Современные способы утилизации отходов сельского хозяйства

Способы утилизации отходов птицеводства, животноводства, существующие технологии в данной сфере, оценка преимуществ и недостатков. Способы переработки отходов растительного сырья. Общая характеристика отходов сельского хозяйства, способы их утилизации.

Рубрика Экология и охрана природы
Вид дипломная работа
Язык русский
Дата добавления 22.07.2011
Размер файла 3,5 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

После завершения процесса биоконверсии получаемым конечным продуктом, является кормовая добавка - углеводно-белковый концентрат (УБК), который приобретает кормовые свойства в 1,8-2,4 раза превосходящие фуражное зерно хорошего качества, а также обладает рядом существенных и необходимых свойств, которыми не обладает традиционное зерновое сырье.

Особенностью конечной продукции, получаемой по альтернативной технологии микробиологической биоконверсии, в основном является то, что по своей сути, сырье для производства кормовой добавки УБК проходит обработку в среде аналогичной микрофлоре начального участка пищевода, т.е. первый этап пищеварения - «подготовка корма к перевариванию» начинается вне пищевода. Поэтому процесс переваривания таких кормов уже непосредственно в пищеводе животных, птиц и рыбы характеризуется высокими уровнем биологических процессов и переваримостью корма, а также сниженными ферментными и энергетическими затратами организма на всем этапе пищеварения.

Таким образом получаемая кормовая добавка - УБК, отличается высокой питательностью (протеин 22…26%), более легкой усвояемостью, биологической активностью, а также ферментной, витаминной и минеральной ценностью.

Кормовая добавка УБК, используется как основной компонент при производстве комбикормов в соотношении 1:1, как добавку к грубым растительным кормам, при производстве простых кормовых смесей с измельченным фуражным зерном, отрубями, зерно отходами и пр., с нормой ввода до 25…65%.

Средние затраты на производство 1 кг. высококачественного корма по рассматриваемой технологии не превышают 1 руб., а по кормовой ценности превышают показатели фуражного зерна в 1,8-2,4 раз.

Как и в традиционных кормах, продукция, полученная по альтернативной технологии компании Биокомплекс, соответствует принятым стандартам по питательности и содержанию необходимого набора витаминов и микроэлементов, ветеринарно безопасна, сертифицирована и является экологически чистой. В зависимости от вида исходного сырья и требований к готовой продукции, весь процесс микробиологической обработки может проходить от одного и до трех этапов, а длительность полного цикла производства может находиться в переделах от 4 до 6 суток. С увеличением длительности процесса снижаются финансовые затраты на переработку сырья и повышаются зоотехнические показатели конечной продукции.

Технология предусматривает круглогодичный режим работы предприятия, низкие требования к квалификации большинства рабочих, малые энергетические затраты.

Технология - экологически безопасная, не имеет сточных вод и выбросов.

Создание производственного комплекса для переработки отходов на основе альтернативной технологии микробиологической биоконверсии в корма может быть реализовано как для решения отдельных задач, так и многофункцинального назначения.

Кроме того, ЗАО Биокомплекс осуществляет реанимацию, модернизацию или перепрофилирование действующих и остановленных производств под выпуск комбикормов и кормовых добавок. Например, модульные фермерские комплексы могут быть смонтированы на основе имеющихся производственных помещений, оборудования колхозных кормоцехов, комбикормовых заводов и других пищевых и зерноперерабатывающих производств и пр.

Ключевым элементом технологической цепи является биореактор, в котором и осуществляется процесс микробиологической биоконверсии отходов в корма. Реакторы являются универсальными и позволяют работать с любым сырьем и получать различные кормовые добавки.

Технологическая схема производственного комплекса по микробиологической переработке растительных отходов в корма, показана на рисунке 5.

Рис. 5.: Технологическая схема микробиологической переработки растительных отходов в корма: 1 - прием сыпучего и влажного сырья; 2 - прием жидкого сырья; 3 - бункеры-дозаторы; 4 - смеситель; 5 - био-реактор; 6 - компрессор; 7 - парогенератор; 8 - сушилка; 9 - измельчитель; 10 - отгрузка в мешки

Влажная (55%) смесь различных отходов загружаются в биореактор. С момента загрузки сырья, в биореакторе процесс микробиологической биоконверсии протекает в течении 4-6 дней (в зависимости от желаемых зоотехнических параметров конечной продукции). В результате получается влажная кормовая добавка - углеводно-белковый концентрат (УБК). Затем ее сушат до влажности 8 - 10% и измельчают. После измельчения концентрат можно использовать для производства комбикормов, где в качестве основного компонента используется УБК (65 - 25% в зависимости от рецепта и целевого назначения комбикорма).

Комбикорма, полученные по технологии ЗАО «Биокомплекс» на основе кормовой добавки УБК, обладают совершенно уникальными качественными показателями:

Комбикорм обладает высокой биологической активностью, а его переваривание характеризуется более сжатым по времени процессом пищеварения и высоким уровнем биологических процессов. Таким образом, продуктивность кормления и эффективность выращивания животных, птиц и рыбы при использовании Комбикорма на основе УБК на 15-20% выше, чем при скармливании аналогичных комбикормов, приготовленных по традиционной технологии. Кроме того, комбикорм обладает лечебно-профилактическим и стимулирующим эффектом для иммунной, кроветворной систем и кишечного тракта, а также способствует удалению вредных веществ из организма (солей тяжелых металлов, радионуклидов и т.д.).

В отличие от классической технологии высокотемпературного гранулирования, комбикорм, произведенный по технологии Биокомплекс, проходит низкотемпературное гранулирование без использования пара. Что исключает деструкцию белка и обеспечивает сохранность витаминов в корме даже при длительном хранении.

Комбикорм скармливается по традиционным зоотехническим нормам и правилам, абсолютно безопасен в использовании, не вызывает аллергических симптомов и других побочных явлений или противопоказаний.

Представляет интерес и способ получения удобрения из органических отходов животноводства, птицеводства и растениеводства [8]. Способ включает: смешение в однородную биомассу навоза, птичьего помета и измельченных растительных отходов; разделение биомассы на жидкую и твердую фракции самовытеком жидкости из биомассы и сбором ее в накопителе; раздельное обеззараживание жидкой и твердой фракций биотермической ферментацией. Жидкую фракцию обеззараживают анаэробной ферментацией в сборнике при температуре 35-40оС, в течение 2-3 суток. Твердую фракцию обеззараживают аэробной ферментацией в открытых буртах, при температуре 65-70оС. Недостатки способа: повышенная загазованность рабочей зоны токсичными газообразными продуктами ферментации, в частности, фосфинами, сероводородом, меркаптанами, аммиаком; зараженность рабочей зоны термоустойчивыми патогенными микроорганизмами. Известно, что термоустойчивые микроорганизмы не погибают даже при температуре выше 100оС.

