Защита атмосферы на предприятиях строительной индустрии

Особенности и основные направления и перспективы борьбы с загрязнением атмосферы предприятиями строительной индустрии. Классификация методов определения концентрации пыли. Особенности обеспыливания и очистка газов на различных строительных предприятиях.

Рубрика Экология и охрана природы
Вид курсовая работа
Язык русский
Дата добавления 27.12.2009
Размер файла 401,1 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

51

Курсовая работа

Защита атмосферы на предприятиях

строительной индустрии

Введение

Глава I. Особенности загрязнения атмосферы предприятиями строительной индустрии

1.1 Влияние пыли на здоровье человека

1.2 Влияние пылевых выбросов на окружающую среду

1.3. Нормирование содержания вредных веществ в атмосфере воздуха и в воздухе производственных помещений

1.4 Основные направления и перспективы борьбы с загрязнением атмосферы предприятиями строительной индустрии

Глава 2. Классификация методов определения концентрации пыли

Глава 3. Обеспыливание и очистка газов на различных строительных предприятиях

3.1 Обеспыливание цехов по производству древесно-волокнистых плит (ДВП) и изделий из древесины

3.1.1 Технология производства и источники пыле-паро-газообразования

3.1.2 Локализация вредных выделений на отдельных участках производства ДВП

3.2 Обеспыливание и очистка газов на заводах кровельных материалов

3.2.1 Химические методы очистки газов, применяемые на заводах кровельных и теплоизоляционных материалов

3.2.2 Характеристика пылегазовых выбросов при производстве кровельных и теплоизоляционных материалов

3.2.3 Очистка газов от углеводородов, фенола и одоризирующих компонентов

3.3 Обеспыливание газов при производстве керамических изделий

Глава 4. Современные способы борьбы с пылеобразованием

4.1 Технологические мероприятия по уменьшению пылеобразования

4.1.1 Вибрационная дезинтеграция - универсальная технология для переработки материалов

4.2 Основные типы современных аппаратов для улавливания пыли

Заключение

Литература

Введение

Производства строительных материалов представляют собой сложные технологические процессы, связанные с превращением сырья в разные состояния и с различными физико-механическими свойствами, а также с использованием разнообразной степени сложности технологического оборудования и вспомогательных механизмов. Во многих случаях эти процессы сопровождаются выделением больших количеств полидисперсной пыли, вредных газов и других загрязнений.

Повышенное выделение пыли наблюдается при производстве бетонной смеси: на участке смесительного отделения - до пяти предельно допустимых концентраций (ПДК), в надбункерном помещении 1,5-2, в отделении дозирования рабочей смеси 3-4 ПДК.

Производство цемента, извести, доломита, инертных материалов сопровождается на отдельных участках особо обильным пылевыделением, превышающим ПДК в 5-10. а в некоторых случаях до нескольких десятков и даже сотен раз.

При технологическом процессе производства силикатного кирпича повышенное выделение пыли наблюдается на рабочих местах в помещениях подготовки смеси от 2 до 20, в формовочном цехе от 2 до 5 ПДК.

При производстве керамики и глиняного кирпича наибольшее пылевыделение, превышающее ПДК на складах глины 1,5-2,5, песка 5-7. в смесеприготовительном цехе 12-15, а в отделении помола шамота запыленность достигает 30-32 ПДК. На участке погрузки и разгрузки запыленность в 2-3 раза превышает допустимые концентрации. Основное пылевыделение при производстве плит минеральной ваты на участке подготовки насадки местами превышает санитарные нормы в 40-70, на участке печей - в 10-20, формирования минеральной ваты - в 5-10 раз. На участке механической обработки древесноволокнистых плит концентрация пыли превышает ПДК в 1,3-1,6 раза.

При пилении, фрезеровании, шлифовании древесины воздух рабочего места загрязняется полидисперсной древесной пылью, концентрация которой превышает санитарные нормы в 1,5-3 раза, иногда до 5-10 раз.

Для арматурных цехов производства нестандартных металлических конструкций характерна пыль металлов и их окалин, сварочные аэрозоли двуокиси углерода и марганца.

Предприятиями отрасли ежегодно выбрасывается в атмосферный воздух более 4 млн. т вредных веществ, в том числе около 2,4 млн. т, или 58% твердой неорганической пыли. Сверхнормативный ее выброс составляет 1,41 млн. т, а превышение норматива по газообразным вредным веществам - 722 тыс. т [1].

Пылегазовые выбросы производства строительных материалов содержат 85 вредных пылевых компонентов, причем многие из них, не имея запаха и цвета - те сразу проявляют себя. Пыль производственной техносферы - причина разнообразных заболеваний персонала, износа технологического оборудования и вспомогательных механизмов, снижения качества продукции и рентабельности производства.

Эти пылевые выбросы, весьма токсичные сами по себе, под действием солнечных лучей и при участии озона могут образовывать новые, еще более токсичные соединения. При этом атмосферная турбулентность и ветер не успевают удалять из воздушного бассейна предприятий растущие в связи с интенсификацией производства пылевые выбросы.

Проблемы создания безотходной технологии и внедрения новейших пылеулавливающих комплексов на действующих предприятиях производства строительных материалов пока не решены. Традиционно действующие мокрые системы пылеулавливания исключительно энергоемки, требуют организации шламового хозяйства, исключают утилизацию уловленной пыли и не всегда обеспечивают нормы предельно допустимых выбросов (ПДВ).

Поэтому особое значение приобретают разработка н анализ научных основ энергосберегающего сухого пылеулавливания.

Глава I. Особенности загрязнения атмосферы предприятиями строительной индустрии (строительный материал) и ее влияние на здоровье

1.1 Влияние пыли на здоровье человека

В научной терминологии взвешенные в воздухе твердые или жидкие частицы называют аэрозолями или аэродисперсными системами. Осажденную твердую фазу аэрозоля принято называть аэрогелем. Для простоты изложения мы будем и аэрозоли, и аэрогели называть пылью, а в необходимых случаях уточнять применение терминов. Производственная пыль - это мельчайшие твердые частицы, выделяющиеся при дроблении, размоле и механической обработке различных материалов, погрузке и выгрузке сыпучих грузов и т.п., а также образующиеся при конденсации некоторых паров.

