Современные способы утилизации отходов сельского хозяйства

Способы утилизации отходов птицеводства, животноводства, существующие технологии в данной сфере, оценка преимуществ и недостатков. Способы переработки отходов растительного сырья. Общая характеристика отходов сельского хозяйства, способы их утилизации.

Рубрика Экология и охрана природы
Вид дипломная работа
Язык русский
Дата добавления 22.07.2011
Размер файла 3,5 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

13

Размещено на http://www.allbest.ru/

Введение

Сельское хозяйство создаёт большее воздействие на природную среду, чем любая другая отрасль народного хозяйства. Загрязнение окружающей среды птицеводческими и животноводческими предприятиями чаще всего происходит из-за несовершенства применяемых технологий и технических средств, несоблюдения установленных экологических требований.

Наиболее простой способ снижения негативного воздействия на природу - модернизация и обновление технологического оборудования в подразделениях, внесение изменений в организацию хозяйственной деятельности, соответствующих современным экологическим нормам.

Это возможно путём внедрения малоотходных и безотходных технологий, основанных на включение в хозяйственный оборот всех сырьевых ресурсов, которые постоянно образуются и накапливаются в хозяйствах. Уменьшая объёмы органических отходов, газопылевых выбросов, потребления воды и сбрасывания сточных вод, можно снижать негативное воздействие на окружающую среду.

На каждом предприятии вначале выявляют наиболее существенные факторы производства, оказывающие воздействие на изменение окружающей среды в количественном и качественном аспекте, и уже применительно к ним разрабатывают природоохранные мероприятия, просчитывают затраты на них.

Проблема рационального использования сырья многогранна и во многом обуславливается спецификой перерабатывающей отрасли. Крупнейшим резервом экономии материальных ресурсов, расширения ассортимента, и увеличения выпуска продукции, повышения результативности перерабатывающего предприятия является комплексное использования сырья.

Большинство побочных продуктов и отходов производства, образующихся после переработки сельскохозяйственного сырья, характеризуется ценным химическим составом и может быть использовано для изготовления различной ценной и необходимой для народного хозяйства продукции.

При переработке зерна вырабатываются побочные продукты - отруби, мучка, зародыш, которые представляют большую пищевую ценность для человека, так как содержат значительное количество витаминов и микроэлементов.

При переработке сырья животного происхождения, например, на мясоперерабатывающих предприятиях, осуществляется сбор крови, сбор и обработку эндокринноферментного сырья, кишечного сырья, получают кормовые продукты, ферментные элементы, кормовую муку, сухой растительно-животный корм, шкуры, перо птицы, рога и копыта для производства товаров народного потребления, рого-копытное сырьё для технического применения и для производства аминокислотных препаратов и многое другое.

При переработке сырья растительного происхождения, например, патоки-мелассы, являющийся отходом сахарного производства, вырабатывают этиловый спирт, глицербетаин, пищевые и кормовые дрожжи, пищевые кислоты (лимонную и молочную), глютаминовую кислоту, глютамат натрия, витамин В 12, растворители. Из хлопковой шелухи и стержней початков кукурузы - кормовые дрожжи, фурфурол, этиловый спирт, тетрагидрофуриловый спирт, фурановые соединения, уксусную кислоту, пищевую глюкозу, сухие корма для животных. Из барды (отходов пивоваренного производства) - хлебопекарные дрожжи, глицерин, бетаин, кормовые дрожжи, витамин В12, сернокислый аммоний, глютамат натрия, биомизин, корм для скота.

Таким образом, большая часть отходов является ценным сырьём, используемым на корм скоту или для дальнейшей переработки с целью получения ценных химикатов, пищевых и кормовых добавок, витаминов, антибиотиков и других биологически активных препаратов.

Моя дипломная работа посвящена эффективным способам переработки и утилизации отходов сельского хозяйства.

1. Технологии утилизации отходов сельского хозяйства

Очень привычной, но от этого не менее актуальной для России является проблема утилизации отходов сельского хозяйства. Сельскохозяйственное производство дает отходов в год 250 млн. тонн, из них 150 млн. тонн приходится на животноводство и птицеводство, 100 млн. тонн - на растениеводство.

Особое внимание заслуживает проблема переработки отходов птицефабрик и ферм, большую долю которых составляет помет. Огромное количество птицеферм (более 600 по всей России) производят в сутки каждая до 300 тонн помета. Своевременное непринятие принудительно-предупредительных мер по утилизации этих отходов привело к тому, что многие птицефабрики, размещающиеся около крупных городов и поселков, стали оказывать негативное действие на санитарно-экологическое состояние окружающей природной среды. Стало происходить заметное загрязнение прилегающих к птицефабрикам рельефа почв, водоемов, лесов и пастбищ. В конечном итоге наносится серьезный экономический, экологический и социальный ущерб не только сельскохозяйственным землям, но и жителям близлежащих населенных пунктов. Таким образом, большая часть органического сырья не перерабатывается, накапливается вблизи птицефабрик, образуя «пометные озера» без признаков жизни флоры и фауны. Птичий помет, как удобрение теряет свои ценные удобрительные свойства и представляет постоянную угрозу экологическому благополучию населению и соседним хозяйствам.

1.1 Способы утилизации отходов птицеводства и животноводства

Существуют современные технологии утилизации и переработки отходов птицеводства и животноводства, ниже рассмотрим особенности каждой технологии.

Технология оборудования VacuumEcoDry [1] представляет собой процесс разделения в диапазоне температур от 40 до 90 0С и давлении от 30 до 250 мм. рт. ст. исходного материала влажностью до 99% на три составляющие:

1. сухое органическое удобрение, корм, топливо, влажностью до 1%, которое может без какой-либо дополнительной обработки использоваться как удобрение, служить белковой кормовой добавкой для скота и птицы, топливом.

2. воду, пригодную для дальнейшего использования.

3. экологически безопасный выхлоп.

Технологический процесс вакуумной сушки веществ протекает в вакуумном объеме. В качестве первичного энергоносителя может использоваться электричество, природный газ, газ, получаемый в результате сопутствующих биологических процессов, отработанный пар, горячая вода. В связи с этими особенностями технологического процесса воздействие на окружающую среду имеет место только в случае использования в качестве энергоносителя газа, сжигаемого для подогрева воды.