При приготовлении удобрения из органических отходов животноводства, птицеводства и растениеводства, навоз и птичий помет смешивают с измельченными растительными отходами в однородную биомассу. Полученную биомассу разделяют на жидкую и твердую фракции сепарацией Жидкую фракцию обеззараживают и детоксицируют обработкой в электролизере с нерастворимыми электродами, и после обработки засевают штаммами микроорганизмов аэробной и / или анаэробной ферментацией. Твердую фракцию обеззараживают и детоксицируют озоно-воздушной смесью и ультрафиолетовым излучением. После предварительной обработки жидкую фракцию приливают к твердой фракции. Увлажненную биомассу загружают в барабан, засевают штаммами аэробной и / или анаэробной микрофлоры, перемешивают и, подогревом теплым воздухом, в ней активируют ферментативные процессы. После активации ферментативного процесса в биомассе, ее выгружают в бурты.

Предлагаемый способ приготовления удобрения из органических отходов имеет следующие отличительные признаки от, описанных в литературе, способов:

- первый - разделение биомассы на фракции осуществляется сепарированием, что значительно ускоряет процесс разделения биомассы на твердую и жидкую фракции и, тем самым, уменьшает загазованность рабочей зоны токсичными выделениями продуктов анаэробной ферментации исходной биомассы;

- второй - обеззараживание с одновременной детоксикацией жидкой фракции осуществляется в электролизере с нерастворимыми электродами;

Под действием межэлектродного разряда и промежуточных продуктов электролиза: радикалов водорода, кислорода, гидроксильных групп, - идет разрушение защитной оболочки микроорганизмов, необратимая деструкция ферментных, белковых систем и ДНК. Эффективность подавления патогенной микрофлоры в рабочей зоне электролизера до 99,9%.

Детоксикация (обезвреживание) водорастворимых продуктов анаэробной ферментации (естественного гниения) навоза и птичьего помета: фосфина (РН3), фосфинов (R-РН2), сероводорода (Н2S), меркаптанов (R-SН), аммиака (NН3), происходит в процессе окисления этих продуктов в прианодном пространстве электролизера и идет до образования фосфорной, серной, азотной кислот и их производных, соответственно, по уравнениям:

[O]

PH3 > H3PO4

[O]

R-PH2 > R-H2PO4;

[O]

Н2S > H2SO4

[O]

R-SH > R-HSO4

[O]

NH3 > HNO3

где R - алкил, арил, гетерил.

Образующиеся в ходе окисления кислоты нейтрализуются основаниями жидкой фракции, в частности, с аммиаком с образованием нетоксичных средних, кислых, основных солей, которые входят в минеральную составляющую органических удобрений.

- третий - перед биотермическим ферментативным обеззараживанием твердую фракцию обрабатывают озоно-воздушной смесью и ультрафиолетовым излучением с целью её обеззараживания и детоксикации.

Как и жидкая фракция, твердая фракция, содержащая навоз и птичий помет, - это концентрированный источник патогенных микроорганизмов и газообразных токсичных веществ. Применение озона для обеззараживания и детоксикации твердой фракции определяется следующей целесообразностью. С одной стороны - озон - самый сильный после фтора и экологически чистый окислитель. Бактерицидное и противовирусное действие озона распространяется на все виды патогенной микрофлоры. Эффективность антимикробных, фунгицидных, спороцидных свойств озона, при прямом контакте и оптимальной концентрации, составляет 99,99%.

Непосредственные причины гибели бактерий и вирусов при действии озона - локальные повреждения плазматической мембраны микроорганизмов и изменение их внутриклеточного содержимого: окисление белков, нарушение клеточных механизмов.

С другой стороны - озон, как энергичный окислитель химических соединений, окисляет токсичные продукты естественного гниения: фосфин, фосфины, сероводород, меркаптаны, аммиак до фосфорной, сернистой, серной, азотной кислот и их производных, соответственно, по следующим уравнениям:

3РН3 + 4О3 > 3Н3РО4;

3R-PH2 + 4O3 > 3R-H2PO4;

3H2S + 4O3 > 3H2SO4;

H2S + O3 > H2SO3;

R-SH + O3 > R-SO3H;

3R-SH + 4O3 > 3R-HSO4;

NH3 + O3 > HNO3 +H2O

В количественном отношении только аммиак окисляется незначительно из-за его высокого окислительно-восстановительного потенциала.

Образовавшиеся в ходе окисления кислоты дают с избытком аммиака нетоксичные соли аммония.

Поскольку обеззараживающая эффективность озона определяется непосредственным контактом озона с объектом, в частности, с поверхностью частиц биомассы, то, с целью повышения степени обеззараживания биомассы, в усторойстве обеззараживания предусматривается дополнительная обработка ее ультрафиолетовым излучением.

Наибольшим бактерицидным действием обладают ультрафиолетовые лучи с длиной волны 205-310 нм. Более чувствительны к воздействию УФ излучения (УФИ) вирусы и бактерии в вегетативной форме (палочки, кокки). Менее чувствительны грибы и простейшие микроорганизмы. Наибольшей устойчивостью обладают споровые формы бактерий и грибов.

Гибель микроорганизмов на поверхностях, прямо расположенных в 2 м от импульсного источника УФИ, через 15 минут достигает 99,99% при дозе 50 м. Дж/см2. При этом на поверхностях, повернутых к источнику на 45-90 градусов, гибель микробов варьирует уже в пределах 57,6-99,99%.

Обеззараживающий эффект ультрафиолетового излучения, в основном, обусловлен фотохимическими реакциями, в результате которых происходят необратимые повреждения ДНК, РНК и клеточных мембран, что вызывает гибель микроорганизмов. Ультрафиолетовые лучи распространяются по прямой и действуют преимущественно на нуклеиновые кислоты, оказывая на микроорганизмы как летальное, так и мутагенное воздействие. Бактерицидными свойствами обладают только те лучи, которые адсорбируются протоплазмой микроклетки.

Для обеспечения максимального эффекта обеззараживания поверхности частиц твердой фракции, они непрерывно переворачиваются. Последнее достигается перемещением твердой фракции по технологической линии с помощью шнека - в случае обработки озоно-воздушной смесью и вибростола - в случае ультрафиолетового облучения.

- четвертое - после обеззараживания и детоксикации, непосредственно перед укладкой в бурты, твердая фракция засевается необходимыми штаммами ферментов, увлажняется обезвреженной жидкой фракцией и подвергается ферментативной активации в биобарабане при 45-55оС.