Пыль, образующаяся на предприятиях строительной индустрии, весьма разнообразна по свойствам, химическому и дисперсному составу. Частицы пыли различных веществ оказывают неодинаковое воздействие на организм человека и делятся на две группы. К первой группе относятся пыли ядовитых (токсичных) веществ, опасных для организма в целом, ко второй - пыли, вредно действующие на органы дыхания, т.е. преимущественно фиброгенного действия. По степени воздействия на организм вредные вещества подразделяются на четыре класса опасности: 1) чрезвычайно опасные; 2) высокоопасные; 3) умеренно опасные и 4) малоопасные.

В связи с развитием химии и использованием химических веществ в производстве строительных материалов в последние годы возросло количество вредных веществ, содержащихся в пыли. Например, при обработке древесины выделяется не только древесная, но и токсичная пыль веществ, которыми древесина пропитывается. Пыль, выделяющаяся при шлифовании и полировании по лаку, может содержать частицы абразивного материала и токсичных веществ - отвердевших полиэфирных и нитроцеллюлозных лаков. Токсичные химические вещества, например формальдегид, содержат также пыль, образующуюся при обработке древесностружечных плит. Постоянное вдыхание формальдегида может привести к хроническому отравлению.

Загрязнение поверхности тела пылью приводит к гнойничковым заболеваниям и экземам. Попадание пыли в глаза вызывает воспалительный процесс слизистых оболочек - конъюнктивит.

Наибольшую опасность для человека представляют частицы пыли размером до 5 мкм. Они легко проникают в легкие и там оседают, вызывая разрастание соединительной ткани, которая не способна передавать кислород из вдыхаемого воздуха гемоглобину крови и выделять углекислый газ. Развивающиеся при этом профессиональные заболевания называют пневмо-кониозами. Форма пневмокониозов зависит от вида вдыхаемой пыли: силикоз - при вдыхании кварцсодержащей пыли, силикатоз - силикатной пыли, антракоз - угольной пыли и др.

Наибольшим фиброгенным действием обладают пылеватые частицы, содержащие свободную двуокись кремния (SiO2).

Весьма опасна для здоровья работающих пыль кварца, кристобалита и тридимита, образующаяся при производстве стекла и динасовых изделий, содержащая свыше 90% свободной двуокиси кремния [2].

Промышленные пыли шамотного производства (при содержании свободной и общей двуокиси кремния соответственно 10-30 и 50-60%) отличаются повышенной способностью вызывать заболевание пневмокониозом. Пыль от шамота более опасна, чем пыль от глины. При превращении глины в шамот при обжиге несколько повышается содержание свободной двуокиси кремния в результате разложения каолинита на мулит и кристобалит.

Загрязненный воздух промышленных центров - одна из главных причин широкого распространения заболеваний дыхательных путей, особенно у детей. Установлено, что заболеваемость раком легких у людей, работающих и живущих в городах, значительно выше, чем у сельских жителей.

Пыль строительных материалов (см. схему) можно разделить на органическую и неорганическую (минеральную).

К органический ныли относится древесная пыль, выделяющаяся во всех отраслях деревообрабатывающей промышленности, пыль разнообразных пластмасс, отделочных тканей, ваты, полиэфирных смол. Неорганической является пыль сырьевых материалов горных пород и строительных материалов вторичной обработки. Все горные породы (и пыль горных пород) делятся по способу образования на три большие группы: изверженные, осадочные и метаморфические [2].

Изверженные породы (гранит, диорит и им подобные) широко используются в производстве щебня, необходимого для получения высокопрочных бетонов. Пыль изверженных пород в основном выделяется при их дроблении

и измельчении щековыми, конусными и другими дробилками и мельницами. Для пыли изверженных пород характерен средний диаметр частиц 20-30 мкм, площадь удельной поверхности 2500-4500 см2/см3. Пыль неслипающаяся. Среднее удельное электрическое сопротивление 105-108 Омм, т.е. они наиболее эффективно могут улавливаться электрофильтрами.

Пыль осадочных пород - это пыль песка, каолина, глины, доломита, известняка. Осадочные породы наиболее широко применяются в производстве строительных материалов. Песок является сырьевым материалом силикатного и глиняного кирпича, стеклянного и минерального волокна, а также входит в состав керамических изделий, бетон.

Пыль осадочных пород характеризуется широким диапазоном площади удельной поверхности - от 3000 до 5000 см2/см3, средним диаметром частиц 14-40 мкм. Наиболее мелкодисперсной является пыль каолина и глины, выделяющаяся при их помоле и сушке. Частицы до 10 мкм составляют по массе 32-53%. Вся пыль осадочных пород хорошо смачивается (смачиваемость 55-91%) , но вяжущие свойства отсутствуют. Слипаемость сильно зависит от влажности пыли и колеблется в пределах (0,39-3,9) 102 Па за исключением песчаной пыли, которая имеет низкую слипаемость (015-0,17) 102 Па.

Удельное электрическое сопротивление пыли осадочных пород составляет 4,7105-1,3108 Омм в зависимости от ее влажности.

Электрические заряды пылевых частиц осадочных пород в основном имеют следующее распределение по знакам зарядов; положительные заряды 62-69% частиц, отрицательные 22-33%, нейтральные 3-9% (за исключением пылевых частиц известняка, из которых 58% заряжаются отрицательно, 40% положительно и 2% остаются нейтральными.

Метаморфические породы - гнейс, кварцит, талькомагнезит - используются в производстве огнеупорных материалов. Пыль, выделяющаяся в процессе производства, имеет физико-механические свойства, зависящие от стадии обработки, степени дробления. Для пыли метаморфических пород характерны средний размер частиц 20-30 мкм и площадь удельной поверхности - от 2500 до 4000 см2/см3. По слипаемости метаморфические породы разделяются на слабослипающиеся и неслипающиеся. Среднее удельное электрическое сопротивление (за исключением графитовой пыли) 105 - 108 Омм.

Следует отметить силикозоопасность пыли метаморфических пород, так как наличие свободной двуокиси кремния в кварцевой пыли достигает 70-85%.

Пыль строительных материалов вторичной обработки можно разделить на несколько групп со свойственными каждой из них специфическими физико-химическими и механическими свойствами. Пыль неорганических вяжущих веществ включает пыль основных вяжущих материалов - цемента, извести и гипса. Производство цемента занимает значительную долю в промышленности строительных материалов. Цементная пыль отличается высокой дисперсностью. Пылинки диаметром менее 5 мкм составляют по массе до 39%, а менее 20 мкм - до 79% выбросов цементных мельниц. Для цементной пыли характерны высокое удельное электрическое сопротивление - 1,5107-1,91010 Омм, высокая гигроскопичность, резко выраженная щелочная реакция.

