Определение тяжелых металлов атомно-абсорбционным методом
Сущность атомно-абсорбционного метода анализа. Измерение массовой концентрации металлов в пробах природных и сточных вод, вспомогательные устройства, реактивы и материалы. Теоретические основы и практика применения рентгенофлуоресцентного метода.
Рубрика | Экология и охрана природы |
Вид | реферат |
Язык | русский |
Дата добавления | 08.01.2010 |
Размер файла | 400,6 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Определение тяжелых металлов атомно-абсорбционным методом
Методика предназначена для выполнения измерений массовой концентрации металлов (марганца, меди, железа, цинка, молибдена) в пробах природных и сточных вод атомно-абсорбционным методом с электротермической атомизацией с использованием атомно-абсорбционного спектрометра "МГА-915".
Таблица 1
Диапазон измеряемых концентраций в пробах воды без разбавления:
Элемент |
Концентрация |
|
Цинк |
0,1 - 8,0 мг/дм3 |
|
Хром |
0,001 - 0,1 мг/дм3 |
|
Марганец |
0,0003 - 0,050 мг/дм3 |
|
Медь |
0,0005 - 0,070 мг/дм3 |
|
Железо |
0,005 - 0,060 мг/дм3 |
Объем дозируемой в атомизатор пробы - от 5 до 40 мм3.
При анализе проб воды с массовой концентрацией металлов, превышающей верхнюю границу диапазона, допускается разбавление пробы бидистиллированной (деионизованной) водой, но не более чем в 100 раз. (Zn, Cr), не более чем в 1000 раз (Mn, Cu, Fe)
Метод измерения
Метод измерения основан на резонансном поглощении света свободными атомами металлов, возникающем при пропускании света через слой атомного пара в графитовой печи атомно-абсорбционного спектрометра "МГА-915". Содержание металлов определяется величиной интегрального аналитического сигнала и рассчитывается по предварительно установленной градуировочной зависимости.
Характеристика погрешности измерения
Методика обеспечивает выполнение измерений с погрешностью, не превышающей величин, указанных в табл.2.
Таблица 2
Значения характеристики погрешности измерений для доверительной вероятности Р=0,95
Определяемый элемент |
Воды природные |
||
Диапазон измеряемых массовых концентраций, мг/дм3 |
Характеристика погрешности измерений, ±д, % |
||
Марганец |
0,0003-0,0050,005-0,0200,020-0,050 |
352015 |
|
Медь |
0,0005-0,0100,010-0,0250,025-0,070 |
502515 |
|
Цинк |
0,1-0,40,4-0,8 |
3518 |
|
Железо |
0,005-0,0100,010-0,060 |
3520 |
|
Хром |
0,001-0,0050,005-0,1 |
4020 |
Средства измерений, вспомогательные устройства, реактивы и материалы
Средства измерений и стандартные образцы
Спектрометр атомно-абсорбционный "МГА-915" |
ТУ 4434-915-205016233-98 |
|
Весы лабораторные общего назначения 2-го класса точности, например ВЛР-200 |
ГОСТ 24104 - 88 |
|
Меры массы |
ГОСТ 7328 - 82 |
|
Мерные колбы 2-1000-2, 2-100-2,2-50-2 |
ГОСТ 1770 - 74 |
|
Пипетки градуированные 2-го класса точности вместимостью 1, 2 , 5 и 10 см3 |
ГОСТ 29227 - 91 |
|
Дозатор пипеточный одноканальный переменного объема 5-50 мм3. Погрешность измерения - не более ±5 % |
ТУ 9452-001-33189998-95 |
|
Государственные стандартные образцы состава раствора определяемых ионов (1 мг/см3, погрешность аттестованного значения ±1 %): |
ГСО 7266 - 96 |
|
* марганца |
ГСО 7266 - 96 |
|
* меди |
ГСО 7255 - 96 |
|
* железа |
ГСО 7254 - 96 |
|
* цинка |
ГСО 7256 - 96 |
|
* хром |
ГСО 7768 - 2000 |
Допускается использование средств измерений и стандартных образцов с аналогичными или лучшими метрологическими характеристиками. Средства измерений должны быть поверены в установленные сроки.
Отбор и хранение проб
Общие требования к отбору проб по ГОСТ Р 51592-2000. Отбор проб природной воды производится по ГОСТ 17.1.5.05-85, сточной воды по НВН 33.5.3.01-85. Объем отбираемой пробы составляет не менее 50 см3. К пробе добавляют 3 см3 концентрированной азотной кислоты на 1 дм3 пробы и хранят в посуде из полиэтилена, полипропилена или фторопласта. Пробы перед анализом фильтруют через бумажный фильтр "белая лента" или пористый фильтр с диаметром пор 0,45 мкм. При фильтровании первые порции фильтрата (не менее 5 см3) следует отбросить. Посуду, предназначенную для отбора проб и хранения проб, промывают раствором азотной кислоты, а затем дистиллированной и бидистиллированной (ионизированной) водой. Срок хранения законсервированной пробы - 3 дня.
