Классификация индексов
Практические правила построения индексов, индивидуальных и общих. Схема агрегатных индексов и их преобразование в средние. Определение общего абсолютного прироста товарооборота. Индексируемые показатели средних величин. Средняя себестоимость продукции.
Рубрика | Экономика и экономическая теория |
Вид | реферат |
Язык | русский |
Дата добавления | 03.11.2011 |
Размер файла | 214,1 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Государственное образовательное учреждение
среднего профессионального образования Московской области
«Котельниковский промышленно-экономический техникум»
РЕФЕРАТ
по дисциплине «Статистика»
на тему «Индексы»
Котельники 2010г.
Содержание
1. Понятие, значение и классификация индексов
1.1 Индивидуальные и общие индексы
1.2 Агрегатные индексы
1.3 Средние индексы
1.4 Индексы средних величин
Список использованной литературы
1. Понятие, значение и классификация индексов
Индекс - это относительный показатель, который характеризует соотношение уровней социально-экономического явления во времени, в пространстве или по сравнению с планом.
Индексный метод является одним из важнейших средств экономико-статистического анализа. Индексы применяются с целью определения динамики изучаемых явлений, для выявления степени влияния различных факторов на динамику сложных явлений, для характеристики изменений в структуре явлений, а главное, они применяются для обобщающей сравнительной характеристики двух совокупностей, состоящих из разнородных элементов, непосредственно не поддающихся суммированию, так как нельзя, например, суммировать продукцию в тоннах и декалитрах, продукцию в упаковке и штучный товар.
Применение и исчисление индексов для характеристики общественных явлений на микро- и макроуровне постоянно
Признаки классификации |
Виды индексов |
|||
1. |
В зависимости от базы сравнения и в зависимости от сроков сравнения |
а). |
статические индексы |
|
б). |
динамические индексы |
|||
в). |
оазисные индексы |
|||
г). |
цепные индексы |
|||
2. |
По сложности и полноте охвата индексируемых явлений и элементов совокупности |
а). |
индивидуальные индексы |
|
б). |
групповые индексы |
|||
в). |
общие индексы |
|||
3 |
По форме, способу построения и методам исчисления |
а). |
агрегатные индексы |
|
б). |
средние индексы |
|||
в). |
индексы средних величин |
|||
г). |
индексы-дефляторы |
|||
4. |
В зависимости от характера весов |
а). |
индексы с постоянными весами |
|
б). |
индексы с переменными весами |
|||
5. |
По характеру индексируемых величин: |
а). |
индекс цен |
|
б). |
индекс себестоимости единицы продукции |
|||
индексы качественных показателей |
||||
в). |
индекс производительности труда |
|||
г). |
индекс урожайности и т.д. |
|||
индексы количественных (объемных) показателей |
а). |
индекс физического объема продукции |
||
б). |
индекс посевных площадей и т.д. |
При исчислении индексов вводится понятие индексируемая величина, то есть величина, изменение которой определяется вычислением соответствующего индекса.
Так, при определении индекса физического объема продукции индексируемой величиной будет количество продукции отдельных видов в натуральном выражении; при определении индекса цен - цены за каждую единицу продукции.
При построении индексов нужно уметь правильно выбрать индексируемые (сопоставляемые) величины и веса (соизмерители) индексов, с помощью которых суммируются разнородные элементы. Они должны обеспечить экономический смысл индекса и возможность на его основе вычислить абсолютные суммы экономического эффекта динамики.
Существует несколько практических правил построения индексов: если изучается изменение качественных показателей (цены, себестоимости или трудоемкости единицы продукции, урожайности и т.д.), то соответствующие им количественные (объемные) показатели (выпуск продукции в натуральном выражении, посевные площади и т.д.) как веса берутся на уровне отчетного периода; если же определяется изменение количественных показателей, то присущие им качественные показатели берутся на базисном уровне.