Для изготовления других неорганических вяжущих материалов - извести, гипса - используют оборудование и аппараты, аналогичные применяемым при производстве цемента, поэтому физико-химические и механические свойства и характеристики пыли, образующейся в процессе получения этих материалов, весьма близки к свойствам цементной пыли [3].

Пыль керамических изделий включает пыль кирпича, керамзита и облицовочных изделий. Она содержит значительное количество свободной двуокиси кремния: при обжиге глиняного кирпича более 7%, при обжиге керамзита - до 32%.

Пыль искусственных каменных необожженных материалов, например пыль бетона, выделяется при изготовлении, погрузке, выгрузке и транспортировке железобетонных изделий.

Добыча и обработка асбеста являются крупной отраслью промышленности. Асбестовая пыль выделяется на разных этапах производства асбеста и асбестоцементных изделий. Основная масса пылевых частиц, выделяющихся в производстве асбестового картона, имеет размер 1-4 мкм, волокнистые частицы составляют 8,5-17 %.

Таким образом, пыль строительных материалов и конструкций по своим физико-химическим и механическим свойствам очень разнообразна, поэтому при определении концентрации пыли и принятии мер по снижению запыленности требуется тщательное ее исследование.

1.2 Влияние пылевых выбросов на окружающую среду

Вредное действие пыли не ограничивается влиянием на здоровье человека. Атмосфера способна в некоторой мере самоочищаться от промышленных загрязнений пылью в результате осаждения твердых частиц, вымывания их из воздуха осадками, растворения и поглощения вредных веществ растениями. В настоящее время процессы самоочищения уже не всегда способны справиться с возрастающим промышленным загрязнением. Загрязняющие атмосферу вещества накапливаются, и в некоторых районах их концентрация уже теперь является недопустимо высокой. Исследования показали, что общая запыленность атмосферного воздуха за полвека значительно возросла. Запыленность атмосферы оказывает сложное влияние на климат. Крупнейшие ученые пришли к выводу, что часть выбрасываемой в воздух промышленной пыли (около 10%) не выпадает из атмосферы, а воздушными течениями выносится в заоблачное пространство. Пыль, вынесенная выше облаков, не очищается осадками и способствует замутнению атмосферы. Она создает как бы экран солнечного света и изменяет отражательную способность земли. Загрязнение атмосферы городов аэрозолями и газами приводит к резкому уменьшению солнечной радиации. Ультрафиолетовая радиация, обладающая бактерицидным действием, уменьшается до 30%, а видимая составляющая солнечной радиации - более чем на 50%. При этом снижается видимость, увеличиваются повторяемость туманов, количество осадков и облачность, изменяется циркуляция воздушных потоков. Над центром города образуется конвективная струя, вызывающая движение воздушных потоков из периферийных, нередко промышленных, районов к центру города, что ведет к повышению концентрации вредных веществ в центральной его части.

Содержание углекислого газа в атмосфере увеличивается на 0,02% за каждые 10 лет. Углекислый газ обладает специфическими свойствами: он прозрачен для большей части солнечного спектра, но не полностью пропускает инфракрасные лучи, солнечная энергия видимой части спектра проходит через него, а тепловая энергия от поверхности земли в диапазоне инфракрасных волн поглощается и отражается им. Чем выше концентрация углекислого газа, тем большая часть солнечной радиации усваивается землей. Это способствует повышению средней температуры земли. С другой стороны, при увеличении количества аэрозолей в атмосфере уменьшается количество солнечной энергии, поступающей к земле [3].

Загрязнение воздушной среды наносит огромный материальный ущерб и экономике, обусловленный ускоренным разрушением строительных материалов, металлов, резины, тканей, бумаги, красок и т. п. Скорость коррозии железа в промышленных городах в 3 раза выше, чем в городах со слаборазвитой промышленностью, и в 20 раз, чем в сельской местности. Содержание вредных веществ в воздухе городов сокращает срок службы покрытий из цинка в 5-6 раз. Дерево, хлопок, кожа в загрязненном воздухе разрушаются значительно быстрее, чем в чистом. Требует больших расходов постоянная очистка и окраска различных сооружений и ограждающих конструкций, а также реставрация памятников архитектуры. Загрязнение приводит к гибели сельскохозяйственных растений и животных. Ущерб от загрязнения во всем мире исчисляется огромными суммами.

Пыль, выделяющаяся в производственных помещениях, приводит к быстрому износу оборудования. Пыль, содержащаяся в воздухе, разрушающе действует на поршни и цилиндры двигателей внутреннего сгорания. Очень чувствительны к пыли электрические машины. Незащищенные обмотки электродвигателей покрываются коркой, уменьшается их охлаждение, и вследствие их перегрева двигатель может выйти из строя. Различные приборы в запыленной атмосфере быстрее выходят из строя. Защита от пыли в таких производствах, как радио- и электропромышленность, является частью технологического процесса.

Пыль, образующаяся при выгрузке транспорта и переработке сыпучих навалочных грузов, загрязняет территорию, примыкающую к месту выгрузки, и производственные помещения и для ее уборки требуются дополнительные непроизводительные затраты труда.

1.3 Нормирование содержания вредных веществ в атмосфере воздуха и в воздухе производственных помещений

Чистота атмосферного воздуха в населенных пунктах нашей страны оценивается двумя показателями: максимальными разовыми и среднесуточными предельно допустимыми концентрациями (ПДК) вредных веществ. В основу нормирования положено предотвращение последствий кратковременного и постоянного действия токсичных веществ на организм человека. Значения ПДК вредных веществ в воздухе населенных пунктов приведены в санитарных нормах проектирования промышленных предприятий (СН 245-71).

В воздухе рабочей зоны производственных помещений также установлены ПДК вредных веществ, превышение значений которых недопустимо. Предельно допустимые концентрации вредных веществ в воздухе рабочей зоны - это концентрации, которые при ежедневной работе (41 ч в неделю) в течение всего рабочего стажа не могут вызвать заболеваний или отклонений в состоянии здоровья, обнаруживаемых современными методами исследований в процессе работы или в отдаленные сроки жизни настоящего или последующего поколений. Предельно допустимые концентрации вредных веществ и аэрозолей преимущественно фиброгенного действия приведены в ГОСТ 21.1.005-76 «ССБТ. Воздух рабочей зоны. Общие санитарно-гигиенические требования».

