последовательными самым высоким и самым низким уровнями воды - высота прилива R. Диапазон изменения этой величины составляет 0,5-10 м. Первая цифра наиболее характерна, вторая достигается и даже превосходится лишь в некоторых особенных местах вблизи побережья континентов. Во время приливов и отливов перемещение водных масс образует приливные течения, скорость которых в прибрежных проливах и между островами может достигать примерно 5 м/с. Поднятую на максимальную высоту во время прилива воду можно отделить от моря дамбой или плотиной в бассейне площадью A. Места с большими высотами приливов обладают большими потенциалами приливной энергии. Однако не только этот фактор важен для развития приливной энергетики: надо принимать во внимание и капитальные затраты, и будущую прибыль от создания соответствующих приливных электростанций (ПЭС). Энергия приливных течений может быть преобразована подобно тому, как это делается с энергией ветра.

Преобразование энергии приливов использовалось для приведения в действие сравнительно маломощных устройств еще в средневековой Англии и в Китае. Из современных ПЭС наиболее хорошо известны крупномасштабная электростанция Ранс мощностью 240 МВт, расположенная в эстуарии реки Ла Ранс, впадающей в залив Сен Мало (Бретань, Франция), и небольшая опытная станция мощностью 400 кВт в Кислой губе на побережье Баренцева моря (Россия). Из мест, которые давно приковывают внимание гидростроителей, следует назвать эстуарий реки Северн в Великобритании и залив Фанди на восточном побережье Северной Америки на границе между США и Канадой.

Высота, ход и периодичность приливов в большинстве прибрежных районов хорошо описаны и проанализированы благодаря потребностям навигации и океанографии. Поведение приливов может быть предсказано достаточно точно, с погрешностью менее 4%. Таким образом, приливная энергия оказывается весьма надежной формой возобновляемой энергии.

Вблизи побережья и между островами приливы могут создавать достаточно сильные течения, пригодные для преобразования энергии. Устройства для преобразования энергии приливных течений будут практически сходны с аналогичными устройствами, приводимыми в действие течениями рек. Уже разработан целый ряд современных устройств для преобразования энергии приливных течений. Капитальные затраты на создание подобных устройств в расчете на 1 кВт установленной мощности достаточно высоки, поэтому их строительство целесообразно лишь в отдаленных районах с высокими скоростями приливных течений, где любые альтернативные источники энергии еще более дороги.

Основы теории приливной энергетики достаточно просты. Приливные электростанции работают по следующему принципу: в устье реки или заливе строится плотина, в корпусе которой установлены гидроагрегаты. За плотиной создается приливный бассейн, который наполняется приливным течением, проходящим через турбины. При отливе поток воды устремляется из бассейна в море, вращая турбины в обратном направлении. Считается экономически целесообразным строительство ПЭС в районах с приливными колебаниями уровня моря не менее 4 м. Проектная мощность ПЭС зависит от характера прилива в районе строительства станции, от объема и площади приливного бассейна, от числа турбин, установленных в теле плотины.

На практике в системе, использующей срабатывание запаса воды из заполняемого в прилив бассейна, несмотря на достаточно высокую эффективность преобразования получить максимальную мощность нельзя. Этому препятствуют следующие обстоятельства. Генерирование электроэнергии не может быть обеспечено вплоть до условий малой воды, таким образом, часть потенциальной энергии прилива не может быть преобразована. Турбины ПЭС должны работать при низком напоре и при больших скоростях потоков - условия необычные для имеющейся обычной гидроэнергетической практики. Невозможно равномерно снабжать потребителей электроэнергией из-за изменения уровня воды в бассейне. ПЭС может работать как при опустошении бассейна, так и при его наполнении. Оптимальная станция, использующая реверсируемые гидроагрегаты, которые, кроме того, можно еще использовать и в насосном режиме для повышения уровня в бассейне, может перерабатывать до 90% потенциальной энергии прилива.