При использовании индексного метода применяется сложившаяся в статистической практике система условных обозначений. Каждый индексируемый экономический показатель обозначается определенной буквой, например, цена единицы продукции - Р, количество того или иного вида продукции в натурапьном выражении - q, себестоимость единицы продукции - Z, трудоемкость - t, производительность труда - V, урожайность - Y и т.д. Подписной значок внизу справа означает период времени: 0 - базисный, 1 - отчетный, пл - плановый.
Рассмотрим особенности построения индексов в соответствии с приведенной классификацией. Эти особенности определяются сущностью экономических явлений, целями и задачами их изучения, состоянием явлений. Состояние явлений различают в статике и в динамике. Статика означает отсутствие динамики. В статике строятся вариационные ряды, определяются средние величины, показатели вариации, а также некоторые индексы, то есть индексы являются показателями сравнения не только с прошлым периодом (в динамике, во времени), но и в статике. В этом случае производится сравнение с каким-то эталоном и в качестве базы - эталона используются плановые показатели, нормативы, нормы, взятые обязательства, данные по другой территории, а также прогнозные данные. При исчислении статических индексов важно, чтобы сравниваемые величины относились к одному и тому же периоду или моменту времени, а подстрочное обозначение базы сравнения соответствовало принятому эталону. Индексы динамики характеризуют изменение явления во времени, их величина меняется при переходе от одного периода к другому и зависит от базы и сроков сравнения. При сравнении с прошлым периодом они называются цепными (база сравнения переменная) и базисными (база постоянная). Более подробно об этом говорится в теме "Ряды динамики".
1.1 Индивидуальные и общие индексы
Индексы бывают простыми и сложными. Самые простые -индивидуальные индексы, а более сложные - групповые и общие индексы.
Индивидуальные индексы (i) характеризуют изменения отдельных частей, однородных элементов сложного явления (например, роста или снижения цены, физического объема какого-то одного конкретного продукта, затрат времени на единицу продукции - трудоемкости или выработки в единицу времени - производительности труда, выручки от реализации одного вида продукции, индивидуального заработка и т.п.)
По своей природе индивидуальные индексы соответствуют обычным коэффициентам (темпам) роста или снижения и исчисляются для каждого элемента отдельно делением величины элемента в отчетном периоде на базисную величину. Так рассчитываются темпы роста цен, динамика отдельных видов продукции, численности работников и т.д.
Общий индекс (I) - это обобщающий показатель, отражающий общее изменение сложного общественного явления, элементы которого непосредственно не поддаются суммированию (цены на разные группы товаров, физический объем разноименной продукции (продукции в натуральном выражении), в разных единицах измерения (килограммах, метрах, литрах и т.п.). Эти несоизмеримые элементы приводятся в соизмеримое состояние введением общей единицы измерения, которая в статистике называется сомножителем, соизмерителем, статистическим весом.
В числителе и знаменателе общего индекса переменное значение имеют только индексируемые величины, а если какие-то из них играют роль просто соизмерителей, то в такой роли они остаются условно постоянными величинами на одном уровне (текущего - отчетного или базисного периода). Следовательно, соизмерители определяют значимость индексируемой величины, но практически не влияют на величину индекса. Величина индекса зависит только от переменных значений одной индексируемой величины или двух - трех индексируемых величин (если число переменных значений больше одного).
Если индексы охватывают не все элементы сложного явления, а лишь части его, то они называются групповыми или субиндексами, например, индексы продукции по отдельным товарным группам, по отраслям промышленности и т.д.
1.2 Агрегатные индексы
Основной формой общих индексов являются агрегатные индексы.
Агрегатный индекс в числителе и знаменателе имеет набор разнородных элементов (агрегат), что дало основание называть его агрегатным.
Агрегатный индекс рассчитывается как отношение суммы произведений двух величин, из которых одна меняется (индексируется), а другая служит соизмерителем индексируемой величины и не меняется.