Использование предлагаемого способа приготовления удобрения из органических отходов уменьшает выброс токсичных газообразных продуктов и патогенных микроорганизмов в окружающую среду, обеспечивает санитарно-гигиенические условия труда в производственных помещениях и создает условия для ускоренного получения экологически чистого органического удобрения из отходов животноводства, птицеводства и растительного материала.

Предлагаемое техническое решение может использоваться в сельском хозяйстве для ускоренного приготовления органических удобрений из отходов животноводства, птицеводства и растениеводства.

Способ приготовления удобрения из органических отходов осуществляется с помощью устройства, которое включает в себя: смеситель биомассы 1, сепаратор 2, емкость-накопитель жидкой фракции 3, электролизер 4, емкость для обезвреженной жидкой фракции 5, засевной бак 6, ленточный транспортер твердой фракции 7, измельчитель 8, шнековое устройство с кожухом 9, озонатор 10, вибростол 11, ультрафиолетовые лампы 12, шнековый конвейер 13, ороситель 14, биобарабан 15, воздуходувку 16, ленточный транспортер - укладчик 17, бурты 18.

Навоз, птичий помет (в виде пульпы) и измельченные растительные отходы подаются в смеситель 1. Органические отходы в виде пульпы перемешиваются до однородной биомассы и перекачиваются в сепаратор 2 для разделения биомассы на жидкую и твердую фракции. Жидкая фракция с соотношением фосфора, азота и калия - 1,4:1,0:1,6 и содержанием коллоидных взвешенных веществ не менее 1%, подается в усреднительную емкость-накопитель 3, далее - в электролизер с нерастворимыми электродами. Электрохимическую обработку жидкой фракции ведут при плотности тока на электродах 2 А/дм2, площади электродов 0,5 м2 на 1 м3/час обрабатываемой жидкости, при расстоянии между электродами 30 мм, время обработки жидкости 5-10 мин. Обезвреженную жидкую и детоксицированную фракцию собирают в емкости 5 и далее перекачивают в засевной бак 6, где засевают штаммами микроорганизмов аэробной или анаэробной ферментации и возвращают в твердую фракцию (шнек 13) через оросительное устройство 14. Избыток обезвреженной жидкости используется для орошения сельскохозяйственных культур.

Отсепарированная твердая фракция: пористая, рассыпчатая биомасса с низкой адгезией, из сепаратора 2 подается на ленточный транспортер 7 и в измельчитель 8, с выходными параметрами измельчения - 5-25 мм.

Измельченная биомасса подается в шнековое устройство 9, где осуществляется обеззараживание и детоксикация твердой фракции путем прокачки озоно-воздушной смеси из озонатора 10 через шнековое устройство. Соотношение озона в озоно-воздушной смеси и сероводорода и меркаптанов в биогазовых выделениях твердой фазы составляет 2-4:1, соответственно. Степень обеззараживания и детоксикации твердой фракции регулируется концентрацией озона в озоно-воздушной смеси, скоростью её прокачки через шнековое устройство и временем контакта. При выходе из шнекового устройства 9 твердая фракция попадает на наклонный вибростол 11 с закрепленными над ним ультрафиолетовыми лампами 12, где производится дополнительное обеззараживание биомассы от патогенной микрофлоры. Технические характеристики ультрафиолетовых излучателей: диапазон длин волн от 185 до 400 нм, длительность импульса излучения от 1 мкс до 10 мкс, плотность импульсной мощности излучения до 120 квт/м2.

Дальнейшее обеззараживание твердой фракции осуществляется посредством биотермической ферментации. С этой целью твердую фракцию перемещают с вибростола 11 на шнековый конвейер 13. При движении в конвейере, она обогащается через ороситель 14 штаммами ферментации из засевного бака 6 и увлажняется жидкой фракцией и выгружается в биобарабан 15. В биобарабане увлажненная твердая фракция перемещается и перемешивается, подогревается до температуры 45-550С теплым воздухом из воздуходувки 16 до активации ферментативного процесса. После биотермической ферментации в биобарабане, масса укладывается в бурты 17 для дозревания на 45-60 суток.

2. Общая характеристика отходов сельского хозяйства, способы их утилизации, достоинства и недостатки

2.1 Отходы птицеводства и животноводства

Отходы промышленного животноводства и особенно птицеводства сильно загрязняют окружающую среду. Во многих странах действуют общегосударственные и региональные программы по уменьшению отрицательного давления этих отходов на экологию. Актуален поиск альтернативных методов утилизации отходов и сегодня предложены следующие способы: вывоз на поля нативного помета, навоза или стоков, компостирование, переработка навоза и помета на корм, применение биоэнергетических методов и новых технологий утилизации помета, создание рыбоводно-биологических прудов и др.

Вывоз на поля

В старину, при экстенсивном ведении хозяйства, коров с небольшими удоями содержали прежде всего для получения навоза. Концентрация скота на единицу земельных угодий была очень низкой. Навоз накапливали около фермы или вывозили на поля, где он постепенно превращался в перегной.

Сегодня при таком способе внесения возникает ряд проблем. Во-первых, перевозка громадного количества стоков (содержание сухого вещества 2-5%) требует немалых средств, во-вторых, почва, подземные и поверхностные воды заражаются инвазионными, инфекционными и токсическими элементами, в-третьих, это ведет к накоплению нитратов, меди и цинка в зерне, траве и водных источниках. В связи с этим в некоторых штатах США, например, запретили применение нативного птичьего помета в качестве удобрения.

Компостирование

Этот метод требует специальных площадок, техники и большого количества торфа, соломы и других материалов, снижающих содержание влаги. При соблюдении технологии получают биогумус хорошего качества, однако до 30-40% питательных веществ теряется в виде газов.

Основные способы компостирования можно рассмотреть на примере куриного помета.

На площадку насыпают крошку торфа слоем 30-40 см (используют погрузчики, тракторные прицепы, разбрасыватели, автосамосвалы), поверх нее - помет (при влажности помета 75% и торфа 65% соотношение 1:1). Затем все перемешивают и с помощью бульдозера формируют бурт. Ширина компостного бурта - 3-4 м, высота - 2, длина - не менее 6-8 м. Сверху бурт укрывают торфом. В холодное время года компост хранят в течение двух, в теплое - одного месяца.

Смеситель СА) 100 для приготовления компостов разработан Украинским НИИМиЭ сельского хозяйства. Технология предусматривает цикличное смешивание на наклонной плоскости бурта торфа с полужидким пометом, что обеспечивает равномерный биотермический процесс. Этот способ позволяет в 2-3 раза уменьшить сроки компостирования, надежно обеззаразить удобрение и максимально снизить активность семян сорняков.