Исходный продукт поступает через приемный бункер в вакуумную камеру (5) для сушки. Подача продукта осуществляется системой загрузки (1) в объемах, строго согласованных с производительностью оборудования. В процессе сушки исходный продукт движется посредствам транспортеров по теплообменникам. В ходе нагрева перерабатываемого материала происходит его кипение, и разделение на 3 составляющих (сухое вещество, конденсат, газ). Далее сухой конечный продукт поступает в камеру разгрузочную - сборник готовой продукции (8). Затем происходит выгрузка готового продукта в непрерывном режиме шнековым транспортером и подача его на линию грануляции (7).После гранляции готовый продукт подается на линию упаковки (6), где фасуется в мешки по 50 литров или big-bag.

Гибкость и универсальность оборудования VacuumEcoDry позволяет без серьезных конструкционных изменений установки использовать различные виды сырья и любой влажности для осуществления переработки и стабильно обеспечивать требуемую конечную влажность продукта.

Оборудование VacuumEcoDry позволяет перерабатывать куриный помет в сухое органическое удобрение, которе является уникальным по своим свойствам. После переработки, сухой помет сохраняет в своем составе все полезные, с точки зрения агрохимии, вещества, присутствовавшие в исходном сырье, при этом органическое удобрение способно долго храниться и легко транспортируется.

Компания ООО «ЦентрИнвестПроект» [2] предлагает технологию позволяющую перерабатывать навоз, отходы животноводства, помет, в синтетический или генераторный газ - смесь СО и Н2 с теплотворной способностью 1200 Ккал - альтернативу природному газу, мазуту и углю в паровых котлах, дизельному топливу в дизель-генераторах. Синтез-газ из установок утилизации навоза БиоРЕКС универсальное сырье для производства продуктов органической химии, включая моторные топлива (бензин и дизельное топливо) второго поколения. Технология БиоРЕКС представляет идею взвешенного взаимодействия с природой при утилизации и переработке навоза - отходов свиноферм, животноводческих комплексов, а также способ объединения нескольких производств в высокоэффективную технологическую линию в полностью безотходном цикле, в соответствии с самыми строгими требованиями природоохранного законодательства - Локальный энергетический комплекс (ЛЭК).

Применяемые уникальные технические решения позволили создать технологическую линию с нулевым выбросом, перерабатывающую разные виды отходов животноводства - навоз свиноферм, навоз рогатого скота с разной влажность, вплоть до 90%. Автономные, модульные, мобильные, в габаритах 6 и 12-ти метрового морского контейнера - установки не требуют подключения к инженерным сетям, сложных подготовительных строительных работ и пуско-наладки.

Установка для переработки отходов птицеводства и животноводства

Принципиальная схема переработки отходов птицеводства и животноводства

Навоз, поступающий на переработку, взвешивается на весовой платформе (1), расположенной перед приемным люком. Система производит взвешивание автоматически. Далее отходы подаются шлюзовым питателем, для обеспечения герметичности вакуумного подогревателя, на модуль сушки (2). В модуле сушки навоз с исходной влажностью 80-90% и температурой 200С поступают в вакуумный подогреватель конденсационного типа, где при давлении 0,07 МПа доводится до температуры кипения 390С. Испаренная влага (18% влаги которую необходимо удалить для снижения влажности до 15%) отводится водокольцевым насосом, создающим разряжение. Далее подогретый и подсушенный в первой ступени сушилки навоз нагнетается винтовым насосом в высокотемпературном подогревателе и движется под давлением 2,5-3,5МПа. Здесь сырье нагревается до температуры 2240С циркулирующим в рубашке высокотемпературным теплоносителем с температурой 2500С.

Затем через дросселирующий патрубок навоз разбрасывается в бак, который находится под атмосферным давлением. Здесь при сбросе давления происходит испарение влаги (23% от общего количества влаги). Выделившийся в баке насыщенный пар поступает на утилизацию в вакуумный подогреватель. Здесь он конденсируется и охлаждается до температуры 600С, отдавая тепло на сушку навоза в первой ступени. Подсушенный навоз из бака выгружается шлюзовым питателем в поток сушильного агента (дымовые газы) исходящий из теплогенератора и пневмотранспортом подается совместно с ним в валковую сушилку.
После сушки навоз поступает на брикетирование (3). Количество животноводческих отходов, учитывая их влажность, поступающих на брикетирование, составляет 2,57 тонны в час. После брикетирования сырье поступает в бункер подготовленного сырья, объемом 75 м3 (4), который обеспечивает суточный запас.

Рис. 3. Образец брикетов из отходов животноводства

В бункере (4) брикетированное сырье пододвигается к шнековому каналу (5), по которому масса поступает к реакторам термохимической конверсии (6) для выработки горючего газа. В бункерах и на линии сортировки создается разряжение воздуха для препятствия распространению запахов.

Из реакторов паро-газовая смесь поступает в аппарат вихревой газоочистки (7), где очищается от примесей пара, частиц золы и масел. Отобранные из газа примеси автоматически собираются и возвращаются в бункер готового сырья на дожиг. Очищенный газ поступает на теплообменный аппарат (8), где охлаждается со 140оС до 40оС. Далее охлажденный и очищенный газ поступает в дизель-генераторы (9) для производства электроэнергии. Выхлопные газы дизель-генератора с температурой 600оС собираются и частично направляются в реакторы (6), и частично на теплообменный аппарат.

Зола, образующаяся в процессе конверсии извлекается из реактора (6) автоматически при температуре 100-120оС и поступает в устройство электромагнитной активации (10) для выделения из состава золы примесей металлов. Разделенные зола и металлы поступают в накопительные бункеры объемом 1м3. В модулях предусмотрена звукоизоляция и вентиляция.

Реактор термохимической конверсии углеродсодержащего сырья БиоРЕКС.

Технология термохимической конверсии углеродсодержащего сырья БиоРЕКС занимает лидирующие позиции в сфере переработки углеродсодержащего сырья и получения энергоносителей - по цене оборудования, выходу товарных энергоносителей, экологичности и компактности.

Основой технологической линии является реактор высокоскоростной высокотемпературной конверсии с воздушным дутьем и обращенным отбором газа.

Основные конструктивные элементы реактора:

1. Гидравлический пресс подачи сырья;

2. Съемная крышка реактора;

3. Дутьевые фурмы;

4. Гидравлический пресс отбора золы;

5. Корпус реактора;

6. Проточный вентилятор;

7. Аэродинамический преобразователь;

8. Рама.