2.3 Энергия течений

Неисчерпаемые запасы кинетической энергии морских течений, накопленные в океанах и морях, можно превращать в механическую и электрическую энергию с помощью турбин, погруженных в воду (подобно ветряным мельницам, "погруженным" в атмосферу). Важное достоинство океанских течений в качестве источников энергии по сравнению с ветровыми потоками - отсутствие резких изменений скорости (сравните с изменениями скорости при порывах ветра, при ураганах и т.п.). При достаточном заглублении в толщу воды турбины ОГЭС надежно защищены от волн и штормов на поверхности. Современный уровень техники позволяет извлекать энергию течений при скорости потока более 1 м/с. При этом мощность от 1 кв. м поперечного сечения потока составляет около 1 кВт.

Для эффективного использования течений в энергетике необходимо, чтобы они обладали определенными характеристиками. В частности, требуются достаточно высокие скорости потоков, устойчивость по скорости и направлению, удобная для строительства и обслуживания география дна и побережья. Удаленность от побережья влечет удорожание транспортировки энергии и обслуживания этих станций, как, впрочем, и любых других. Большие глубины требуют увеличения затрат на сооружение и обслуживание якорных систем, малые - создают помехи судоходству. Именно географические факторы не позволяют сейчас говорить о строительстве ОГЭС в открытом океане, где несут свои воды наиболее мощные течения. При средних и малых глубинах, особенно в местах образования приливных течений, важную роль играет топография дна.

В качестве недостатков преобразователей энергии океанских течений следует отметить и необходимость создавать и обслуживать гигантские конструкции в морской воде, подверженность этих конструкций обрастанию и коррозии, трудности передачи энергии.

Перспективным представляется использование таких мощных течений, как Гольфстрим и Куросио, несущих соответственно 83 и 55 млн. куб. м/с воды со скоростью до 2 м/с, и Флоридского течения (30 млн. куб. м/с, скорость до 1,8 м/с). Представляют интерес течения в проливах Гибралтарском, Ла-Манш, Курильских. В настоящее время в ряде стран, в первую очередь в Англии, ведутся интенсивные работы по использованию энергии морских волн. Британские острова имеют очень длинную береговую линию, во многих местах море остается бурным в течение длительного времени. По оценкам ученых, за счет энергии морских волн в английских территориальных водах можно было бы получить мощность до 120 ГВт, что вдвое превышает мощность всех электростанций, принадлежащих Британскому Центральному электроэнергетическому управлению. Один из проектов использования морских волн основан на принципе колеблющегося водяного столба. В гигантских "коробах" без дна и с отверстиями вверху под влиянием волн уровень воды то поднимается, то опускается. Столб воды в коробе действует наподобие поршня: засасывает воздух и нагнетает его в лопатки турбин. Главную трудность здесь составляет согласование инерции рабочих колес турбин с количеством воздуха в коробах, так чтобы за счет инерции сохранялась постоянной скорость вращения турбинных валов в широком диапазоне условий на поверхности моря. Однако создание океанских электростанций на энергии течений связано пока с рядом технических трудностей, прежде всего с созданием энергетических установок больших размеров, представляющих угрозу судоходству.