Для получения по американской технологии препарата Фермвей в кирпичное здание загружают предварительно приготовленную на площадке с твердым покрытием торфопометную смесь (1:1). После загрузки массу специально обдувают, что вызывает бурное развитие термомезофильных бактерий. Процесс длится 5-7 дней.

Для улучшения товарных качеств продукта его дорабатывают на дезинтеграторе, дозаторе, стерилизаторе-обезвоживателе, грануляторе. В технологической линии есть приборы контроля температуры, влажности и содержания кислорода в воздушной среде аэрации. Фермвей используют в США как органическое удобрение, подстилку для животных и птицы, а также включают в рационы бычков на откорме.

Ускоряют переработку помета штаммы бактерий или грибков под общим названием «эффективные микроорганизмы».

В личных и приусадебных хозяйствах большим спросом пользуется высушенный куриный помет (пудрет). Стоимость полукилограммовых пакетов достигает 18 руб.

Удельная масса помета обратно пропорциональна содержанию сухого вещества. В клетках помет более влажный.

Помет в качестве корма

Поскольку около 40% питательных веществ корма не переваривается и выделяется с пометом, возникла идея использовать его для кормления животных и птицы. При высоких температурах куриный помет обеззараживали, удаляли из него перо, пух и семена сорняков. Полученный продукт, содержащий 20-30% сырого протеина, в смеси с комбикормом давали бычкам. При замене 33 и 50% концентратов пудретом получали суточные привесы 870-896 г.

В Англии птичий помет ферментируют, обрабатывают муравьиной кислотой и с добавками мелассы скармливают бычкам. У фирмы «ДеЛаваль» есть более 30 вариантов биологического обеззараживания навоза. По одной из технологий навоз направляют скребками и транспортером в центрифугу, где до 95% взвешенных частиц отделяют от влаги. Твердую фракцию с 36% сухого вещества выдерживают 3 месяца в специальном хранилище, потом гранулируют и дают скоту вместе с силосом.

Применяют навоз для приготовления специальных силосов - вестлажа и навосажа. В США, например, делают следующие смеси: 57% коровьего навоза и 43% сена; 42% дробленой кукурузы, 12% кукурузного силоса и 40% свиного навоза. При откорме бычков используют около 0,5 млн т мочевины, которую частично заменяют птичьим пометом как в чистом виде, так и с опилками. Овцы и козы охотно поедают вестлаж из 40% навоза крупного рогатого скота, 12% сенной резки и 12% дробленой кукурузы. Жидкую фракцию навоза в аэротенках микробиологическим методом превращают в белок одноклеточных, который оседает в виде активного ила.

В Молдавии свиной навоз влажностью 80-85% подвергали кислотному гидролизу. Твердая фракция (лигнин) шла на удобрение, а жидкая - для получения кормовых дрожжей. Технология их культивирования несложная, но культуральная жидкость содержит большое количество хлоридов и сульфатов, от которых трудно избавиться. Гидробаротермический метод требует больших энергетических затрат и дорогостоящего оборудования из нержавеющей стали, и это делает его нерентабельным.

В Канаде для подготовки к скармливанию навоз предварительно смешивают с соломой, потом засевают спорами грибов. В результате получают высокобелковый корм, пригодный в пищу не только жвачным, но и моногастричным животным. В последнее время, чтобы уменьшить выделение азота и фосфора, применяют ферменты, повышающие переваримость и усвоение питательных веществ.

Добавка фермента с фитазой на каждые 100 кг сухого вещества дает дополнительно 2,85 кг питательных веществ, 2,81 кг сырого протеина и на 1000 ккал - 14,6 ккал, соответственно снижая их поступление во внешнюю среду.

В Европе, чтобы сократить выделение аммиака, азота и фосфора и улучшить переваримость кормов, используют кристаллические аминокислоты. При более тщательном расчете рационов по доступным и синтетическим аминокислотам можно на откорме свиней убавить долю сырого протеина в комбикорме с 17,6 до 14,5%. При выращивании подсвинков с 25 до 55 кг было сэкономлено 2,2 кг сырого протеина на каждом поросенке и на 350 уменьшено количество выделяемого аммиака. Рост качества кормов и замена антибиотиков, например маннонолигосахарозой, также повышает переваримость кормов и усвояемость аминокислот.

Добавка в корм экстракта из юкки (деодоразы) увеличивает привесы свиней на 9,4%. Подобные результаты были получены и на несушках.

Биоэнергетическиеметоды утилизации

Такие методы решают сразу несколько задач: сбора и переработки отходов птицефабрик с улавливанием и нейтрализацией вредоносных биогазов, получение экологически чистых удобрений, а также метана для мини-ТЭЦ, газообразного топлива для автотракторной техники, обеспечения работы бесфреонового охладителя, производства «сухого» льда, соды и т.д.

В Европе в 1998 г. Насчитывалось более 800 (в том числе 24 крупных) биоэнергетических установок, работающих на навозе и помете. В Китае, Индии и других странах Азии их свыше 3 млн.

Применение технологии сдерживается из) за отсутствия инвестиций, а так же базовых конструкций.

Технология термический деполимеризации (TDP) позволяет из углеводородных и органических отходов животноводства получать газообразное, жидкое и твердое топливо, некоторые химикаты и удобрения. Так можно утилизировать остатки кормов, помет, навоз, подстилку, стоки и павших животных и птицу. Первая стадия проходит при 250-350 °С, вторая - при 500-700 °С. Пилотная установка TDP производительностью 7 т/день была пущена в США в 1999 г., коммерческая на 40 т/день - в 2002 г. Получаемые масла аналогичны дизельному топливу с 8-20 углеродными атомами, насыщенными и ненасыщенными жирными кислотами с 16-18 углеродными атомами. Твердые удобрения подобны апатитам, жидкие содержат 25-28% сульфата аммония.

В штате Вирджиния 65 тыс. т помета с подстилкой превращают в пеллетированные туки под торговой маркой «Гармони». Это прекрасное удобрение, в котором снижена подвижность азота и изменено в лучшую сторону соотношение N:P.

Отечественной фирмой «Корина» разработана баротермовзрывная технология переработки помета. По мнению авторов разработки, это положительно повлияет на окружающую среду, даст возможность получать органоминеральные премиксы и кормовые добавки. Однако необходимы устранение шумовых эффектов при выстреле кавитационных пушек и исследование безвредности соединений при разложении дурнопахнущих веществ.