отходы утилизация птицеводство животноводство

ООО «НПО БАЛТЭК» [3] разработало несколько вариантов оборудования и технологий для дезактивации птичьего помета, свиного навоза за I-сутки.

Быстрая дезактивация навоза стала возможной благодаря совместному применению сорбента «Абсолют-Агро» и установки «Абсолют - Сепаратор».

Схема установки оборудования

Осветленная фракция (Этап 1), представляет собой техническую воду без запаха, насыщенную легко усвояемыми формами аммиака. Она используется для полива теплиц. После дополнительной очистки (Этап 2), осветленная фракция используется как питьевая вода для птиц, скота, свиней, имеющая ПДКхозвод. Твердая фракция - это высокоминеральное удобрение с классом опасности IV-V по ОПС насыщенная микроэлементами (медь, сера, селен и т.п. всего около 50 элементов), так же используется как белковая кормовая добавка, подстилка скота и т.п.

Схема проведения работ

Дезактивированный помет является техническим грунтом, лишенным запаха. Технология проста в использовании, не требует капитальных затрат и дополнительных площадей, а также интегрируется в любую производственную цепочку. Технология основана на применении сорбента. При добавлении 2%, сорбент удерживает газообразный аммиак, пары мочевины, что приводит к исчезновению запаха. При добавлении до 10% (от сухого веса помета), разлагает кислоты и связывает ионы тяжелых металлов, подвижные формы которых делают помет токсичным отходом. Нормализует Ph, что позволяет размножаться бактериям, которые окончательно разлагают остатки органики и не переваренных кормов. Остатки кормов доходят до 40% от сухой массы помета. На сегодня существуют технологии дальнейшей переработки стабилизированных отходов, правда они не нашли своего применения, т. к. раньше этого момента надо было ждать 6-10 месяцев, а при участие сорбента всего один день.

Ставропольским государственным аграрным университетом [4] разработана безотходная энергосберегающая технология переработки отходов птицеводства. В основе этой технологии лежит микробиологическая деструкция органической части помета в анаэробных условиях. Использование других способов переработки позволяет комплексно использовать практически весь химический и энергетический потенциал этого сырья с получением полезных продуктов. Одновременно решаются задачи обеспечения охраны окружающей среды, санитарно-гигиенического благополучия птицеводческих комплексов и использования нетрадиционных источников энергии.

Технологический процесс переработки состоит из шести этапов.
На первом этапе происходит подготовка исходного сырья для процесса анаэробного сбраживания. Помет загружается в приемную емкость, объем которой равен суточной дозе загрузки биореактора, затем подогревается и выдерживается в течение суток. Подогрев исходного сырья осуществляется до температуры равной температуре сбраживания его в термофильном режиме. На этом этапе гетерогенная группа анаэробных бактерий «первичные анаэробы» подвергают ферментативному гидролизу сложные многоуглеродные вещества. Результатом деятельности этих микроорганизмов является подготовка помета к анаэробному сбраживанию.

На втором этапе подготовленное сырье подвергается «качественному» сбраживанию в анаэробных условиях. В процессе сбраживания выделяется биогаз, содержащий до 80% метана. Биогаз используют для получения электроэнергии или теплоносителя (горячей воды). Сброженный помет обеззаражен от патогенной микрофлоры, лишен резкого запаха, а семена сорных трав, находящиеся в нем, полностью лишены всхожести. Следует отметить, что во время метанового сбраживания помет обеззараживается от болезнетворной микрофлоры, семена сорных растений полностью теряют всхожесть, химические соединения минерализуются, в результате чего в сброженном птичьем помете практически полностью сохраняются питательные вещества. Химические соединения азота, фосфора и калия переходят в более доступные и усвояемые формы для культурных сельскохозяйственных растений. Содержание питательных веществ в сброженном помете 15% влажности (по АСВ) составляет азота - 8…12%, фосфора - 8…10%, калия - 2…4%, также в нем содержится более 30 различных макро- и микроэлементов, необходимых для полноценного развития растений.

Также в процессе анаэробного сбраживания в птичьем помете происходит развитие микроорганизмов p. Bacillus и Staphylococcus, для которых характерна способность продуцировать антибиотические вещества и подавлять рост фитопатогенных грибов и патогенных микроорганизмов. Так культуры Bacillus pumilus и Staphylococcus hominis подавляют фитопатогенные грибы рода Fusarium sp., Bipolaris sp., Sclerotinia sp. более чем на 50…80%. Представители p. Bacillus развиваясь в ризосфере растений, используют корневые выделения, обеспечивая быструю хелатизацию минеральных солей, снимая «ионную блокаду» корня, возникающую в результате избытков ионов. Кроме того, бактерии p. Bacillus способны стимулировать рост и увеличивать урожай растений.

Деятельность бактерий метаногенной ассоциации, осуществляющих анаэробное сбраживание ведет к насыщению сброженного помета гумусовыми и гуминовыми веществами, синтезу витаминов В1, В2, В6, В12 и растительных гормонов - индолилуксусной кислоты, гиббереллина, зеатина и предшественника индолилуксусной кислоты - триптофана. В результате удобрительное действие сброженного птичьего помета выходит на совершенно новый качественный уровень.

На третьем этапе сброженный помет разделяется на жидкую (влажностью 98…99%) и твердую (органика) фракции в две стадии. На первой стадии происходит выделение из сброженной массы около 70% жидкости, на второй стадии влажность твердой фракции доводят до 50…55%. Для этого были разработаны разделительные устройства, позволяющие достигать поставленной цели с наименьшими затратами энергии.
Четвертый этап - приготовление гранулированных органических удобрений. Для этого нами разработан и исследован способ влажного гранулирования. С этой целью используется шнековый пресс со сборной прессующей матрицей, состоящей из двух частей: прессующей и релаксационной. В результате проведенных исследований установлен оптимальный режим работы шнекового пресса и оптимизированы параметры сборной прессующей матрицы. Использование данного способа гранулирования позволяет получать гранулы из твердой фракции сброженного птичьего помета влажностью 55…60% со следующими физико-механическими характеристиками: прочность - не мене 1,68 МПа (17 кг? с/см2), плотность не менее 1255 кг/м3, крошимость не более 1%. Разработанный способ влажного гранулированного сброженного помета позволяет получать гранулы, которые по размеру, плотности, прочности и крошимости полностью удовлетворяют требованиям технических условий на гранулированные удобрения. Использование данного способа гранулирования не требует металлоемкого дорогостоящего оборудования, также позволяет значительно снизить энергетические затраты идущие на процесс гранулирования.