Из сказанного следует, что эффективная очистка воздуха от пыли, выбрасываемой предприятиями строительной индустрии; представляет собой важную народнохозяйственную задачу.

Очистка воздуха, выбрасываемого в атмосферу, установками пылеулавливания

В нашей стране действуют Государственные стандарты системы «Охрана природы. Атмосфера». Стандарты учитывают современные гигиенические, экологические и экономические требования защиты атмосферы от промышленных выбросов. Они регламентируют правила установления и контроля допустимых выбросов вредных веществ в атмосферу промышленными предприятиями, обеспечивая сохранение чистоты воздушного бассейна.

Промышленные производства и технологическое оборудование, являющиеся источниками загрязнения атмосферы, разделяются на четыре группы: 1) имеющие условно чистые выбросы, в которых концентрация вредных веществ не превышает гигиенических норм; 2) имеющие дурнопахнущие выбросы; 3) содержащие нетоксичные вещества; 4) имеющие выбросы, содержащие канцерогенные токсичные или ядовитые вещества.

Различают неорганизованные промышленные выбросы, поступающие в атмосферу в виде ненаправленных загрязненных потоков газа в результате нарушения герметичности оборудования, отсутствия или неудовлетворительной работы оборудования по отсосу газа в местах загрузки, выгрузки или хранения продукта, и организованные промышленные выбросы, поступающие в атмосферу через специально сооруженные газоходы, воздуховоды и трубы.

Выбросы в зависимости от состава вредных веществ классифицируются по их агрегатному состоянию. В зависимости от агрегатного состояния вредных веществ выбросы подразделяются на следующие классы:

I - газообразные и парообразные; II - жидкие; III - твердые; IV - смешанные.

Выбросы по химическому составу делятся на группы, а в зависимости от размера частиц - на подгруппы. Твердые выбросы подразделяются на четыре подгруппы с размерами частиц, мкм: менее 1; 1-10; 10-50 и свыше 50.

При выбросе вентиляционного воздуха концентрация вредных веществ в приземном слое атмосферы не должна превышать значений, установленных санитарными нормами. Для обеспечения этого условия СНиП 11-33-75 устанавливают предельно допустимые концентрации (ПДК) выбросов в зависимости от объемов воздуха, удаляемого от технологического оборудования.

Предельно допустимая концентрация пыли С1, мг/м3, в очищенных вентиляционных выбросах при объеме воздуха более 15000 м3/ч определяется по формуле:

С1 = 100 К (1)

Значение коэффициента К зависит от ПДК пыли в рабочей зоне производственных помещений:

ПДК, мг/м3 ...<2 >2 и<4 >4и<6 >6 и<10

К 0,3 0,6 0,8 1

При объеме очищенных вентиляционных выбросов L менее 15000 м3/ч предельное остаточное содержание пыли С2 мг/м3 в них определяется по формуле:

С2 = (160-4L)К. (2)

Предельно допустимые концентрации вредных веществ в воздухе рабочей зоны производственных помещений принимаются в соответствии с ГОСТ 12.1.005 - 76. ПДК наиболее часто встречающихся в строительной индустрии аэрозолей преимущественно фиброгенного действия приведены в табл. 1.

Таблица 1. Предельно допустимые концентрации пыли в воздухе рабочей зоны

Вещество

ПДК

Класс опасности

Пыли, содержащие кремний двуокись кристаллическую пыль, %:

свыше 70 (кварцит, динас и др.)

10 - 70 (гранит, шамот, слюда-сырец, углепородная пыль и др.)

2 - 10 (углепородная и угольная пыль, глина и др.)

Доломит

Диатомит

Известняк

Силикаты и силикатсодержащие пыли:

асбест природный и искусственный, а также смешанные асбестопородные пыли при содержании в них асбеста более 10%

асбестоцемент

гальк, стеклянное и минеральное волокно

цемент, оливин, апатит, фостерит

1

2

4

6

1

6

2

6

4

6

6

3

4

4

4

4

3

4

4

4

4

4

1.4 Основные направления и перспективы борьбы с загрязнением атмосферы предприятиями строительной индустрии

Дальнейшее сокращение вредных выбросов предприятиями строительной индустрии может быть достигнуто в результате создания и внедрения технологических процессов и оборудования, отвечающих требованиям научно-технического прогресса, а также вводом в действие новых эффективных газоочистных установок и аппаратов, технического усовершенствования действующих пылеулавливающих систем, внедрения в промышленность современных эффективных методов очистки [4].

Научно-исследовательские и проектные институты постоянно работают над усовершенствованием технологических процессов, снижающих до минимума выделение вредных веществ, над созданием безотходных производств, работающих в замкнутом цикле, а также над созданием новых и модернизацией действующих видов технологического оборудования в соответствии с требованиями системы стандартов безопасности труда. При этом необходимо продолжить дальнейшие исследования в области создания новых эффективных газоочистных аппаратов и систем.

С повышением требований к защите атмосферы от вредных выбросов в последние годы наметилась тенденция к увеличению применения тканевых фильтров, обеспечивающих высокую эффективность улавливания различных пылей. Это стало возможным благодаря созданию специальных синтетических тканей, способных выдерживать высокую температуру фильтруемого газа. Экономичными и перспективными могут считаться рукавные фильтры с импульсной продувкой, обеспечивающие повышенные скорости фильтрации. Для этих фильтров характерны высокая эффективность (около 99,9%), использование регулируемого устройства для регенерации, более длительные сроки службы рукавов, относительно простое техническое обслуживание, возможность работы при высокой запыленности газов на входе (без предварительной грубой очистки от пыли) . В частности, такие фильтры, созданные НИИОГАЗом (например, фильтры ФРКДН), успешно прошли промышленные испытания на ряде предприятий.

Из мокрых пылеуловителей перспективными являются аппараты, требующие незначительного расхода воды и работающие по замкнутому циклу. В них отработавшая вода после осветления подается снова в пылеуловитель, а сгущенный шлам используется в технологическом процессе. К таким аппаратам может быть отнесен получивший широкое распространение пылеуловитель вентиляционный мокрый (ПВМ) струйного типа, допускающий повышенное содержание взвешенных пылевых частиц в повторно используемой воде. Пример возможного использования ПВМ в замкнутом технологическом цикле приведен на рис. 1.