Как источник энергии рассматриваются и подводные океанические течения, однако их слишком низкая скорость не позволяла строить турбинные станции, которые вырабатывали бы достаточное количество энергии. Но если отойти от идеи стандартной вращающейся турбины, появляется новый интересный способ использовать энергию течений - заменить энергию вращения на энергию колебаний. Идея пришла в голову профессору Майклу Бернитасу, во время исследований возможности подавления энергии течений, колебания от которой могу разрушить мосты, повредить корабельные доки, раскачивать нефтедобывающие платформы. Концепция VIVACE позволяет использовать любые, даже самые медленные течения. Скорость, требуемая обычным станциям для эффективной выработки энергии, равна 9 км/ч, VIVACE же достаточно 3 км/ч или 2 морских узла, а это скорость большинства подводных течений нашей планеты. Если поместить в поток даже слабого течения цилиндрический предмет, вода, обтекая его, будет образовывать вихри. Из-за небольших неравномерностей потока вихри с разных сторон не будут строго одинаковы и заставят предмет колебаться. По аналогичному принципу плавает большинство существующих рыб. Они изгибают свое тело так, чтобы образующиеся водовороты по обеим сторонам не уравновешивали друг друга, и используют возникающее давление для движения вперед. Невозможно было бы добиться такой скорости, если бы они использовали только силу своих мышц. Рабочая часть прибора представляет собой цилиндр, присоединенный к пружинке. Под действием течения воды (минимальная скорость, на которой происходят колебания - 2,7 км/ч) цилиндр отклоняется то в одну сторону, то в другую, и эти механические колебания переводятся в электричество. Из таких цилиндров может быть составлен массив, регулируя размеры которого можно регулировать количество вырабатываемой энергии. В следующей версии планируется максимально воспользоваться тем, что уже дала природа, и сделать прибор более похожим на рыбу - он будет иметь нечто вроде хвоста и утолщенную в середине основную часть. Это позволит ему создавать более частые колебания и, как следствие, улавливать больше энергии.

Перспективы электростанции VIVACE довольно радужные. Бернитсас подсчитал, что стоимость вырабатываемого с помощью его станции электричества не превысит 0,05 цента за КВт*ч (для сравнения: стоимость энергии, которую получают из ветряков - 0,069 КВт*ч, а из солнечных батарей - от 0,16 КВт*ч до 0,48 КВт*ч, в зависимости от их расположения). Такая станция полностью расположена под водой, поэтому не занимает полезную площадь на суше. Она абсолютно экологична, так как не производит выбросов в воду, а из-за сравнительно низкой скорости колебаний не сможет причинить вреда ни рыбам, ни даже пловцам.

2.5 Ресурсы тепловой энергии океана

О распределении перепадов температур на поверхности Мирового океана дают представление карты. Обычно разность температур воды на поверхности океана и на глубине 400 м составляет 12°C. Однако в акваториях тропиков, расположенных между 20° с. ш. и 20° ю. ш., верхние слои воды в океане могут иметь температуру 25-28°C, а нижние, на глубине 1000 м, - всего 5°C. Именно в таких случаях, когда амплитуда температур достигает 20° и более, считается экономически оправданным использование ее для получения электроэнергии на гидротермальных (моретермальных) электростанциях.

По современным представлениям, моретермальная электростанция является плавучей установкой, в теплообменнике которой нагретая Солнцем поверхностная океанская вода подогревает жидкость, испаряющуюся при сравнительно невысокой температуре, например аммиак. Получаемый при этом пар поступает к турбине, которая соединена с генератором, а затем отводится в глубинный холодный слой, где снова превращается в жидкость. Такая система имеет непрерывное действие, не нуждается в горючем и не оказывает отрицательного влияния на окружающую среду. Издержки на ее эксплуатацию также невысоки. Однако моретермальные электростанции требуют больших инвестиционных затрат и имеют низкий (7-10 %) коэффициент преобразования энергии.

2.6 Солёная энергия морей и океанов

При смешении солёной воды с пресной выделяется довольно большое количество энергии, поэтому соленая вода океанов и морей таит в себе огромные неосвоенные запасы энергии, которая может быть эффективно преобразована в другие формы энергии в районах с большими градиентами солености. В природе в наибольших масштабах пресная вода разбавляет солёную при впадении рек в моря и океаны, какими являются устья крупнейших рек мира, таких как Амазонка, Парана, Конго и др. Осмотическое давление, возникающее при смешении пресных речных вод с солеными, пропорционально разности в концентрациях солей в этих водах. В среднем это давление составляет 24 атм., а при впадении реки Иордан в Мертвое море 500 атм.

Методы преобразования этой энергии в электричество известны давно. Но пока работы по преобразованию "соленой" энергии в электрическую находятся на стадии проектов и опытных установок. Среди предлагаемых вариантов представляют интерес гидроосмотические устройства с полупроницаемыми мембранами. В них происходит всасывание растворителя через мембрану в раствор. В качестве растворителей и растворов используются пресная вода - морская вода или морская вода - рассол. Последний получают при растворении отложений соляного купола.