Пятый этап - сушка гранулированных удобрений. В результате процесса гранулирования полученные гранулы нагреваются до температуры 70…80 0С, их влажность составляет 40…45%. Для доведения гранул до товарного вида (влажность 10…15%) нами разработан и исследован процесс низкотемпературной сушки гранул (процесс проходит при температуре 70…80 0С) за счет утилизации теплоты, выделяемой теплогенератором. Теплогенератор служит для поддержания оптимального температурного режима анаэробного сбраживания помета и работает на биогазе. Использование отходящих газов для сушки гранул позволит значительно сократить энергозатраты на сушку гранулированных удобрений.

Шестой этап - получение белково-витаминного концентрата. Жидкая фракция сброженного помета, полученная на этапе разделения помета на фракции богата бактериальным белком (бактерии метаногенной ассоциации). Эти бактерии характеризуются высоким содержанием животного белка (68…74%). На этом этапе переработки из жидкой фракции сброженного помета способом сепарирования выделяются бактерии метаногенной ассоциации.

Компания «Техноагроресурс» [5] предлагает комплексные решения по утилизации и переработке помета или навоза с получением - удобрений и грунтов и подстилки для животных:

1. Утилизация и переработка жидких животноводческих стоков методом разделения.

Для обеспечения эффективной работы системы удаления навоза рекомендуется установка системы сепарации.

Преимущества сепарации навоза:

1. Объемы, требуемые для хранения жидкого органического удобрения, сокращаются на 30%, по сравнению с объемом жижи до сепарации.

2. Не требуется перемешивать содержимое отстойника - не образует плотных слоев.

3. Жидкость из отстойника легче перекачивать и вносить на поля.

4. Сокращаются сроки хранения сепарированной жидкости в отстойниках в 2 раза.

5. Сепарированная жидкость не обжигает листья растений.

6. Сепарированная жидкость лучше для растений, поскольку твёрдые частицы навоза отделены и не прилипают к листьям растений, что могло бы вызвать заболевание растений и замедлить их рост.

7. Сепарированная жидкость лучше поступает к корням растений и обеспечивает лучший рост = повышение урожайности, и при этом улучшается качество жатвы.

8. Сепарированная жидкость пахнет не так сильно, как несепарированный навоз (уровень запаха снижается приблизительно на 25%).

9. Вместе с твёрдыми фракциями удаляется часть соединений фосфора.

10. Сепарированная жидкость может быть подвергнута более эффективной обработке (аэрации для уменьшения запаха / биологической и химической обработке).

11. Отделённая твёрдая фракция на 25% состоит из сухой массы и ее легче хранить и вносить на поля.

12. Сепарированная твердая фракция будет компостироваться естественным путём при температуре до 60 градусов. Это убьёт большинство патогенных микроорганизмов и семян сорных растений.

13. Твёрдая фракция в процессе компостирования уменьшатся в объёме прибл. на 40%.

14. Твердая фракция не пахнет так, как навоз - запах больше напоминает сырую почву (землю).

Традиционная смывная система навозоудаления предусматривает строительство и эксплуатацию большого количества отстойников для естественного биологического обеззараживания сточных вод в соответствии с санитарно-гигиеническими нормами. Значительные объемы хранилищ, высокая скорость их заполнения, выведение земельных участков из системы землепользования, экологические проблемы, возникающие при эксплуатации отстойников, требуют применения нового подхода к решению проблемы. Техноагроресурс предлагают шнековое сепарирование как эффективный, надежный, неэнергоемкий и экономически целесообразный метод. Компост вносят на сельхозугодья, используя обычную разбрасывательную технику, а жидкое удобрение - с помощью механизированных бочек, катушечной поливной технологии.

Компост вносят на сельхозугодья, используя обычную разбрасывательную технику, а жидкое удобрение - с помощью механизированных бочек, катушечной поливной технологии типа «Транспред», «Рейнстар» и т.д.

Центральное звено технологии сепарации сточных вод животноводческих комплексов - прессовый шнековый сепаратор FAN PSS производства компании FAN SEPARATOR (Германия), имеющей 20-летний опыт производства и внедрения этого оборудования (рисунок 4).

Широкая гамма FAN PSS способна удовлетворить потребности средних и крупных животноводческих ферм. Производительность изменяется в диапазоне 15-350 м3/ч, установленная мощность - 4-30 кВт, масса - 500-1 000 кг, диаметр ячейки сита - 0,25-1 мм, гарантия - 2 года.

Навозная жижа влажностью до 88% самотеком или с помощью фекального насоса подается в загрузочную камеру сепаратора. Специальный осциллятор генерирует колебания на входе в сепаратор, что способствует снижению вязкости и предварительному обезвоживанию жижи. Захваченная рабочими лопастями шнека фекальная масса, продвигаясь внутрь цилиндрического сита, теряет свободную воду. Связанная с твердыми частицами вода отделяется на последних 3 витках шнека вследствие подпрессовки со стороны пробки, сформированной на втулке шнека, и механизма регулирования влажности.

Выбором размера отверстия сита можно регулировать максимальный диаметр взвешенных частиц в жидкой фракции от 0,25 до 1 мм. При установке сита с отверстием 0,25-0,5 мм жидкая фракция не расслаивается, не образует осадка и корки. Влажность твердой фракции регулируется специальным устройством и составляет 60-67%. Способ сепарации и система осцилляции защищены патентами

Для комплексного решения проблемы утилизации сточных вод животноводческих производств компания FAN SEPARATOR выпускает также миксеры типа MSX, фекальные насосы MAGNUM, в том числе и уникальный насос-миксер LE, объединяющий два агрегата с управляемым вектором взмучивания в двух плоскостях, флотационные установки, кавитационные микропузырьковые реакторы и др. Применение сепаратора FAN PSS не ограничивается агропромышленным комплексом. Его также широко используют в пищевой, целлюлозно-бумажной промышленности и других отраслях.

Способ установки сепаратора

Наиболее усовершенствованной технологией утилизации отходов животноводческих ферм является разработка фирмы «Эко-Сервис» [6] - эффективное решение по утилизации / переработки жидких стоков животноводства - помета / навоза, основанное на разделении - сепарировании стоков (как густых, влажностью до 80%, так и жидких влажностью до 99%). Для этого применяется навозный сепаратор (сепаратор гною).