В ближайшие годы прогнозируется все более широкое внедрение зернистых фильтров для обеспыливания удаляемого воздуха при производстве цемента, гипса, извести и других материалов. Они просты конструктивно, компактны и надежны в эксплуатации. В качестве фильтрующего слоя в них применяются гравий и шлак, а также могут использоваться отходы производства (бой кирпича, стекла, керамики и т. п.). Особенно успешно зернистые фильтры могут применяться при очистке газов с высокой температурой, наличии агрессивных компонентов, высокой абразивности пыли. Зернистые фильтры являются наиболее универсальными из всех известных пылеуловителей. Одним из факторов, сдерживающих широкое применение зернистых фильтров в настоящее время, является неудовлетворительная работа узлов регенерации.

Перспективным новым методом очистки промышленных выбросов может явиться магнитный способ газоочистки. Исследования показали, что этот метод может быть применен для улавливания не только промышленных пылей, обладающих явно выраженными магнитными свойствами, но и немагнитных пылей, к которым относится пыль предприятий строительной индустрии. Представляет интерес способ пылеулавливания с магнитным носителем (например, железным порошком), при котором улавливание пыли происходит в обычных инерционных аппаратах при введении в газопылевой поток магнитного носителя [5].

Не менее важным направлением защиты атмосферы от загрязнения выбросами предприятий строительной индустрии наряду с созданием и внедрением прогрессивных аппаратов и систем очистки является повышение эффективности работы существующих пылеулавливающих установок на действующих предприятиях отрасли. Это может быть достигнуто путем создания на предприятиях специальных цехов (служб) по эксплуатации пылеулавливающих систем с обеспечением их квалифицированного технического обслуживания. Этой службой должен быть налажен контроль за работой всех пылеулавливающих аппаратов современными контрольно-измерительными приборами с выносом показаний на централизованный пульт. В ряде случаев только вследствие повышения технического уровня эксплуатации обеспыливающих установок могут быть значительно уменьшены пылевые выбросы в атмосферу.

Глава 2. Классификация методов определения концентрации пыли

Под концентрацией пыли понимается количественное соотношение дисперсной фазы и дисперсионной среды. По ее величине устанавливают санитарные нормы содержания конкретной пыли, а также подбирают методы улавливания пыли и устройства, обеспечивающие уменьшение запыленности воздуха в производственных помещениях и организованных выбросов.

В зависимости от применяемого метода измерения различают численную и массовую концентрации пыли.

Численная концентрация показывает, сколько частиц пыли содержится в единице объема воздуха (число/см3). В общем случае под этим понимают концентрацию частиц пыли независимо от их формы, размера и вещественного состава.

Для характеристики чистоты воздуха обычно применяют термин «запыленность воздуха», под которым подразумевается массовая концентрация пыли (г или мг на 1 м3 воздуха при нормальных условиях).

Измерение концентрации пыли является трудной метрологической задачей, так как пыль представляет собой сложную систему, которую нельзя описать с достаточной степенью точности одним или двумя параметрами. Пыль всегда является полидисперсной, т.е. характеризуется более или менее широким спектром размеров частиц (от 10-2 до 102 мкм). Концентрация пыли может колебаться от 10-2 до 105 мг/м. Кроме того, происхождение, форма, физико-химические и механические свойства частиц пыли могут быть очень разнообразными. Частицы пыли, находясь во взвешенном состоянии в воздушной среде, подвержены воздействию силы тяжести, аэродинамического сопротивления, электрических сил и сил трения, аутогезионных сил, коагуляции, влиянию температуры и влажности воздуха, действию воздушных потоков, вследствие чего они коагулируются, оседают на поверхности, т.е. происходит быстрое изменение концентрации пыли в пространстве и во времени.

В настоящее время основным методом контроля запыленности воздуха производственных помещений и организованных выбросов является весовой. Этот метод основан на фильтрации запыленного воздуха через тот или иной фильтр с последующим весовым определением количества уловленной пыли. Недостатки метода - низкая производительность, необходимость учитывать скорость движения воздуха, его пульсацию; точность результатов зависит от качества фильтра и квалификации исследователя.

Косвенные методы основаны на использовании различных физических явлений, параметры которых изменяются в зависимости от концентрации пыли в исследуемой воздушной среде. Преимущества косвенных методов - высокая производительность, простота измерения. Недостатки - невысокая точность измерений, сложность конструкции и высокая стоимость приборов.

Для контроля запыленности воздуха производственных помещений и организованных выбросов наиболее широко применяют оптический, зарядно-контактный, радиоизотопный, пьезоэлектрический и емкостный методы, которые отличаются большей точностью измерений и высокой чувствительностью.

Акустический, индукционный и другие методы, основанные на улавливании пыли водой, широкого распространения не получили из-за низкой точности измерений, громоздкости и высокой стоимости.

Применяют методы акустической, механической вибрации, методы, основанные на измерении перепада давлений на фильтре, на разбавлении пылевзвесей газообразным носителем.

Акустический метод основан на изменении параметров акустического поля при наличии частиц пыли в пространстве между источником и приемником звука. Потери ультразвуковой энергии обусловлены влиянием взвешенных твердых частиц. На результаты измерения концентрации пыли акустическим методом влияют скорость и температура пылегазового потока, влажность, температура и дисперсный состав пыли. Недостаток метода - сложность измерительной аппаратуры.

Индукционный метод основан на измерении индуцированного на электроде измерительной камеры заряда, возникшего при движении через камеру заряженных пылевых частиц. Величина заряда является мерой массовой концентрации пыли. Достоинством метода является то, что для измерения общего заряда частиц не требуется осаждать их на электроде.

Применение индукционного метода позволяет создать пылемеры довольно простой конструкции. Однако методу присущи погрешности, тик как распределение зарядов на частицах пыли зависит от многих факторов и с течением времени может изменяться в широких пределах.

Метод механической вибрации основан на измерении изменения частоты колеблющегося элемента при осаждении на нем пыли. Используется колеблющийся фильтр, укрепленный в пружинном держателе. Специальное устройство возбуждает колебания фильтра в горизонтальной плоскости. С помощью насоса пылегазовый поток пропускают через фильтр и измеряют частоту колебаний последнего до и после прокачивания потока. Сравнительное устройство выдает сигнал, пропорциональный массе осевшей пыли.

На результат измерения оказывают влияние неравномерность толщины ленты, колебания температуры и давления при передвижении ленты из зоны сравнения в измерительную зону, неравномерность толщины слоя пылевого осадка, трение в подшипниках при движении ленты, непостоянство натяжения и другие факторы [2].