Вермикультура

Использование калифорнийского или иной селекции червя (например, старателя» в России) получило широкое распространение в США, Канаде, Англии, Японии, Италии. При этом преследуется три цели: утилизация отходов, получение кормового белка и повышение плодородия почвы.

Биомаса червей - отличный белковый корм для птицы и свиней, способный, однако, аккумулировать соли тяжелых металлов, действуя как биологический «насос». Есть предложение использовать биомассу для приготовления микробиологических сред.

Некоторые ученые Китая и Японии считают биомассу червей пригодной для питания людей.

Рыбоводно-биологические пруды

Все более острой становится проблема чистой воды (рек, озер, подземных источников). Естественная система самоочистки, под которой подразумевается включение загрязняющих компонентов в общий круговорот веществ с выводом их в виде полезной продукции, не успевает с этим справляться.

Разработанная в ВИЖ четырехкаскадная система рыбоводно-биологических прудов позволяет получать на заключительном этапе очищенную техническую воду и рыбу (с гектара нагульных прудов в 10-20 раз больше полноценно белка, чем с гектара пастбища для от корма скота).

Навозные или пометные стоки направляют в пруды-накопители (первая ступень), выполняющие роль отстойников, твердая фракция из которых применяется в качестве удобрения, жидкая под воздействием специально подобранных микроводорослей зоопланктона проходит первый этап очистки. В следующем пруду различные виды водорослей (хлорелла, спирулина, ряска и т.д.) продолжают очищать стоки и насыщать их кислородом. Во второй половине лета избыток ряски удаляют и добавляют ее в корм животным и птице. Специально подобранный комплекс водорослей и зоопланктона, функционирующих при разных температурах и устойчивых к поеданию друг друга, повышает управляемость системы.

Водоросли второго пруда в третьем (рачковом) служат пищей для зоопланктона (разнообразных насекомых, червей, рачков), поступающего для кормления мальков рыб четвертого пруда. За лето мальки вырастают в 100 раз и достигают 25-30 г., становясь велико лепным рыбопосадочным материалом. При использовании последнего, четвертого, каскада для совместного на гула карпа и толстолобика (первый поедает зоопланктон, второй - растительность) продуктивность может достигать 60-100 ц рыбы с гектара водной поверхности.

Еще больший экономический эффект дает одновременное разведение рыбы и водоплавающей птицы (уток, гусей). Через 2-3 года после эксплуатации прудов и спуска воды на удобренном иловыми отложениями дне получают высокие урожаи сельскохозяйственных культур. Если пруды-накопители капитальные, то последующие три ступени могут создаваться по типу рисовых чеков с применением переносных щитов, шлангов. Биоинженерные сооружения типа биоплато или ботанической площадки высшей водной растительностью, тростником, рогозом или многолетними травами довершают степень очистки.

Для комплекса на 108 тыс. свиней требуется 108 га земли, из них 25 га - под пруды-накопители. Для остальных каскадов пригодны бросовые земли.

Использование личинок мух

Личинки мух, выращенные на органических отходах, обладают потрясающей энергией роста, их масса увеличивается в течение недели в 300-500 раз. Учеными подсчитано, что биомасса от пары мух и их потомства при полной реализации генетического потенциала в конце года составит более 87 т, то есть будет равна весу шести слонов.

ВИЖ совместно с рядом других научных учреждений разработал экологически чистую технологию утилизации нативных органических отходов свиноводства и птицеводства с помощью личинок домашней мухи (Musca do-mestica L.). Через 5-6 суток из 1 т нативного навоза или птичьего помета получают 60-100 кг биомассы личинок мух и 640-700 кг биогумуса. Биомасса личинок комнатной мухи - полноценный белковый корм для свиней, телят, птицы, пушных зверей, рыб. В нем содержится 48-52% протеина, 7-14% жира, 7-10% клетчатки, 7% БЭВ, 11-17% золы, а также биологически активные вещества (витамины, экдизон и т.д.).

Высокая эффективность использования нативных личинок объясняется хорошим усвоением питательных веществ, так как к полостному, мембранному и внутриклеточному механизмам переваримости добавляется так называемый индуцированный аутолиз (совместное переваривание пищи ферментами «хозяина» и «жертвы» в желудочно-кишечном тракте первого).

Из личинок, куколок и самих мух можно получать высококачественный хитин и его производные, в частности хитозан, применяющийся в медицинской, фармацевтической, пищевой и парфюмерной промышленности. Японские и американские ученые считают хитозан полимером будущего. В животноводстве он на 10-15% повышает резистентность поросят к инфекционным заболеваниям, на 20-40 г. в сутки увеличивает привесы подсвинков на откорме.

Использование для лечебно-профилактических целей выращенных на комбикорме личинок комнатной мухи и препаратов на их основе освоено в КНР при участии сотрудников ВИЖ. Водка, настоянная на личинках, обладает стимулирующим действием. Косметический крем с добавлением личиночной массы эффективно устраняет морщины, омолаживает кожу. Прошел всестороннюю проверку активный порошок из личинок мух У Гу Чун; он рекомендуется детям и старикам в качестве пищевой добавки, обладающей бактерицидными свойствами, повышающей иммунитет, улучшающей аппетит и жизнедеятельность, восстанавливающей силы, снижающей усталость, усиливающей эффективность лечения после операции.

Биогумус, полученный после переработки экскрементов личинками мух, - высокоэффективное органическое удобрение. Урожайность сельскохозяйственных культур при его применении увеличивается в 1,2-1,5 раза, при этом нематоды и другие вредители погибают.

Установлено действие различных доз биогумуса на микробиологическую активность почв при выращивании яровой пшеницы. Биогумус имеет слабощелочную реакцию (рН 7,4-7,8) при содержании общего азота от 0,84 до 1,22%, фосфора - от 0,69 до 0,99, калия - от 0,9 до 1,17% и подвижного аммония - 232-347 мг/% вещества. В 1 г биогумуса выявлено 378 млн бактерий аммонификаторов и 251 тыс. целлюлозоразлагающих бактерий, которые минерализируют органические вещества. В экспериментах, где использовали биогумус, количество микроорганизмов в почве было значительно выше, чем в контроле. Наибольшее число аммонифицирующих бактерий достигается при внесении 10 т/га биогумуса, при этом нитратов в почве оказалось меньше, чем аммония. По мере роста яровой пшеницы вплоть до уборки урожая в почве возрастает число нитрофицирующих микроорганизмов на участках с биогумусом. Там же отмечена активизация биологической ассимиляции атмосферного азота азотобактером. Содержание целлюлозоразрушающих бактерий в почве увеличивается до фазы кущения яровой пшеницы. Больше всего этих бактерий было на участках с биогумусом.