Животноводческие стоки - это смесь твердых частиц и жидкости; решение проблемы заключается в том, чтобы отделить твердые частицы прежде, чем их загрязняющие окружающую среду элементы растворяться в жидкости. Шнековый сепаратор - это лучшее из доступного сегодня оборудования для выполнения этой задачи.

Удаление твердых частиц из жидких стоков навоза / помета - ключевой момент в решении этой проблемы, цель которого - снизить содержание загрязняющих компонентов навоза, что позволит продлить срок службы и снизить объем отстойников, упростить технологию внесения в почву, повысить эффективность биологических очисток и минимизировать вредное влияние на окружающую среду.

Отделение твердых составляющих из жидких стоков навоза / помета:

Жидкий навоз содержит свободную и связанную жидкость. Свободная жидкость отделяется самотеком, при помощи силы тяжести; связанная жидкость находится в твёрдых составляющих навоза. Отстаивание, процеживание, стационарные и вибрационные сита могут удалить только часть свободной жидкости, а связанную жидкость они вообще не могут удалять. Кроме того, эти методы эффективны только при переработке очень жидких отходов, влажностью более 96%, что усложняет проблему разделения стоков с высокой концентрацией сухих веществ, влажностью 80% - 95%, получаемых сплавными и механическими системами навозоудаления.

Отделение жидкости при помощи сепарирования (прессо-шнековый сепаратор / навозный сепаратор) - это наилучший выход, поскольку в этом случае отделяется вся свободная и часть связанной жидкости.

Сепаратор представляет собой шнековый пресс, в котором прессование производится при помощи шнека. Это единственный сепаратор для переработки навоза / помета, эффективно отделяющий до 85% твёрдых составляющих из стоков навоза в достаточно сухие вещества. Эффективность отделения твёрдых составляющих зависит от размера ячеек сита, шнека, модели сепаратора, типа твёрдых составляющих и расположения противовесов системы, определяющих степень обратного давления. При этом степень отделения сепаратором азота, фосфора, калия и других питательных веществ колеблется от 10 до 80%.

Прессовый шнековый сепаратор производится в различных модификациях, с различными видами загрузочных горловин, барабанных сит с размером ячеек от 0,10 мм до 1,00 мм. Это позволяет эффективно применять сепаратор при различной влажности стоков.

Подавать на сепаратор первичное вещество возможно различными способами.

Сепаратор может быть смонтирован, и работать в любое время года под «открытым небом» или же иметь «легкий» навес.

Есть возможность монтировать сепаратор на автоплатформе. Этот вариант очень удобен, если у Вас несколько первичных емкостей-накопителей, расположенных на удаленном расстоянии. Сепаратор некоторое время работает на одном месте, после этого его перевозят на новое место.

Стоки навоза из производственных корпусов направляются в приемной резервуар для текущего накопления и усреднения (перемешивания) перед процессом разделения. Для обеспечения процесса усреднения применяется мешалка (миксер-гомогенизатор), которая создаёт однородную консистенцию вещества на входе. Либо применяется насос с функцией гомогенизации. Насос с измельчающим механизмом, режущими кромками перекачивает однородную жижу в сепаратор. Благодаря встроенному перепускному клапану избыток стоков возвращается обратно в резервуар самотеком. Внутри впускной секции, осциллятор создает колебательное давление в жидкости. Это ведет к улучшенной производительности и более высокой пропускной способности, особенно вязкой жидкости. В сите волокнистые твердые вещества отделяются от жидкости. Волокна создают фильтрующий слой, который задерживает более мелкие частицы в жидкости. Лопасти шнека продвигают этот слой к выпускному отверстию. Поверхность сита очищена и образуется новый фильтрующий слой. Конструкция сита не допускает образования пробок. Давление в первой части сита низкое, которое увеличивается по мере возрастания концентрации твердых веществ в выходящем продукте. Сила трения твердой заглушки в цилиндрическом раструбе и двойной заслонки регулятора выходного отверстия, создает противодавление.

Сила прессования регулируется противовесами, определяющими обратное давление, создаваемое на выходе сепаратора.

Производительность зависит от влияния различных факторов: размера ячейки сита, исходной влажности стоков, температуры, срока хранения навоза, положения противовесов, регулирующих степень отжима.

Отделенная жидкая фракция:

Жидкость, отделённую сепаратором, можно перекачивать обычным насосом для сточных вод или транспортировать самотеком даже по тонким трубам, поскольку в ней содержится достаточно мало сухих веществ и различных примесей. Жидкая фракция, отделённая при помощи сепаратора, содержит только мелкодисперсные твёрдые частицы, находящиеся в растворенном состоянии. Жидкая фракция после сепарации характеризуется высоким содержанием положительных биогенных элементов и благоприятным соотношением питательных веществ Фосфора, Азота и Калия - 1,4:1,0:1,6. Жидкая фракция используется в качестве органического удобрения при орошении почв. При использовании жидкости в качестве удобрения почвы она может, перекачивается насосами высокого давления по длинным трубам для использования в системах внутрипочвенного орошения, дождевания и капельного полива, при этом, не создавая загрязнений в трубопроводах.

Отделенная жидкость из отстойника или лагуны выкачивается без предварительного перемешивания и может быть использована для орошения вместо аммиачной воды. Поэтому лагуна может быть сооружена с использованием пленки, т. к. не требуется ее очистка от плотных донных отложений и поверхностной корки.

Отжатая твердая фракция:

Получаемая твердая фракция отправляется на компостирование, используется в качестве подстилки для животных, органического удобрения или может быть отправлена на линию брикетирования, которую вы также можете у нас заказать, для получения топливных брикетов, для автономного отопления при помощи твердотопливного котла. При сжигании твердой фракции в пиролизных теплогенераторах, получаемая тепловая энергия может быть направлена на отопление помещений, ферм, теплиц и пр., а также для получения пара.

Компостирование отделенной твердой фракции:

Сепаратор производит твёрдые составляющие с оптимальными для компостирования влажностью и структурой (пористая, рассыпчатая масса с низкой адгезией), что обеспечивает превосходное движение в них воздуха во время компостирования и уменьшает неприятный запах. Отделённые твёрдые составляющие непривлекательны для мух, крыс и других паразитов.

1.2 Технологии утилизации отходов птицеводства и животноводства за рубежом

1.2.1 Канадская технология утилизации куриного помета

Группа Канадских компаний обладает технологией и выпускает оборудование для преобразования куриного помёта в сухое топливо и получения тепловой и электроэнергии. Сухой куриный помёт имеет почти такую же калорийность как дерево и если есть технология его сушки и сжигания с высокой эффективностью, то помёт превращается в ценное топливо.