Например, несоизмеримыми из-за различия натуральной формы и свойств являются продукты, учитываемые в килограммах, литрах, метрах.
Но общее в них - стоимость, а стоимости изделий, какими бы различными они ни были, можно суммировать. Известно, что стоимость каждого вида продукции определяется в рублях, в валюте путем умножения цен на количество изделий в физических единицах измерения. Соответствующие агрегатные индексы цен и физического объема продукции строятся по следующей схеме:
Схема агрегатных индексов
Элементы агрегатного индекса |
Индексы |
||
Физического объема продукции (товарооборота) |
Цен |
||
Индексируемые величины: отчетного периода базисного периода |
q1 q0 |
p1 p0 |
|
Индивидуальные индексы (i) |
q1 : q0 |
p1 : p0 |
|
Соизмерители агрегатного индекса |
p0 |
q1 |
|
Числитель агрегатного индекса |
|||
Знаменатель агрегатного индекса |
|||
Агрегатный индекс |
Рассмотрим особенности построения агрегатных индексов на примере вычисления основных экономических индексов - стоимости продукции, цен и количества продукции (ее физического объема).
Типовой пример 1. Количество и иена товаров характеризуются следующими данными:
Наименование товара |
Цена единицы изделия, руб. |
Количество товара, тыс. штук |
|||
август месяц |
сентябрь месяц |
август месяц |
сентябрь месяц |
||
p0 |
p1 |
q0 |
q1 |
||
Жидкое мыло: - с насосом - в контейнере - в флаконе |
100,0 62,0 45,0 |
218,5 149,5 80,5 |
12,8 23,1 9,7 |
13,0 24,3 9,9 |
|
Итого |
45,6 |
47,2 |
Определить:
индивидуальные и общие индексы стоимости продукции (товарооборота);
индексы цен и физического объема продукции;
общий абсолютный прирост товарооборота, в том числе прирост за счет изменения цен и за счет изменения физического объема продукции.
Решение
Объединим два показателя р (цена) и q (физический объем, то есть количество продукции) в одном показателе - стоимость продукции pq.
Находим индивидуальные индексы по видам товара:
Алгоритм расчета |
Жидкое мыло Порядок расчета по видам товара |
|||
с насосом |
в контейнере |
в флаконе |
||
Определяем индекс стоимости по формуле: |
||||
Находим индекс цен по формуле: |
||||
Вычисляем индекс физического объема продукции по формуле: |
||||
Вывод. Индексы показывают, что больше всего выросла стоимость жидкого мыла в контейнере. Темп роста ее составил 2,536 или 253,6%. Объясняется это опережающим темпом роста цен на продукцию в такой расфасовке - 2,411 или 241,1% и наиболее значительным количественным ростом реализации данной продукции - 1,052 или 105,2% по сравнению с другими ее видами.
В действительности так и бывает, что мыло в контейнере пользуется большим спросом, чем мыло с насосом: оно значительно дешевле и, кроме того у покупателей есть возможность применять к ним использованные насосы ранее купленного мыла с насосом.
Определяем общие агрегатные индексы:
Алгоритм расчета |
Порядок вычисления |
|
Определяем индекс стоимости по формуле: |
||
Находим индекс цен по формуле: |
||
Вычисляем индекс физического объема продукции по формуле: |
||
Определим общий абсолютный прирост товарооборота и его прирост за счет изменения цен и количества продукции.
в том числе:
за счет изменения цен:
за счет изменения физического объема продукции:
Проверка:
2,309 = 2,235*1,033
4121,6 = 4018,2+103,4
Равенства соблюдаются, следовательно, расчет выполнен верно.
Отметим, что стоимость всех видов товаров в отчетном периоде (сентябрь месяц) по сравнению с базисным (август месяц) увеличилась на 230,9-100=130,9% или на 4121,6 тыс. руб., в том числе за счет цен на 223,5 - 100= =123,5% или на 4018,2 тыс. руб. и за счет физического объема продукции на 103,3 - 100 = 3,3% или на 103,4 тыс. руб.