Дориано Броджоли из Университета Милан-Бикокка предложил еще одну стратегию. Он поместил два пористых угольных электрода в соленую воду, а затем зарядил их. Тем самым он получил устройство, схожее с конденсатором. Затем он промыл сосуд пресной водой. Ионы соли ушли с электродов и это вызвало повышение напряжения между ними примерно на 10 процентов, с 300 мВ до 333 мВ. Это лишнее напряжение очень легко снять, замкнув электроды и получить при этом энергию. Метод, предложенный итальянским ученым, имеет примерно ту же эффективность, что и мембранные методы, которые стоят дороже. Он позволяет снять примерно 1,6 кДж энергии на литр пресной воды (около 0,4 кВтч на 1 м3). Смешение пресной воды с соленой - это возобновляемый источник энергии. Осталось только им воспользоваться, доведя экспериментальные разработки до промышленных устройств. В нашей стране теоретическое значение энергии смешения воды одной только Волги с водами Каспийского моря превышает 10000 ГВт энергии, а это уже по значению величины близко к тому, что мир потребляет за год.

Таким образом, использование энергии морей и океанов является весьма перспективной задачей. При современных темпах научно-технического прогресса существенные сдвиги в океанской энергетике должны произойти в ближайшие десятилетия. Некоторые из предлагавшихся океанских энергетических установок могут быть реализованы, и стать рентабельными уже в настоящее время.

Заключение

Мировой океан является естественным аккумулятором огромного количества солнечной энергии, поступающей на Землю. В океане, который составляет 71 процент поверхности планеты, потенциально имеются различные виды энергии - энергия волн и приливов; энергия химических связей газов, питательных веществ, солей и других минералов; скрытая энергия водорода, находящегося в молекулах воды; энергия течений, спокойно и нескончаемо движущихся в различных частях океана; удивительная по запасам энергия, которую можно получать, используя разницу температур воды океана на поверхности и в глубине, и их можно преобразовать в стандартные виды топлива.

Такие количества энергии, многообразие ее форм гарантируют, что в будущем человечество не будет испытывать в ней недостатка. В то же время не возникает необходимости зависеть от одного - двух основных источников энергии, какими, например, являются ископаемые виды топлива и ядерного горючего. Более того, в миллионах прибрежных деревень и селений, не имеющих сейчас доступа к энергосистемам, будет тогда возможно улучшить жизненные условия людей. Жители тех мест, где на море бывает сильное волнение, смогут конструировать и использовать установки для преобразования энергии волн. Живущие вблизи узких прибрежных заливов, смогут использовать энергию приливов. Для всех остальных людей энергия океана в открытом водном пространстве может преобразовываться в метан, водород или электричество, а затем передаваться на сушу по кабелю или на кораблях.

Разумеется, трудно представить себе переход от привычных, традиционных видов топлива - угля, нефти и природного газа - к незнакомым, альтернативным методам получения энергии. И, тем не менее, несмотря на то, что извлечение энергии океана находятся на стадии экспериментов и процесс ограничен и дорогостоящ, факт остается фактом, что по мере развития научно-технического прогресса энергия в будущем может в значительной степени добываться из моря. Переход к использованию энергии океана принесет двойную пользу: сэкономит общественные средства и сделает более жизнеспособной нашу Землю.

Список используемой литературы

1. Агеев, В.А. Нетрадиционные и возобновляемые источники энергии (курс лекций) [Электронный ресурс] / В.А. Агеев, 2004. - Режим доступа: http://eco.com.ua/sites/eco.com.ua/files/lib1/alternativna_energetika/Netradicionnye_i_vozobnovljaemye_istochniki_jenergii_Kurs_lekci_AgeevV_A_Kafedra_teplojenergeticheski. zip.

2. Бекаев, Л.С. Мировая энергетика и переход к устойчивому развитию / Л.С. Бекаев, О.В. Марченко, С.П. Пинегин и др. - Новосибирск, Наука, 2000. - 300 с.