Сушка куриного помёта происходит одновременно с процессом его измельчения в силу работы следующих физических процессов:

1. Влажный материал загружается в роторную камеру, где подвергается воздействию кинетической энергии ротора, который вращается с угловой скоростью до 640 км в час. Огромные центробежные силы отслаивают воду от внешней поверхности кусков материала. В процессе измельчения новые и новые поверхности материала постоянно появляются, и новые открывшиеся слои воды отслаиваются от материала и удаляются. Этот механизм сушки основан на механических силах удаления воды из материала.

2. Другой механизм сушки полутермический по сути. Кинетическая энергия от многочисленных ударов нагревает частицы на короткий промежуток времени выше 100 градусов цельсия, поэтому вода в частицах превращается в пар. Пар выделяется из частиц и мгновенно превращается в очень мелкие капельки воды, поскольку температура внутри камеры никогда не бывает выше 90 градусов Цельсия. Вода также выделяется из материала, поскольку сила удара выжимает воду из частиц материала. Поэтому частицы материала теряют содержащуюся в них воду без применения какого либо наружного нагрева, а за счёт воздействия механических сил.

3. Температура воздуха внутри камеры между 70 и 90 градусов цельсия, поскольку ротор нагревается от трения в течении процесса измельчения, а также из за процесса аэродинамического нагрева воздуха. Очень высокий коэффициент передачи тепла и массы из-за крайне высоких ускорений частиц обеспечивает практически мгновенную передачу влаги от частиц в окружающий воздух. Большая суммарная поверхностная площадь частиц также способствует высокой скорости передачи массы влаги. Этот процесс чисто термический.

4. Уничтожение бактерий происходит в основном за счёт воздействия кинетической энергии и кинетического нагрева частиц во время их удара о отражательные пластины, ротор и стенки камеры. Эти многочисленные удары поднимают температуру частиц до уровня выше необходимой для пастеризации бактерий. Кроме того, огромные ускорения, которым подвергаются частицы, ломают стенки клеток бактерий, убивая их. Уровень запаха высушенного куриного помёта после BPS, во много раз ниже, чем до обработки, что свидетельствует о том, что большинство бактерий убито.

Система BPS применяется во многих странах мира для сушки и измельчения биомассы: США, Канада, Япония, Корея, Бразилия, Малайзия и т.д.

Во время переработки куриного (бройлерный) помёта, сырой куриный помёт с влажностью ~ 30% подаётся по транспортёру в систему BPS (на фото). На выходе системы куриный помёт содержал 10-12% влаги и превратился в сухой порошок (на фото).

Помет ~10-12%

Помет ~ 30%

После системы BPS мы получаем сухой порошкообразный материал с минимальным запахом, который можно использовать для получения энергии, а также для производства удобрений.

Пылевые топки высокой интенсивности были разработаны специально для эффективного и полного сжигания трудносжигаемых видов топлива в соответствии с самыми жёсткими требованиями нефтехимической индустрии. Эти системы показали себя надёжными и высокоэффективными в промышленном применении.

Основные характеристики пылевых топок:

* Соответствуют самым жестким экологическим стандартам; сжигание с нулевым уровнем СО и экстремально низким значение NOx;

* Полное сжигание биомассы (100% биологического состава);

* Эффективность, стабильность и управляемость такие же как у топки работающей на натуральном газе.

* Способны работать одновременно на смеси топлива: порошкообразное, жидкое, газообразное.

* Уровень шума менее 85 dBa (децибелл)

* Компактный дизайн, что делает топки значительно меньше и дешевле, чем при других технологиях. Уменьшаются размеры основного оборудования: парового котла, газоходов, циклонов, вентиляторов, и т.д., что позволяет экономить значительные средства. Устанавливаются практически на все паровые котлы, как в новых проектах, так и при модификации существующих котлов.

Пылевые топки используются как источник тепла в различных индустриальных нагревателях и энергосистемах.

Экстремально короткое и чётко очерченное пламя позволяет использовать небольшие по размерам камеры сгорания. Порошкообразное топливо подаётся в топку через установленный в центральной части топки инжектор (gun). Вихревое вращение воздуха, подаваемого в топку, создаётся за счёт специальных лопастей, установленных в основании топки. Крутящийся воздух создаёт циркулирующий вихрь внутри топки, что ведёт к интенсивному перемешиванию пылевидного топлива и воздуха.

Такое интенсивное смешивание обеспечивает эффективное и полное сжигание топлива и очень ровное распределение температуры внутри топки.

Улучшенное распределение тепла уменьшает потери тепла и увеличивает эффективность сжигания. Способность работать с минимальным объёмом избытка воздуха (2%) и обеспечивать полное сгорание уменьшает падение тепла при избытке воздуха.

1.2.2 Итальянская технология утилизация отходов птицеводства и животноводства

Технология промышленного производства искусственного гумуса из органических отходов птицеводства - куриного помета базируется на современных теоретических представлениях о структуре и динамике природного носителя почвенного плодородия - гумусе. Согласно этим представлениям действующим началом гумуса, определяющим его высокую биологическую активность и способность к производству, обеспечивается макроциклическими комплексами органических природных веществ, главным образом гуминовых кислот, с ионами переходных металлов (Fe, Cu, Mn….) и щелочноземельных элементов (Ca, Mg….). Эти фрагменты, связываясь своими активными группами (-ОН, - СООН, NH2,…с комплексообразующими ионами, образуют сплошную («сшитую») лигандную оболочку, способную в строго определенных условиях сбалансированного протонно-апротонного катализа наращиваться, вовлекая в этот процесс новые атомы металлов, которые образуют кластерную цепочку внутри прочной гидрофобной лигандной оболочки. Таким образом формируются достаточно прочные трубчатые макромолекулы. Такие комплексы, включающие в себя полный набор питательных веществ и конституционную воду, обеспечивают растения всеми необходимыми веществами для интенсивного роста и развития.

Существенным отличием предлагаемого способа получения гумусоподобного удобрения от известных аналогов является:

· многократное ускорение образования макрокомплексов в условиях действия на субстрат электрических полей специальной формы при его интенсивном диспергировании и гомогенизации;

· многократное (до 10 раз) снижение удельных энергозатрат на получение каждой тонны гранулированного органического удобрения.