Метод, основанный на измерении перепада давлений на фильтре. Пропуская пылегазовый поток с постоянной скоростью через фильтр, измеряют разность давления на входе и выходе из фильтра, что отражает изменение концентрации пыли. На точность замера концентрации пыли влияют те же факторы, что и при методе механической вибрации.

При использовании метода, основанного на разбавлении пылевзвесей газообразным носителем, определяют расход чистого газообразного носителя, необходимого для достижения определенной постоянной концентрации пыли, с помощью аппаратуры, контролирующей указанную концентрацию пыли. Этот метод широкого применения не нашел, из-за низкой точности измерений, громоздкости и высокой стоимости.

При использовании метода, основанного на улавливании пыли водой, отделяют пыль от газа и по степени помутнения воды судят о концентрации пыли в воздухе. Мутность воды определяется по интенсивности прошедшего через нее светового потока, которая сравнивается с интенсивностью светового потока чистого воздуха. Разность интенсивностей света характеризует массовую концентрацию пыли в водной суспензии. Зная объем газа, определяют концентрацию пыли в газе.

ГЛАВА 3. Обеспыливание и очистка газов на различных строительных предприятиях

3.1 Обеспыливание цехов по производству древесно-волокнистых плит (ДВП) и изделий из древесины

3.1.1 Технология производства и источники пыле-паро-газообразования

Предприятия деревообрабатывающей промышленности являются источниками загрязнения окружающей среды различными вредными веществами, но в основном древесной пылью. Кроме того, при производстве древесно-волокнистых плит (ДВП) выделяется значительное количество теплоты и влаги.

Анализ технологического процесса производства ДВП и работы соответствующего оборудования, а также оценка результатов проведенных исследований (запыленности, загазованности, метеорологических условий и тепловыделений) показали, что на отдельных участках вредные выделения не превышают санитарных норм, на других участках только отдельные вредности превышают санитарные нормы и, наконец, имеются участки, где несколько видов загрязнений и особенно запыленность довольно значительно превышают допустимые нормы.

Технологический процесс изготовления ДВП начинается с получения щепы из круглого леса, которая подается ленточными транспортерами на участок грубого помола, где происходит грубая обработка древесины, при которой мелкодисперсной пыли образуется сравнительно мало, поэтому воздушная среда загрязняется незначительно [6].

Повышенное выделение влаги и теплоты в виде пара, а вместе с ними и пыли происходит на участке обработки щепы паром с температурой 170-190°С, осуществляемой в дефибраторах, а также на участке обработки древесной массы в рафинаторах, в отливочной машине при температуре 40-60°С (рис. 2).

На участке прессования ДВП при температуре 200-220°С и при транспортировке их до камер закалки вместе с паром в виде аэрозолей выделяются продукты сухой возгонки древесной массы. Довольно большое количество вредных компонентов в виде аэрозолей выделяется в воздушную среду цеха из-за недостаточной герметизации дверей в камерах закалки, температура в которых достигает 155 С, а также при открывании дверей. Из камер увлажнения ДВП вместе с паром в виде аэрозолей выделяются продукты сухой возгонки древесной массы.

На отдельных участках загрязненность воздуха превышает ПДК в 1,3-1,6 раза из-за недостаточной герметизации технологического оборудования, отсутствия местных отсосов и вакуумной пылеуборки. В пробах пыли взятых на участке механической обработки ДВП, при увеличении в 84 и 42 раза обнаружены частицы неправильной и иглообразной формы, длина которых намного превышает их сечение.

На заключительном этапе производства ДВП - форматной резке их -выделяется значительное количество мелкодисперсной древесной пыли.

Многие предприятия деревообрабатывающей промышленности относятся к производствам строительной индустрии. При изготовления деревянных конструкций древесину механически обрабатывают, склеивают, антисептируют, покрывают защитными покрытиями, грунтуют и красят При грубой механической обработке древесины (резании, фрезеровании, долблении, строгании) образуется много отходов в виде опилок, стружек, щепы и небольшое количество мелкодисперсной пыли в основном при шлифовании.

Запыленность воздуха на деревообрабатывающих предприятиях превышает санитарные нормы до 10-15 раз из-за низкой эффективности местных отсосов. Древесная пыль относится к четвертому классу опасности, но она пожаро- и взрывоопасна. При нанесении защитных покрытий, склеивании, грунтовке и покраске древесины выделяются химические газы, которые относятся ко второму - четвертому классам опасности.

3.1.2 Локализация вредных выделений на отдельных участках производства ДВП

Для уменьшения загрязненности воздушной среды цеха необходимо применять местные отсосы (зонты) для улавливания загрязнителей в местах их выделения (см. рис. 3).

Значительные размеры оборудования и наличие передвижной кран-балки создают дополнительные трудности при проектировании местной вентиляции для полной локализации выделяющихся вредностей, а применение мощной системы обменной вентиляции, как правило, приводит к неоправданному увеличению объемов воздухообмена.

Как показали исследования условий труда в действующих цехах по производству ДВП, совместно с технологами, механиками и энергетиками можно добиться существенного снижения поступления вредностей в воздушную среду без значительного увеличения расходов приточного и вытяжного воздуха. Исходя из конкретных условий эксплуатации отдельного оборудования, для снижения вредных выделений необходимо:

1) определить минимальное количество проемов, их расположение и размеры для наблюдения за технологическим процессом;

2) применять более совершенную в санитарно-гигиеническом отношении технологию закалки и увлажнения ДВП;

3) согласовать формы и размеры укрытий, а также места установки отсосов вредностей и локальных подач свежего воздуха с особенностями эксплуатации и ремонта оборудования технологической линии.

На заводах ДВП производительностью 10 млн. м2 в год удаляется 1 млн. м3/ч отработавшего воздуха; тепловыделения составляют примерно 28 ГДж/ч и влаговыделения - 4,8 т/ч. Часть теплоты используется для нагрева приточного воздуха в рекуператоре, установленном над прессом. Такой большой объем отработавшего воздуха получается за счет того, что в цехах в основном используется общеобменная вентиляция, а местные отсосы внедряются сравнительно мало. Большой объем пара совместно с частицами пыли и другими вредностями попадает в воздушную среду цехов, отрицательно воздействуя на здоровье работающих, на конструкции здания и технологическое оборудование.