Внесение биогумуса в почву ускоряет минерализацию фосфорорганических соединений в результате действия специфических микроорганизмов. С увеличением норм с 10 до 30 т/га повышается концентрация фосфороразрушающих бактерий. Содержание фосфорной кислоты в почве зависит от числа микроорганизмов, разлагающих органические и минеральные соединения фосфора.

Использование биогумуса в качестве удобрения влияет на интенсивный рост микрофлоры, ускоряющей накопление подвижных форм питательных веществ, необходимых для повышения урожайности сельскохозяйственных культур.

Разработаны способы стерилизации нативных личинок. Как и на муку из сухих личинок, есть технические условия, разрешение на применение.

Барабанная сушилка с температурой воздушного потока 120-140 °С максимально сохраняет питательную ценность биомассы личинок мух и дает продукт, отвечающий утвержденным ветеринарно-санитарным требованиям к кормам животного происхождения.

Стратегическое сырье

К отходам и прежде всего к помету надо относиться как к ценному стратегическому сырью для восстановления плодородия земель, повышения урожайности культур, получения пищевого (рыбы) и кормового (водоросли, зоопланктон, черви и личинки) белка.

«Эффективные микроорганизмы» ускоряют процесс биологического разложения органических веществ, при котором до 50% их превращается в газы. Это старая система компостирования навоза, только ускоренными темпами. Биогаз удобен для получения биогумуса и горючего при автономном ведении личного хозяйства, но требует капвложений и доработки технологии.

Использование рыболовно-биологических прудов под силу лишь крупным предприятиям. Замкнутая экологическая система незаменима при утилизации жидких отходов: органическое вещество по пищевым цепям живых организмов аккумулируется биомассой водорослей, ракообразных и рыб. Стоки полностью обезвреживаются от органического вещества и патогенных факторов и включаются в повторный «водоворот». Твердая фаза отстойников после биотермического обеззараживания на специальных площадках превращается в биогумус.

При комплексной утилизации твердофазных отходов с использованием личинок экономический эффект максимальный, потому что процесс этот - кратковременный, производство экологически чистое и безотходное, а продукция имеет многостороннее применение.

2.2 Отходы растительного сырья и зерновых культур, достоинства и недостатки методов утилизации

В настоящее время выделяются по крайней мере пять направлений биоконверсии растительного сырья (включая отходы животноводческих ферм, которые можно рассматривать как отходы переработки растительного сырья): получение белковых концентратов пищевого и кормового назначения из зеленой массы растений; микробная протеинизация крахмал- и целлюлозосодержащего сырья для получения пищевых и кормовых продуктов; метановое сбраживание и фракционирование или аэробная обработка отходов животноводческих ферм как для получения высококачественного органического удобрения, кормовых добавок, биогаза (для энергетических целей), так и для защиты окружающей среды; консервация кормов с целью сохранения и даже повышения их питательности; комплексная переработка растительного сырья.

Кормовые белковые концентраты из зеленой массы растений содержат около 50% белка, всего 2-5% целлюлозы и, кроме того, до 50 мг% каротина; они эффективно заменяют в рационах птиц и свиней традиционные белковые добавки: сою, рыбную муку, шроты, дрожжи. Твердая фракция, образующаяся при переработке зеленой массы растений, - жом, хотя и содержит на 15-20% меньше белка, чем исходная зеленая масса, служит хорошим кормом для жвачных. Потери питательностр! зеленой массы при ее фракционировании не превышают 5-7%, тогда как при получении сена или силоса они равны 20-30%.

Необходимо отметить, что уже созданы прессы для отжатия сока мощностью 25-50 т/ч зеленой массы, позволяющие регулировать степень отжатия сока в широких пределах в зависимости от интересов того или иного хозяйства. Без особого труда из 1 т зеленой массы можно получить 300-500 кг сока и выделить в виде белковых концентратов 10-20% содержащегося в ней протеина.

Новые перспективы открывает твердофазная ферментация увлажненных до 50-60% влажности субстратов. Для такой ферментации крахмал-и целлюлозосодержащего сельскохозяйственного сырья (зерно, отруби, солома, шелуха, кочерыжка и др.) могут быть использованы мицелиальные грибы3. В нашем институте в лабораторных и полупроизводственных условиях при помощи дрожжеподобной культуры Endomycopsis fibuliger получены продукты из зерна с содержанием 18-20% белка, а при помощи Trichoderma lignorum - продукты из соломы с содержанием 12-18% белка. По биологической ценности белок этих продуктов не уступает белку дрожжей. Мицелиальная масса содержит меньше нуклеиновых кислот, чем дрожжи. Полученный продукт может служить источником витаминов группы В и гидролитических ферментов.

Ведутся также работы по микробной деградации лигнина, что открывает перспективу получения микробного белка за счет не только целлюлозы и гемицеллюлозы растений, но и лигнина - наиболее прочного полимера клеточной стенки. К сожалению, пока еще не существует высокопроизводительного оборудования для твердофазной ферментации растительного сырья в промышленных масштабах.

Что касается отходов животноводческих ферм, то, подвергая навоз метановому брожению, которое осуществляется в анаэробном процессе ферментации, можно получить биогаз, содержащий 60-65% метана и 30-35% углекислого газа, высококачественное органическое удобрение (твердая фракция), а также богатую азотом, фосфором, калием и другими элементами жидкую фракцию, пригодную для поливки растений.

Установлено, что степень биодеградации органического вещества навоза зависит во многом от содержания лигнина: органика навоза с 10% лигнина во время метанового брожения разрушается на 50-55% с образованием около 400 нм3 биогаза из 1 т сухого вещества, при 20% лигнина - степень биодеградации только 25-27% и выход биогаза вдвое меньше - 200 нм3/т. Продуктивность системы в большой мере зависит от температуры ферментации: в термофильном процессе при 47-55° С продуктивность образования биогаза выше, чем в мезофилъном (при 30-35° С).

Термофильный процесс способствует освобождению навоза от патогенной микрофлоры, паразитов, семян сорняков, но, к сожалению, при этом процессе больше полученной энергии (около 30%) расходуется на поддержание температуры в реакторе. Метан биогаза из навоза дороже природного газа, используемого в народном хозяйстве, однако метановое брожение отходов животноводческих ферм необходимо рассматривать как перспективный технологический процесс, имея в виду защиту окружающей среды и возможность получения высококачественного удобрения.