Подготовка к выполнению измерений
Для каждого раствора необходимо использовать свою пипетку. Раствор из колбы наливают в стаканчик и из него набирают пипетку. Запрещается погружать пипетку во весь объем раствора во избежание загрязнения.
Рекомендуется иметь отдельный набор посуды для приготовления растворов каждого элемента.
Приготовление растворов
Все растворы готовят на бидистиллированной (деионизованной) воде.
Раствор азотной кислоты, объемная доля 2%
В коническую колбу помещают 300-400 см3 бидистиллированной деионизованной воды, осторожно, при перемешивании вливают 10 см3 концентрированной азотной кислоты, доводят до 500 см3 бидистиллированной водой и перемешивают. Раствор устойчив при хранении в закрытом сосуде из полиэтилена, полипропилена или фторопласта длительное время. Контроль качества раствора азотной кислоты проводят ежедневно перед началом работы. Процедура контроля состоит в измерении массовой концентрации элементов в соответствии с п.7 методики. Если измеренное значение превышает 30% нижней границы диапазона измерения элемента (п.1),то раствор необходимо приготовить заново.
Приготовление градуировочных растворов
Приготовление рабочих растворов массовой концентрации 100мг/дм3
В мерную колбу вместимостью 50 см3 помещают при помощи пипетки 5 см3 государственного стандартного образца состава раствора соответствующего иона, доводят до метки 2 % -ным раствором азотной кислоты и перемешивают. Раствор устойчив при хранении в полиэтиленовой посуде в течение 1 месяца.
Приготовление рабочих растворов массовой концентрации 2мг/дм3
В мерную колбу вместимостью 100 см3 помещают при помощи пипетки 2 см3 рабочего раствора массовой концентрации 100 мг/дм3, приготовленного по п. 6.2.2.1, доводят до метки 2%-ным раствором азотной кислоты и перемешивают. Раствор устойчив при хранении в полиэтиленовой посуде в течении 2 недель.
Приготовление рабочих растворов массовой концентрации 1мг/дм3
В мерную колбу вместимостью 100 см3 помещают при помощи пипетки 1 см3 рабочего раствора массовой концентрации 100 мг/дм3, приготовленного по п. 6.2.2.1, доводят до метки 2%-ным раствором азотной кислоты и перемешивают. Раствор устойчив при хранении в полиэтиленовой посуде в течении 2 недель.
Приготовление рабочих растворов массовой концентрации 20мкг/дм3
В мерную колбу вместимостью 100 см3 помещают при помощи пипетки 2 см3 рабочего раствора массовой концентрации 1 мг/дм3, приготовленного по п. 6.2.2.3, доводят до метки 2%-ным раствором азотной кислоты и перемешивают. Раствор используют свежеприготовленным.
Приготовление рабочих растворов массовой концентрации 10мкг/дм3
В мерную колбу вместимостью 100 см3 помещают при помощи пипетки 1 см3 рабочего раствора массовой концентрации 1 мг/дм3, приготовленного по п. 6.2.2.3, доводят до метки 2%-ным раствором азотной кислоты и перемешивают. Раствор используют свежеприготовленным.
Приготовление рабочих растворов массовой концентрации 1мкг/дм3
В мерную колбу вместимостью 50 см3 помещают при помощи пипетки 5 см3 рабочего раствора массовой концентрации 10 мкг/дм3, приготовленного по п. 6.2.2.5, доводят до метки 2%-ным раствором азотной кислоты и перемешивают. Раствор используют свежеприготовленным.
Градуировка спектрометра
Для построения градуировочной зависимости аналитического сигнала от массы элемента в графитовую печь атомизатора вводят дозатором необходимый объем (от 5 до 40 мм3) градуировочных растворов соответствующего элемента. Диапазоны построения градуировочной зависимости приведены в таблице 2. Необходимо использовать не менее 5 точек в указанном в таблице 2 диапазоне массы. При построении градуировочной зависимости следует начинать с меньших значений массы элемента и от них переходить к более высоким. В таблице 3 приведены рекомендуемые для внесения объемы градуировочных растворов.
Рекомендуемые режимы обработки градуировочных растворов и проб приведены в таблице 4.
Измерение с каждой массой элемента проводят 5 раз в соответствии с Руководством по эксплуатации спектрометра (далее РЭ) и рассчитывают среднее арифметическое значение полученных значений. Затем запускают процедуру «Ручная градуировка» и вводят с клавиатуры компьютера массу элемента (в пиктограммах) и соответствующие им величины средних значений аналитического сигнала. Полученную градуировочную зависимость можно просмотреть в режиме «Градуировка»/«Просмотр».