3. Городов, Р.В. Нетрадиционные и возобновляемые источники энергии: учебное пособие / Р.В. Городов, В.Е. Губин, А.С. Матвеев. - Томск: Изд-во Томского политехнического университета, 2009. - 294 с.

4. Коробков, В.А. Преобразование энергии океана / В.А. Коробков. - Л.: Судостроение, 1986. - 280 с.

5. Максаковский, В.П. Географическая картина мира. Пособие для вузов. Кн. I: Общая характеристика мира. Глобальные проблемы человечества В.П. Максаковский. - М.: Дрофа, 2008. - 495 с.

6. Твайделл, Дж., Уэйр А. Возобновляемые источники энергии: Пер. с англ. / Дж. Твайделл, А. Уэйр - М. Энергоатомиздат, 1990. - 392 с.

Размещено на Allbest.ru


Подобные документы

  • Ресурсы Мирового океана. Проблемы Мирового океана. Охрана морей и океанов. Мировой океан, являясь совокупностью всех морей и океанов Земли, оказывает огромное влияние на жизнедеятельность планеты. Огромная масса вод океана формирует климат планеты.

    реферат [15,8 K], добавлен 01.03.2004

  • Ресурсы Мирового океана. Проблемы Мирового океана. Охрана морей и океанов. Исследования Мирового океана. Охрана океана является одной из глобальных проблем человечества. Мертвый океан - мертвая планета, а значит, и все человечество.

    реферат [21,0 K], добавлен 22.06.2003

  • Природные ресурсы, их рациональное использование и воспроизводство. Экономическое регулирование охраны окружающей среды. Основные виды используемой человеком энергии. Энергия термоядерного синтеза, способы ее получения. Альтернативные источники энергии.

    контрольная работа [34,0 K], добавлен 30.04.2009

  • Использование ветра и ветряных установок. Сооружение гигантских ветроэнергетических установок для получения энергии. Способы преобразования солнечных лучей в электрический ток. Использование и получение энергии приливных и отливных морских течений.

    реферат [20,4 K], добавлен 09.11.2008

  • Причины перехода на возобновляемые источники энергии. Возможные источники энергии. Энергия воды. Солнечная энергия. Энергия ветра. Другие источники энергии (биомасса).

    реферат [65,2 K], добавлен 21.12.2002

  • Мировой океан и его ресурсы. Загрязнение Мирового океана: нефть и нефтепродукты, пестициды, синтетические поверхностно–активные вещества, соединения с канцерогенными свойствами, сброс отходов в море с целью захоронения (дампинг). Охрана морей и океанов.

    реферат [33,0 K], добавлен 15.02.2011

  • Понятие о Мировом океане. Богатства Мирового океана. Минеральные, энергетические и биологические виды ресурсов. Экологические проблемы Мирового океана. Загрязнения сточными водами промышленности. Нефтяные загрязнения морских вод. Методы очистки вод.

    презентация [3,4 M], добавлен 21.01.2015

  • Промышленные и химические загрязнения океана, пути поступления в него нефти и нефтепродуктов. Основные неорганические (минеральные) загрязнители пресных и морских вод. Сброс отходов в море с целью захоронения. Самоочищение морей и океанов, их охрана.

    реферат [64,0 K], добавлен 28.10.2014

  • Нетрадиционные и возобновляемые источники энергии (солнечная, ветровая и геотермальная энергию, энергию морских приливов и волн). Их плюсы и минусы. Как может осуществляться альтернативное использование солнечной энергии при эксплуатации зданий.

    реферат [23,7 K], добавлен 26.12.2010

  • Основные виды загрязнения гидросферы. Загрязнение океанов и морей. Загрязнение рек и озер. Питьевая вода. Загрязнение подземных вод. Актуальность проблемы загрязнения водоемов. Спуск сточных вод в водоемы. Борьба с загрязнением вод Мирового океана.

    реферат [44,3 K], добавлен 11.12.2007

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.