Другой путь утилизации отходов ферм - их аэробная ферментация, когда через жидкость продувается воздух, что способствует развитию микробов, быстро разрушающих органические вещества. Ферментация в этом случае не дает биогаза, заметно увеличивает энергозатраты на аэрацию, но позволяет наряду с органическим удобрением получать микробный кормовой белок, а сам процесс биодеградации органических веществ идет значительно быстрее, чем при метановом брожении, то есть при анаэробной ферментации. Если жидкую среду обогатить углеродом (метанол, углеводы), то резко увеличивается продуктивность ферментационной системы в расчете на получаемую микробную биомассу.

Таким образом, микробная биоконверсия отходов животноводческих ферм может дать высококачественное удобрение, биогаз, кормовую микробную биомассу и вместе с тем устранить неприятные запахи вокруг ферм, защитить водоемы и почву от загрязнения.

Биогаз как местное топливо способен обеспечивать хозяйства энергией, а это очень важно, особенно в аварийных случаях, когда выходит из строя общая энергосистема.

Превращение полисахаридов грубых кормов, в том числе соломы, в усвояемую для животных форму имеет исключительно важное народнохозяйственное значение. Более того, создание экономически оправданной технологии обработки соломы и других целлюлозосодержащих субстратов может привести к серьезным социальным последствиям. Известно, что при производстве зерна на каждую его топну образуется и тонна соломы, в которой заключено почти столько же энергии, сколько в зерне (сумма полисахаридов в зерне и соломе почти одинакова, только в первом случае это крахмал, а во втором - гемицеллюлоза и целлюлоза). Если, по данным ФАО, мировое производство зерна составляет в год 1600 млн. т, из которых 1000 млн. т идет в пищу человека, а 600 млн. т - в корм животных, то это означает, что мировые ресурсы соломы также составляют около 1600 млн. т. Следовательно, усилия ученых - физиков, химиков, биологов, технологов, специалистов сельского хозяйства - должны быть сосредоточены на эффективном решении задачи: зерно - для питания человека, конвертированная солома - для корма животных (имеется в виду солома, у которой углеводы полисахаридной формы превращены в мономерные, то есть в глюкозу, органические кислоты и др.).

Биологическим путем можно консервировать не только грубые корма. В мировой практике накоплен опыт консервирования влажного зерна как при помощи химических консервантов, так и путем хранения этого зерна (при влажности до 30%) в герметичных емкостях, например траншеях, в атмосфере двуокиси углерода, образующегося в результате дыхания зерна, на что тратится 3^6% его массы. Однако двуокись углерода возникает и в процессах брожения - при получении этанола, производстве пива, анаэробной ферментации отходов ферм.

Таким образом, применение методов биотехнологии в сельском хозяйстве, как это видно на примере биоконверсии растительного сырья, позволяет более полно использовать урожай, уменьшить отходы и потери.

Достоинства комплексной переработки растительных масс ярко видны также на примере переработки крахмального сырья с использованием методов современной биоиндустрии. Успехи энзимной биотехнологии позволяют из крахмала при помощи ферментов амилазного комплекса получить глюкозу, а ее энзиматически можно конвертировать во фруктозу. Таким образом, в принципе решена задача получения сахара из крахмала. Возникает вопрос: какое производство сахара экономически выгоднее - на основе сахарной свеклы или кукурузы? Венгерские специалисты подсчитали, что в условиях их страны при урожае сахарной свеклы 45 т/га и кукурузы 7 т/га сахар из кукурузного крахмала стоит 3,53 форинта за 1 кг, а из свеклы - 5,4 форинта. Комплексная переработка кукурузного зерна с использованием энзиматической конверсии крахмала в сахар и микробной конверсии части сахара в этанол позволяет получить из 1 т кукурузы 0,399 т жидкого сахара с содержанием 71% сухих веществ, 0,112 т абсолютного спирта (этанола), 0,065 т зародышевой фракции, богатой маслом, и 0,224 т кормового протеинового концентрата.

Однако эти способы не лишены недостатков и необходимо их усовершенствование.

3. Способы повышения экологической обстановки на ООО «Велес-Агро»

Общество с ограниченной ответственностью «Велес-Агро» по птицеводству и животноводству (КРС) расположено на хуторе Матвеевский. Предприятие было создано в 2001 году мяса птицы и крупного рогатого скота поставляет на рынок продукты их углубленной переработки: сухой и жидкий яичный меланж, мясные полуфабрикаты, колбасные изделия. Комплекс вспомогательных производств позволяет устойчиво работать в замкнутом технологическом цикле. Здесь занимаются выведением цыплят и выращиванием молодняка. Организовано собственное кормопроизводство. На протяжении 10 лет предприятие добивается неплохих результатов по сохранности птицы. Это стало возможным благодаря высокой культуре производства. В 2006 году в цехе выращивания молодняка установлено клеточное оборудование фирмы VALLI на 145 тыс. птице-мест и полностью автоматизированная система микроклимата. Перешли на использование более экономичных источников света. В 2005 году введено в действие металлическое зернохранилище вместимостью 3000 тонн. Установка яйцесортировальных машин голландской фирмы МОВА (МОВА-3500 и OMNIA-170 XF) в несколько раз повысила качество продукции и обеспечила оперативную сортировку яйца, непрерывную работу яйцескладов. Яйцо может упаковываться в мелкоштучную тару, что дает возможность благополучно донести покупку до дома.

Однако на предприятии существуют проблемы по утилизации твердых и жидких отходов птицеводства, животноводства и зерновых культур.

Твердые отходы птицеводства, животноводства и зерновых культур складируются на территории предприятия, нанося вред находящемуся вблизи поселку, выделяется огромное количество аммиака, значительно превышающее ПДК, а жидкие стоки загрязняют местные водоемы.

Проанализировав ситуацию на ООО «Велес-Агро», считаю целесообразным предложить меры по утилизации и вторичному использованию отходов, образующихся на предприятии.

1. Для предотвращения загрязнения газопылевыми выбросами установить пылегазоулавливающую аппаратуру, обеспечивающую очистку вентиляционного воздуха от неприятных запахов перед выбросом в атмосферу.

2. Листья, ботва, стебли сельскохозяйственных культур, отходы при обработке зерновых культур могут перерабатываться на кормовые концентраты. Содержание в них легко гидролизуемых полисахаридов достаточно велико. Для улучшения кормовой ценности этих отходов желательно измельчение их до размеров менее 1 см.

3. Твердые и жидкие фракции отходов птицеводства и животноводства (КРС) использовать для получения удобрений и биогаза по схеме:

Жидкие отходы влажностью не менее 89% (навоз, помет, растительные отходы и др.) готовятся в сборнике исходного сырья (2), затем подвергаются центрифугированию (3) для удаления из них таких включений, как пух, перо, щетина, остатки грубых кормов, солома, и стабилизации жидкой фракции по гранулометрическому составу. Твердая фракция подвергается ускоренному компостированию в биоферментаторе (4) и поступает в помещение для расфасовки (7) для ее дальнейшей реализации.