Таблица 3
Диапазоны построения градуировочных зависимостей.
Элемент |
Диапазон измерения, мг/дм3 |
Диапазон масс, пг |
|
Марганец |
От 0.0003 до 0.050 включительно |
10 - 400 |
|
Медь |
От 0.0005 до 0.070 включительно |
20 - 600 |
|
Железо |
От 0.005 до 0.060 включительно |
40 - 600 |
|
Цинк |
От 0.1 до 8.0 включительно |
5000 - 80000 |
|
Хром |
От 0.001 до 0.1 включительно |
40 - 600 |
Таблица 4
Рекомендуемые способы внесения элемента в атомизатор
Масса, пг |
Концентрация градуировочного раствора, мкг/дм3 |
Объем градуировочного раствора, мм3 |
|
10 |
1.0 |
10 |
|
20 |
1.0 |
20 |
|
40 |
1.0 |
40 |
|
100 |
10.0 |
10 |
|
200 |
10.0 |
20 |
|
400 |
10.0 |
40 |
|
600 |
20.0 |
30 |
|
800 |
20.0 |
40 |
При высоких значениях массы элемента может наблюдаться отклонение градуировочной зависимости от линейной. В этом случае рекомендуется ограничиться более узким, чем в указано в табл. 2 интервалом массы определяемого элемента для построения градуировочной зависимости.
Контроль стабильности градуировочной зависимости
Контроль стабильности градуировочной зависимости состоит в проведении не менее двух параллельных измерений массовой концентрации растворов, заново приготовленных по п. 6.2.2, перед началом работы, и после анализа 15-20 проб.
Градуировка признается стабильной, если расхождение между заданным и измеренным значением концентраций не превышает 15% от заданного значения. В этом случае процесс измерений признается подконтрольным, и результаты измерений массовой концентрации элемента в пробах за период между двумя последовательными процедурами контроля стабильности градуировочной характеристики принимаются в качестве окончательных результатов.
При несоответствии полученных результатов указанному нормативу процесс градуировки необходимо повторить.
Выполнение измерений
Вводят дозатором в графитовую печь атомизатора от 5 до 40 мм3 анализируемой пробы (в зависимости от ожидаемого содержания) и производят измерение в соответствии с выбранным режимом работы (таб. 4). Режимы при измерении градуировочных растворов и проб (за исключением стадии пиролиза) должны совпадать. Температура и продолжительность пиролиза зависят в первую очередь от матричного состава пробы. При анализе сравнительно чистых или разбавленных сточных вод режим пиролиза можно не использовать.
Порядок проведения измерений осуществляется в соответствии с Руководством по эксплуатации спектрометра. Объем дозированной пробы вводится с клавиатуры компьютера по запросу программы. После завершения измерения на дисплей компьютера выводится величина интегрального аналитического сигнала, масса и концентрация определяемого компонента. Полученные данные автоматически протоколируются. Анализ пробы осуществляется минимум 2 раза.
Если измеренное значение массы элемента в пробе выходит за область линейности градуировочной характеристики, то пробу необходимо разбавить бидистиллированной (деионизованной) водой, предварительно проверенной на наличие примеси определяемого элемента. Затем разбавленную пробу анализируют как описано выше. Коэффициент разбавления пробы Q вычисляют по формуле
(1)
где Vк - объем разбавленной пробы, см3;
Vа - аликвотная порция исходной пробы, взятая для разбавления, см3
Рентгенофлуоресцентный метод. Теоретические основы и практика применения
Метод основан на зависимости интенсивности рентгеновской флуоресценции от концентрации элемента в образце. При облучении образца мощным потоком излучения рентгеновской трубки возникает характеристическое флуоресцентное излучение атомов, которое пропорционально их концентрации в образце. Излучение разлагается в спектр при помощи кристалл-анализаторов, далее с помощью детекторов и счетной электроники измеряется его интенсивность. Математическая обработка спектра позволяет проводить количественный и качественный анализ.
Рентгеновская флуоресценция
Когда атомы образца облучаются фотонами с высокой энергией - возбуждающим первичным излучением рентгеновской трубки, это вызывает испускание электронов. Электроны покидают атом. Как следствие, в одной или более электронных орбиталях образуются "дырки" - вакансии, благодаря чему атомы переходят в возбужденное состояние, т.е. становятся нестабильны. Через миллионные доли секунды атомы возвращаются к стабильному состоянию когда вакансии во внутренних орбиталях заполняются электронами из внешних орбиталей. Такой переход сопровождается испусканием энергии в виде вторичного фотона - этот феномен и называется "флуоресценция''. Энергия вторичного фотона находится в диапазоне энергий рентгеновского излучения, которое располагается в спектре электромагнитных колебаний между ультрафиолетом и гамма-излучением.