Технологический процесс получения в Комплексе искусственного гумуса начинается, практически, с заполнения предварительно подготовленным (очищенным от инородных включений - щебня, металлических предметов и др.) куриного помета бункера-питателя (дозатора), заполнения (при необходимости) второго бункера - питателя компонентами-носителями ионов, далее их частичным измельчением и перемешиванием в дезинтеграторе - смесителе до получения пластичной однородной массы для подачи последней в реактор, где и должен происходить процесс образования искусственного гумуса

1. Исходное сырье.

Вариант 1: Сырье - птичий помет из накопителя - отстойника с исходной влажностью - 45-85% (в случае уборки птичников гидросмывом) добывается земснарядом (или фекальным насосом).

На входных сетках заборников производится очистка сырья от грубых посторонних включений и металла.

Вариант 2: Сырье - птичий помет влажностью до 75% из птичников (в случае уборки птичников с использованием скребковых транспортеров) направляется в бункер накопитель комплекса.

При перемещении сырья в реакторе происходит измельчение, смешивание сырья, предварительная сушка и гумизация, ускоренная до 10 раз в сравнении с обычным электролизом, обеззараживание органических масс, структурирование воды, превращение части вредных веществ и газов (меркаптанов, аммиака, сероводорода и др.) в полезные вещества за счет воздействия на каждую молекулу по всему объему вещества электромагнитного катализатора, температуры и водорода.

На выходе реактора хлор и фтор связываются в экологически безопасные вещества и полезные вещества например, СаF. Образовавшиеся газы подаются в блок электроочистки, где соединения серы окончательно разлагаются на элементарные вещества, а сера осаждается на холодных стенках поддона.

Реактор выдерживает давление внутри корпуса не менее 5 атм;

Реактор обеспечивает:

- измельчение сырья и реагентов до размера частиц не более 20 мкм;

- получение гомогенной смеси;

- получение биологически активных металлоорганических соединений переходных металлов (Fe, Cu, Mn….) и щелочно-земельных элементов (Ca, Mg) с фрагментами натуральных органических соединений.

- дегидратацию удобрения до влажности не более 30%;

- возможность замены электродной системы по мере ее износа за время не более 10 минут.

Чистый гумус из зоны комплексирования реактора поступает в зону сушки реактора (дегидратации). В выпускаемых промышленностью дегидраторах удаление воды происходит за счет ее испарения. Это энергоемкий процесс - на испарение 1 тонны воды затрачивается до 1000 кВт час электроэнергии.

В установленном на комплексе дегидраторе удаление до 40% структурированной воды производится в виде тумана, при 50 - 80 оС без испарения. Это достигнуто за счет применения электрического катализатора. При таком процессе энергии на удаление этой части воды затрачивается до 10 раз меньше, т.е. 100 кВт час электроэнергии.

Температурный режим и дальнейшая сушка продукта производится за счет использования водорода, вредных газов и веществ, образовавшихся в реакторе, в качестве сушильного агента. При этом вредные вещества превращаются в экологически безопасные.

Система газоотведения

Функциональное назначение: отсос паров воды и газов и их очистку (утилизацию) перед выбросом в атмосферу;

Система газоотведения комплекса обеспечивает:

предварительную очистку и дезактивацию газов, выделяющихся в процессе работы реактора (аммиака, водорода, кислорода, меркаптанов, азота и др.) и доведение выбросов до требований ПДК с проверкой эффективности очистки;

- конденсацию очищенных паров воды с получением дистиллята;

- сигнализацию утечки метана и водорода из системы;

Система водоотведения

Система водоотведения обеспечивает:

- удаление избыточной воды в процессе дегидратации продукта;

- отвод воды в стандартные отстойники;

- возможность использования получаемой жидкой фракции на основе активированной воды в сельском хозяйстве.

Линия грануляции выходного продукта:

- обеспечивает гранулирование модифицированного куриного помета с размерами гранул не более 2-2,5 мм;

Линия расфасовки и упаковки:

Сырье (куриный помет), предварительно очищенный от инородных включений, доставляется в бункер - питатель. В бункер - питатель компонентов (используются при необходимости корректировки показателей качества искусственного гумуса) доставляются компоненты. Далее из бункеров - питателей сырье и компоненты (при необходимости) с помощью шнековых транспортеров подаются в блок предварительной подготовки субстрата - дезинтегратор - смеситель. Здесь производится измельчение материалов, гомогенизация и получение пластифицированной биомассы, которая далее перемещается с помощью шнекового транспортера в реактор.

В реакторе, разделенном на функциональные зоны, осуществляется ряд технологических операций над материалом - куриным пометом, приводящих к модификации его параметров. В первой зоне происходит интенсивное измельчение материалов до частиц с размерами единиц микрон, тщательное смешение до получения гомогенной массы. В этой же зоне осуществляются процессы комплексирования фрагментов органики с переходными и щелочноземельными металлами под действием приложенного к системе электродов, размещенных в этой зоне реактора, электрического напряжения с заданными параметрами. Протекание физико - химических процессов в данной зоне реактора сопровождается выделением газообразной фазы, содержащей пары активированной влаги, водорода, меркаптанов, аммиака, сероводорода и др., которые здесь же за счет воздействия на каждую молекулу по всему объему вещества электромагнитного катализатора, температуры и водорода превращаются большей частью в полезные вещества. Образовавшиеся газы подаются в блок газоотведения и электроочистки, где они разлагаются на элементарные вещества, а сера осаждается на холодных стенках поддона.

Из первой зоны реактора обработанная биомасса перемещается в зону дегидратации (обезвоживания до определенных параметров) и далее подается принудительно на устройство гранулирования, в котором оно окончательно и досушивается до требуемой влажности.

Далее уже обеззараженные (полностью подавляется патогенная микро - и макрофлора, семена сорняков теряют всхожесть, устраняется запах) гранулированные удобрения подаются либо в линию расфасовки в мешкообразную тару для последующего складирования и реализации. Жидкая фракция, образовавшаяся в процессе производства гранулированных удобрений, с помощью системы водоотведения направляется в емкости - отстойники. Жидкая фракция должна пройти химический анализ на предмет ее дальнейшего использования. Осажденная из газообразной фазы структурированная вода может найти достойное применение как в сельскохозяйственной практике, так и в других сферах [7].