Для улучшения условий труда, сокращения воздухообмена и продления срока службы строительных конструкций на заводах ДВП необходимо предусматривать следующие мероприятия:

- обеспечивать полную герметизацию рафинаторов, а также дверей камер увлажнения и закалки плит;

- во избежание конденсации водяных паров предусматривать утепление ограждающих конструкций цеха в зоне увлажнительной камеры обеспечивающее термическое сопротивление 3 м2 С/Вт;

- над рабочими местами с большим выделением вредностей (пресс стол для нарезки плит и т.д.) устанавливать безвихревые воздухораспределители для подачи приточного воздуха соответствующих параметров;

- в оконных проемах устанавливать осевые вентиляторы .с калориферами для подачи приточного воздуха извне, чтобы в цехах был выдержан баланс вытяжки и притока.

-зонты местных отсосов устанавливать на опоры из профильного металла с направляющими для их фиксации с целью снижения трудоемкости монтажных и демонтажных работ. Указанные мероприятия позволят снизить производительность вытяжных систем с 1,0 до 0,6 млн. м3 /ч при одновременном уменьшении загрязненности воздушной среды цехов до санитарных норм, а также увеличить срок службы строительных конструкций и технологического оборудования.

3.2 Обеспыливание и очистка газов на заводах кровельных материалов

3.2.1 Химические методы очистки газов, применяемые на заводах кровельных и теплоизоляционных материалов

При производстве некоторых строительных материалов наряду с пылью выделяются и вредные газы. При изготовлении минераловатных изделий содержание паров фенола в отходящих газах составляет 100-200 мг/м3 и более. На толерубероидных заводах концентрация углеводородов в пересчете на углерод в отходящих газах конверторов составляет 5-20 г/м3. При отливке чугунных изделий на каждую тонну выделяется 150 г окиси, углерода и 12 г сернистого ангидрида. Некоторое количество сернистого ангидрида может выделяться при обжиге клинкера и на других переделах, где сжигается мазут или уголь с большим содержанием серы.

Очистка от газообразных вредных примесей в большинстве случаев осуществляется следующим образом:

1. Абсорбцией - поглощением из газовой смеси вредных компонентов при их контакте с жидкостями, причем они поглощаются всем объемом жидкости.

2. Адсорбцией - поглощением вредных веществ из газообразной среды поверхностным слоем жидкости или твердого тела.

3. Путем превращения газообразных компонентов при помощи добавок в твердые или жидкие вещества с последующим их удалением.

4. Путем высокотемпературного или каталитического сжигания вредных примесей.

Наиболее широкое распространение при очистке газов от вредных компонентов в промышленности строительных материалов получила абсорбция. Менее распространены процессы превращения химических газообразных примесей в твердые или жидкие компоненты. В последнем случае процесс очистки осложняется необходимостью улавливать твердые или жидкие мелкие частицы.

Абсорбция может проводиться до полного насыщения жидкостью - прерывистый процесс - или осуществляется по непрерывному процессу. Тогда потоки газа постоянно контактируют со свежей промывной жидкостью. Для проведения абсорбции используют насадочные скрубберы или пенные аппараты [4].

В практике химической очистки газа значительное распространение получили барботажные тарельчатые абсорберы со сливными устройствами. Абсорбент стекает с тарелки на тарелку по переливным трубам и удаляется в нижней части колонны. Газ, двигаясь снизу вверх, барботируется через слой жидкости. При прохождении между зубьями колпачков со скоростью 2-6 м/с газовый поток разбивается на множество мелких пузырьков, что обеспечивает большую поверхность соприкосновения газа с жидкостью.

Очистка газов адсорбционными, термическими и термокаталитическими методами

При очистке небольших объемов газов с малой концентрацией вредных веществ оказывается удобным применение адсорберов, в которых в качестве поглотителя используют активированный уголь, силикагель или другие зернистые материалы, имеющие пористую структуру и большую удельную поверхность.

Особенность процесса адсорбции - его обратимость. Составной частью всех процессов адсорбции является извлечение адсорбируемого вещества из твердого поглотителя (десорбция). В тех случаях когда поглощаемый компонент обладает высокой летучестью, для удаления используют метод испарения путем нагрева слоя адсорбента. В других случаях поглощенный компонент удаляют методом вытеснения, используя агенты, обладающие более высокой адсорбционной способностью, чем поглощенный компонент. Для удаления смолистых веществ и других попутных продуктов используют метод выжигания.

Процессы адсорбции, так же как и десорбции, могут проводиться периодически в аппаратах с неподвижным слоем либо непрерывно в аппаратах с движущимся или кипящим слоем адсорбента.

В настоящее время ведутся интенсивные работы по использованию твердых химических адсорбентов для улавливания из дымовых газов сернистых соединений при высоких температурах и давлениях: Этот метод обладает значительными преимуществами перед мокрой очисткой, так как отсутствуют сточные воды, которые в большинстве случаев также приходится очищать, а газовые выбросы сохраняют свою температуру, а следовательно, и способность подниматься в верхние слои атмосферы.

Для адсорбции сернистых соединений используют известь, доломит и окислы различных металлов, которые вводят в топочную камеру в мелко раздробленном виде или используют в фильтрах с насыпным периодически или непрерывно движущимся слоем. При подаче доломита в топочную камеру в количестве 38,5 кг на 1 т мазута, содержащего 2% серы, степень очистки газов от серы составляет 50-80%.

В процессе взаимодействия с окислами и карбонатами при 700-1000° С протекают следующие химические реакции:

CaСО3 + SО2 + 0,5О2 = CaSO4 + СО2;

MgСО3 + SО2 + 0,5О2 = MgSO4 + СО2;

CaО + SО2 + 0,5О2 = CaSO4

MgО + SО2 + 0,5О2 = MgSO4

Fe2О3 + 2SО2 + 0,5О2 = 2FeSO4

Из содержащих серу соединений можно путем обжига выделить элементарную серу или использовать их как компоненты строительных материалов.

Недостатками адсорбционного метода, препятствующими широкому внедрению в промышленность, являются его периодичность, высокая стоимость регенерации адсорбентов. Организация непрерывных процессов связана с конструктивными и техническими трудностями. Кроме того, существенный недостаток сорбентов - снижение их адсорбционной активности в процессе эксплуатации, особенно при очистке запыленных газов [2].