Различные электронные орбитали обозначаются K, L, M и т.д., где К - орбиталь, ближайшая к ядру. Каждой орбитали электрона в атоме каждого элемента соответствует собственный энергетический уровень. Энергия испускаемого вторичного фотона определяется разницей между энергией начальной и конечной орбиталей, между которыми произошел переход электрона.
Длина волны испускаемого фотона связана с энергией формулой E = E1-E2 = hc/l , где E1 и E2 - энергии орбиталей, между которыми произошел переход электрона, h - постоянная Планка, с - скорость света, l - длина волны испускаемого(вторичного) фотона. Таким образом, длина волны флуоресценции является индивидуальной характеристикой каждого элемента и называется характеристической флуоресценцией. В то же время интенсивность (число фотонов, поступающих за единицу времени) пропорциональна концентрации (количеству атомов) соответствующего элемента. Это дает возможность элементного анализа вещества: определение количества атомов каждого элемента, входящего в состав образца.
Управление анализом и вычисление концентраций
Анализ и обработка результатов измерений проводится в автоматическом режиме. Для этого разработаны методики анализа многих элементов для различных типов веществ. Методики реализованы в виде компьютерных программ. Во время измерения компьютер управляет всеми узлами спектрометра в соответствии с заданной программой анализа. Современный уровень надежности оборудования и устройство автоматической подачи образцов позволяют выполнять анализ непрерывно круглосуточно без участия оператора. По окончании измерений компьютер выполняет расчет концентраций. Результаты анализа передаются электронными средствами связи автоматически по указанным адресам, либо накапливаются в базе данных измерений для дальнейшей обработки.
Подобные документы
Атомно-адсорбционная спектрометрия и ее применение в различных областях народного хозяйства. Преимущества и недостатки методов, применяемое оборудование. Примеры использования метода в анализе почв. Измерение массовой концентрации металлов в пробах воды.
курсовая работа [261,0 K], добавлен 07.01.2010Характеристика тяжелых металлов и их распространение в окружающей среде. Клиническая и экологическая токсикология тяжелых металлов. Атомно-абсорбционный метод определения содержания тяжелых металлов, подготовка и взятие органических проб гидробионтов.
научная работа [578,6 K], добавлен 03.02.2016Характеристика спектроскопических методов анализа. Сущность экстракционно-фотометрических методов. Примеры использования метода для определения тяжелых металлов в природных водах. Методика выявления бромид-ионов, нитрат–ионов. Современное оборудование.
курсовая работа [452,5 K], добавлен 04.01.2010Физические и химические свойства тяжелых металлов, нормирование их содержания в воде. Загрязнение природных вод в результате антропогенной деятельности, методы их очистки от наличия тяжелых металлов. Определение сорбционных характеристик катионитов.
курсовая работа [1,2 M], добавлен 23.02.2014Основные способы переработки текстильных отходов. Технология локальной очистки сточных вод от аммиака, красителей и тяжелых металлов. Эффективность использования 8-оксихинолина при удалении ионов тяжелых металлов из сточных вод текстильных предприятий.
курсовая работа [399,7 K], добавлен 11.10.2010Тяжелые металлы в водной среде. Действие оксидов тяжелых металлов на организм некоторых пресноводных животных. Поглощение и распределение тяжелых металлов в гидрофитах. Влияние оксидов тяжелых металлов в наноформе на показатели роста и смертности гуппи.
дипломная работа [987,3 K], добавлен 09.10.2013Исследование основных экологических и химических аспектов проблемы распространения тяжелых металлов в окружающей среде. Формы содержания тяжелых металлов в поверхностных водах и их токсичность. Тяжелые металлы в почвах и растениях. Микробный ценоз почв.
реферат [33,2 K], добавлен 25.12.2010Мониторинг состояния окружающей среды. Общие принципы биоиндикации. Биологическая роль и токсикологическое влияние тяжелых металлов. Сравнение влияния концентраций соединения ионов хрома, кобальта, свинца и никеля на контролируемые параметры тест-объекта.
дипломная работа [2,1 M], добавлен 19.04.2013Понятие тяжелых металлов, их биогеохимические свойства и формы нахождения в окружающей среде. Подвижность тяжелых металлов в почвах. Виды нормирования тяжелых металлов в почвах и растениях. Аэрогенный и гидрогенный способы загрязнения почв городов.
курсовая работа [1,9 M], добавлен 10.07.2015Общая характеристика сорбционной очистки промывных сточных вод гальванических производств неуглеродными сорбентами. Исследование выделения ионов тяжелых металлов реагентным, адсорбционным, ионообменным, электрохимическим способами и методом выпаривания.
курсовая работа [490,5 K], добавлен 23.02.2011