1.3 Способы переработки отходов растительного сырья

В настоящее время наиболее перспективным способом утилизации растительных отходов и отходов овощеводства является биоконверсия. Суть технологии биоконверсии заключается в следующем: сырьевые компоненты (отходы) содержащие сложные полисахариды - пектиновые вещества, целлюлозу, гемицеллюлозу и др. подвергаются воздействию комплексных ферментных препаратов, содержащих пектиназу, гемицеллюлазу и целлюлазу. Ферменты представляют собой очищенный внеклеточный белок и способны к глубокой деструкции клеточных стенок и отдельных структурных полисахаридов, т.е. осуществляется расщепление сложных полисахаридов на простые с последующим построением на их основе легко усвояемого кормового белка.

В качестве исходных сырьевых компонентов могут быть использованы следующие отходы:

1. Растительные компоненты сельскохозяйственных культур: стебли зерновых и технических культур, корзинки и стебли подсолнечника, льняная костра, стержни кукурузных початков, картофельная мезга, трава бобовых культур, отходы сенажа и силоса, отходы виноградной лозы, чайных плантаций, стебли табака.

2. Отходы зерноперерабатывающей промышленности: отруби, отходы при очистке и сортировке зерновой массы (зерновые отходы), зерновая сорная примесь, травмированные зерна, щуплые и проросшие зерна, семена дикорастущих растений, некондиционное зерно.

3. Отходы консервной, винодельческой промышленности и фруктовые отходы: кожица, семенные гнезда, дефектные плоды, вытерки и выжимки, отходы винограда, отходы кабачков, обрезанные концы плодов, жмых, дефектные кабачки, отходы зеленого горошка (ботва, створки, россыпь зерен, битые зерна, кусочки листьев, створки), отходы капусты, свеклы, моркови, картофеля.

4. Отходы сахарной промышленности: свекловичный жом, меласса, рафинадная патока, фильтрационный осадок, свекловичный бой, хвостики свеклы.

5. Отходы пивоваренной и спиртовой промышленности: сплав ячменя (щуплые зерна ячменя, мякина, солома и др. примеси), полировочные отходы, частицы измельченной оболочки, эндосперма, битые зерна, солодовая пыль, пивная дробина, меласса, крахмалистые продукты (картофеля и различных видов зерна), послеспиртовая барда, бражка.

6. Отходы чайной промышленности: чайная пыль, сметки, волоски, черешки.

7. Отходы эфирно-масличной промышленности: отходы травянистого и цветочного сырья.

8. Отходы масло - жировой промышленности: подсолнечная лузга, хлопковая шелуха.

9. Отходы кондитерской и молочной промышленности.

Таким образом, любое растительное сырье и его производные, как лигноцеллюлозный источник, доступны для микробиологической биоконверсии в углеводно-белковые корма и кормовые добавки.

Наряду с переработкой кондиционных растительных и зерновых компонентов, технология позволяет восстановление и многократное увеличение прежних кормовых свойств сырья, зараженного патогенной микрофлорой, испорченного насекомыми или частично разложившегося из-за неправильного хранения.

В процессе биоконверсии в некондиционных компонентах уничтожаются болезнетворная микрофлора, яйца гельминтов, возбудители тяжелых заболеваний (бруцеллез, туберкулез, холера, тиф и др.), а также и вредные паразитирующие простейшие (аскариды, солитеры и др.). При этом кормовая ценность некондиционного сырья после соответствующей обработки превышает кормовую ценность кондиционных аналогов в 1,4-1,8 раз.


Подобные документы

  • Оценка проблемы утилизации мусора в Казани. Анализ достоинств и недостатков существующих способов утилизации и переработки отходов. Способы утилизации твердых бытовых отходов в европейских странах и в России. Массовое сознание и пути решения проблемы.

    контрольная работа [38,1 K], добавлен 21.11.2011

  • Проблемы утилизации отходов в России, пути их решения. Способы утилизации и переработки вторичного сырья. Переработка отходов за рубежом. Затраты на переработку отходов. Повышение экологической безопасности эксплуатации автомобильного транспорта.

    курсовая работа [222,9 K], добавлен 22.01.2015

  • Накопление отходов в результате деятельности человека. Способы и проблемы утилизации твердых бытовых отходов. Этапы складирования отходов, сжигания мусора, сливания отходов в водоёмы. Правила захоронения отходов. Функционирование полигонов захоронения.

    дипломная работа [1,2 M], добавлен 22.10.2015

  • Особенности переработки и утилизации пищевых отходов, перспективы расширения данной сферы деятельности в будущем и ее значение в защите окружающей среды. Вторичное использование различных бытовых отходов: стеклотары, упаковки. Сливание отходов в водоемы.

    реферат [24,1 K], добавлен 04.06.2014

  • Проблема утилизации отходов Уральских городов. Инвестиции и план развития завода по переработке твердых бытовых отходов (ТБО). Интервью у министра природных ресурсов. Проблемы переработки и утилизации промышленных отходов. Методы переработки отходов.

    реферат [169,7 K], добавлен 02.11.2008

  • Воздействие бытовых отходов на окружающую среду. Ликвидация твердых отходов. Рециклизация как вторичная переработка. Комплексная программа ликвидации. Опыт использования технологий утилизации мусора. Виды разлагаемых пластиков и способы их утилизации.

    контрольная работа [577,0 K], добавлен 03.07.2009

  • Характеристика и классификация твердых бытовых отходов (ТБО). Комплексное управление отходами: сбор и временное хранение, мусороперегрузочные станции и вывоз ТБО. Сбор и использование вторсырья; способы утилизации, проблемы переработки отходов.

    реферат [34,6 K], добавлен 02.12.2010

  • Общая характеристика утилизации и вариантов использования отходов металлургического комплекса и химического производства в промышленности. Основные направления утилизации графитовой пыли. Оценка золошлаковых отходов как сырья для строительных материалов.

    реферат [27,6 K], добавлен 27.05.2010

  • Классификация отходов по ряду признаков. Нормативно-правовые документы, регламентирующие обращение с отходами в Российской Федерации, способы их утилизации. Функционирование полигона ТБО (хут. Копанской), динамика накопления и утилизации отходов.

    дипломная работа [269,3 K], добавлен 25.02.2016

  • Классификация отходов по виду и разделение по классу опасности. Способы их утилизации и размещение на свалках. Влияние бытовых отходов на окружающую среду и здоровье человека. Переработка мусора как основное направление экологии в борьбе за чистоту.

    контрольная работа [33,6 K], добавлен 22.02.2017

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.