В промышленности строительных материалов, и в частности на рубероидных заводах, для очистки от вредных газов используют методы высокотемпературного или каталитического сжигания газов в особых печах. Термические методы обезвреживания по сравнению с другими имеют следующие преимущества: 1) небольшие капитальные затраты на строительство аппаратов для сжигания; 2) возможность обезвреживать многокомпонентные газы; 3) возможность утилизации тепла очищенных газов.

В некоторых случаях для интенсификации процесса окисления особо вредных газообразных веществ пользуются катализаторами, т. е. веществами позволяющими увеличивать скорость реакции.

Принципиальная схема очистки газов путем каталитического дожигания приведена на рис. 6. Подлежащие очистке газы иногда содержат пыль, осадок которой не может быть сожжен на катализаторе. Поэтому в схеме предусматривается предварительное обеспыливание газа в циклоне, в других случаях вместо циклонов можно использовать более эффективные аппараты.

3.2.2 Характеристика пылегазовых выбросов при производстве кровельных и теплоизоляционных материалов

Технология изготовления мягких кровельных материалов связана с переработкой битума. В процессе подготовки битум подвергается подогреву, обезвоживанию и окислению. Битум, поступающий на пропитку, нагревается в трубчатой печи до 180-200° С. При нагреве испаряется вода и выделяются легкие углеводороды.

Окисление осуществляется воздухом при 230-250° С в установках периодического или непрерывного действия. В процессе окисления сжатый воздух барботирует через слой расплавленного битума. При этом выделяются пары воды, низкокипящие фракции углеводородов, окись и двуокись углерода, сероводород и сернистый ангидрид. Окисление 1 т битума сопровождается выделением 10 кг легких углеводородов, 2,5 кг окиси углерода, 0,25 кг сернистых соединений. Отработанный воздух, удаляемый с узла нагрева и окисления битума, имеет наибольшую концентрацию загрязняющих веществ. Битум, предназначенный для пропитки, подается в камеру предварительного полива и пропиточную ванну рубероидного агрегата. В обоих случаях с поверхности расплавленного битума выделяются в окружающую среду легкие углеводороды, окись углерода, сероводород и сернистый газ.

Пропиточный битум, применяемый для приготовления покровного состава, подается с температурой 185-210 °С в смеситель для смешивания с минеральным наполнителем. Смесь поступает в покровный лоток. Источником газовыделения в этом случае является обрабатываемая поверхность полотна. Значительное количество вредных газов выделяется при производстве наиболее распространенного теплоизоляционного материала - минеральной ваты. Минеральную вату получают путем распыления расплава из металлургических и топливных шлаков, горных пород или иных силикатных материалов. Независимо от типа плавильного агрегата производство минеральной ваты состоит из следующих этапов: подготовка сырьевых материалов путем дробления, плавление сырья и получение расплава в вагранках или ванных печах, распыление минерального расплава, осаждение минеральной ваты и образование минераловатных мягких, полужестких и жестких изделий. В большинстве случаев в качестве плавильного агрегата используют вагранки, при работе которых выделяется значительное количество пыли, окиси углерода и сернистого ангидрида. Концентрация пыли, содержащаяся в ваграночных газах, зависит от технологии плавки и находится в пределах 3-20 г/м3 в стандартных условиях. Ваграночные газы содержат токсичные компоненты: окись углерода 5-28%, сернистый ангидрид 0,02-0,5%.


Подобные документы

  • Содержание проблемы очистки атмосферы в связи с разнообразным её загрязнением человеком. Характеристика регенеративных и деструктивных методов очистки. Процесс биоремедиации атмосферы как комплекс методов очистки атмосферы с помощью микроорганизмов.

    контрольная работа [13,1 K], добавлен 03.02.2011

  • Воздействие на атмосферу. Улавливание твердых веществ из дымовых газов ТЭС. Направления защиты атмосферы. Основные показатели работы золоуловителя. Основной принцип работы электрофильтра. Расчет батарейного циклона. Выбросы золы и очистка от них.

    презентация [3,0 M], добавлен 08.02.2014

  • Основные понятия и определения процессов пылеулавливания. Гравитационные и инерционные методы сухой очистки газов и воздуха от пыли. Мокрые пылеуловители. Некоторые инженерные разработки. Пылеуловитель на основе центробежной и инерционной сепарации.

    курсовая работа [1,6 M], добавлен 27.12.2009

  • Характеристика выбросов парообразных примесей на машиностроительных предприятиях. Методы и оборудование для определения концентрации газов в воздухе. Способы осуществления процессов адсорбционной очистки. Методы термической нейтрализации вредных примесей.

    контрольная работа [135,0 K], добавлен 07.01.2015

  • Природные и искусственные источники загрязнения атмосферы Земли. Последствия попадания в атмосферу газов, пыли, серы, свинца и других веществ для человеческого организма. Контроль качества окружающей среды и средства защиты организма от загрязнений.

    презентация [1,3 M], добавлен 22.11.2014

  • Строение и состав атмосферы. Загрязнение атмосферы. Качество атмосферы и особенности ее загрязнения. Основные химические примеси, загрязняющие атмосферу. Методы и средства защиты атмосферы. Классификация систем очистки воздуха и их параметры.

    реферат [362,1 K], добавлен 09.11.2006

  • Производства, влияющие на окружающую среду. Пути загрязнения атмосферы при строительстве. Меры защиты атмосферы. Источники загрязнения гидросферы. Санирование и очистка территорий. Источники сверхнормативного шума, связанные со строительной техникой.

    презентация [11,7 K], добавлен 22.10.2013

  • Исследования газового состава атмосферы. Атмосферная химия. Спутниковый мониторинг атмосферы. Прогнозирование изменений состава атмосферы и климата Земли. Явление парникового эффекта атмосферы. Влияние увеличивающейся концентрации СО2.

    реферат [49,4 K], добавлен 27.12.2002

  • Проблемы экологической безопасности автомобильного транспорта. Физическое и механическое воздействие автотранспорта на окружающую среду. Влияние выхлопных газов на здоровье человека. Мероприятия по борьбе с загрязнением атмосферы выхлопными газами.

    презентация [1,0 M], добавлен 21.12.2015

  • Биотические факторы среды. Охрана атмосферы и вод. Каталитическая очистка. Пути снижения и полной ликвидации загрязнения атмосферы. Эффективность работы очистных сооружений. Безотходная технология. Правовая охрана атмосферы. Загрязнение водных ресурсов.

    контрольная работа [29,3 K], добавлен 13.10.2008

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.