Жидкая фракция после центрифуги поступает на анаэробное сбраживание в метантенке (5), после чего также направляется в помещение для расфасовки (7). Биогаз, выделенный при сбраживании, накапливается в газгольдере (6) и в дальнейшем используется на собственные и бытовые нужды.

4. Вовлекать отходы птицеводства и животноводства, а также зернового хозяйства для приготовления кормов по схеме:

Предложенный комплекс мер значительно улучшит экологическую ситуацию на предприятии «Велес-Агро» и предотвратит загрязнение окружающей среды.

Заключение

Расширение сферы внедрения биотехнологии изменяет соотношение в системе «человек - производство - природа», повышает производительность труда, принципиально изменят его качество. Биологизация производства в целом - одно из важнейших направлений в создании гибких саморегулирующихся производственных процессов будущего, которые гармонично вписываются в природу, не причиняя ей вреда. В настоящее время последствия антропогенной деятельности достигли такой грани, когда дальнейшая некоординируемая деятельность может привести к не - обратимым изменениям в биосфере в целом. Это может привести к тому, что биосфера станет непригодной для обитания человека. Разрешение это - го противоречия, то есть создание такого равновесия в природе, которое в состоянии привести к гармоничному сосуществованию возрастающего населения планеты и биосферы, возможно только на основе дальнейшего развития науки и техники. Для этого необходимо разумное развитие человеческого общества в целом, направленное не на разрушение биосферы, а на ее дальнейшее развитие. Последнее, в свою очередь, должно оказывать позитивное влияние на дальнейший прогресс человечества, то есть создание ноосферы. Один из основных путей решения данной проблемы - дальнейшее развитие биологии и расширение сферы применения биотехнологии. Внедрение биотехнологии ведет к созданию экологически чистых технологий в различных сферах человеческой деятельности, включая более рациональное использование природных ресурсов и создание замкнутых производственных циклов.

Литература

1. Дабаева М.Д. Эколого-безопасная утилизация отходов: монография / М.Д.

2. Дабаева, И.И. Федоров, А.И. Куликов; Бурят. гос. с.-х. академия. - Улан-Удэ: Изд-во БГСХА, 2001. - 94 с.

3. Долгов В.С. Гигиена уборки и утилизации навоза: монография / В.С. Долгов. - М.: Россельхозиздат, 1984. - 175 с.: ил.

4. Ильин С.Н. Ресурсосберегающая технология переработки свиного навоза с получением биогаза: автореф. дис. … канд. техн. наук: 05.20.01 / С.Н. Ильин. - Улан-Удэ: [б. и.], 2005. - 23 с.

5. Ковалев Н.Г. Проектирование систем утилизации навоза на комплексах / Н.Г. Ковалев, И.К. Глазков. - М.: Агропромиздат, 1989. - 160 с.: ил.

6. Кривых Л.И. Утилизация отходов с животноводческих комплексов и ферм: практ. руководство / Л.И. Кривых. - Барнаул: РИО АИПКРС АПК, 2005. - 40 с.

7. Меркурьев В.С. Пособие по системам сооружений для подготовки и утилизации сточных вод и животноводческих стоков / В.С. Меркурьев, Р.П. Воробьева; Гл. упр. плодородия почв, мелиорации земель и сельхозводоснабжения, НИИ по с.-х. использованию сточных вод. - НИИССВ «Прогресс», Алт. подразделение НИИССВ «Прогресс». - М., 1996. - 76 с.: ил.


Подобные документы

  • Оценка проблемы утилизации мусора в Казани. Анализ достоинств и недостатков существующих способов утилизации и переработки отходов. Способы утилизации твердых бытовых отходов в европейских странах и в России. Массовое сознание и пути решения проблемы.

    контрольная работа [38,1 K], добавлен 21.11.2011

  • Проблемы утилизации отходов в России, пути их решения. Способы утилизации и переработки вторичного сырья. Переработка отходов за рубежом. Затраты на переработку отходов. Повышение экологической безопасности эксплуатации автомобильного транспорта.

    курсовая работа [222,9 K], добавлен 22.01.2015

  • Накопление отходов в результате деятельности человека. Способы и проблемы утилизации твердых бытовых отходов. Этапы складирования отходов, сжигания мусора, сливания отходов в водоёмы. Правила захоронения отходов. Функционирование полигонов захоронения.

    дипломная работа [1,2 M], добавлен 22.10.2015

  • Особенности переработки и утилизации пищевых отходов, перспективы расширения данной сферы деятельности в будущем и ее значение в защите окружающей среды. Вторичное использование различных бытовых отходов: стеклотары, упаковки. Сливание отходов в водоемы.

    реферат [24,1 K], добавлен 04.06.2014

  • Проблема утилизации отходов Уральских городов. Инвестиции и план развития завода по переработке твердых бытовых отходов (ТБО). Интервью у министра природных ресурсов. Проблемы переработки и утилизации промышленных отходов. Методы переработки отходов.

    реферат [169,7 K], добавлен 02.11.2008

  • Воздействие бытовых отходов на окружающую среду. Ликвидация твердых отходов. Рециклизация как вторичная переработка. Комплексная программа ликвидации. Опыт использования технологий утилизации мусора. Виды разлагаемых пластиков и способы их утилизации.

    контрольная работа [577,0 K], добавлен 03.07.2009

  • Характеристика и классификация твердых бытовых отходов (ТБО). Комплексное управление отходами: сбор и временное хранение, мусороперегрузочные станции и вывоз ТБО. Сбор и использование вторсырья; способы утилизации, проблемы переработки отходов.

    реферат [34,6 K], добавлен 02.12.2010

  • Общая характеристика утилизации и вариантов использования отходов металлургического комплекса и химического производства в промышленности. Основные направления утилизации графитовой пыли. Оценка золошлаковых отходов как сырья для строительных материалов.

    реферат [27,6 K], добавлен 27.05.2010

  • Классификация отходов по ряду признаков. Нормативно-правовые документы, регламентирующие обращение с отходами в Российской Федерации, способы их утилизации. Функционирование полигона ТБО (хут. Копанской), динамика накопления и утилизации отходов.

    дипломная работа [269,3 K], добавлен 25.02.2016

  • Классификация отходов по виду и разделение по классу опасности. Способы их утилизации и размещение на свалках. Влияние бытовых отходов на окружающую среду и здоровье человека. Переработка мусора как основное направление экологии в борьбе за чистоту.

    контрольная работа [33,6 K], добавлен 22.02.2017

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.