Следовательно, основное влияние на рост товарооборота в фактических ценах оказало увеличение цен на все виды жидкого мыла.
1.3. Средние индексы
Согласно существующей методологии и приведенной классификации индексов общие индексы делятся на агрегатные (основная форма индексов), средние из индивидуальных индексов (средние индексы) - производная форма агрегатных, а также индексы средних величин.
При построении агрегатных индексов необходимы данные о количестве отдельных продуктов, товаров в натуральном выражении. Но количественный учет в современных экономических условиях осуществляется не всегда и не везде. Он существует на уровне предприятий, в оптовой торговле, в торговле сельскохозяйственными продуктами, в общественном питании и т.п. В других сферах деятельности, например, в розничной сети реализация товаров обычно учитывается в денежном выражении (по стоимости). Это объясняется большим разнообразием реализуемых изделий, учет которых в натуральном выражении без применения современных методов сбора информации и ЭВМ практически не осуществим.
Поэтому агрегатная форма в таких и аналогичных случаях не применяется, а применяются некоторые виды средних индексов. Это означает, что всякий общий индекс можно исчислить как среднюю взвешенную величину из индивидуальных индексов, только для индивидуальных индексов нужно правильно подобрать форму средней и систему весов. При этом не следует забывать, что средний индекс является модифицированной (преобразованной) формой агрегатного индекса и должен быть тождественен исходному агрегатному.
Поскольку агрегатный индекс может быть преобразован либо в средний арифметический, либо в средний гармонический, то при исчислении средних индексов можно использовать только два вида средних: среднюю арифметическую и среднюю гармоническую. Другие виды средних в отечественной статистической практике не применяются.
При изучении средних индексов следует понять, как они выводятся из агрегатных и почему называются средними индексами. С этой целью рассмотрим схему преобразования агрегатных индексов в средние из индивидуальных индексов.
Схема преобразования агрегатных в средние индексы
Виды индексов |
Последовательность преобразований |
|||||
индивидуальный индекс |
Преобразо-вание индекса |
агрегатный индекс |
средний арифметический индекс |
средний гармонический индекс |
||
физического объема |
||||||
цен х) |
Индексы себестоимости продукции выводятся аналогично индексу цен (поскольку себестоимость - часть цены), только в индексе цен вместо буквы р надо писать букву z. Многие экономические индексы строятся по этому принципу.
Отметим особенности построения средних индексов. Так, в среднем арифметическом индексе физического объема продукции индивидуальные индексы (iq) являются вариантами, а (qоpо) - стоимость каждого вида продукции в базисном периоде - соответствующими весами (частотами), поэтому расчет этого индекса дается по средней арифметической взвешенной.
В среднем гармоническом индексе цен известны только варианты индексов (ip) и стоимость продукции каждого вида в отчетном периоде (p1q1) является соответствующим соизмерителем.
Таким образом, средние индексы используются тогда, когда отсутствуют данные об абсолютных значениях индексируемой величины или нет исходных данных о весах индекса.
Все формулы, полученные путем преобразований, тождественны исходным индексам в их агрегатной форме.
Средний арифметический индекс физического объема продукции используется, в основном, в расчетах плановых и перспективных показателей общего прироста продукции в предстоящем отчетном периоде по сравнению с базисным, когда известны только индивидуальные индексы (iq) и объемы товарооборота в базисном периоде (p0q0)*
Средний гармонический индекс позволяет определить общее изменение объема товарооборота, когда известны только индивидуальные индексы цен (iр) и объемы товарооборота в отчетном периоде в фактических ценах (p1q1) и нет данных о неизменных сопоставимых ценах (p0).
Типовой пример 2. Определить индивидуальные и общий индексы физического объема продукции, если известны следующие данные о производстве продукции на сахарном заводе:
Вид продукции |
Стоимость продукции в базисном периоде, тыс.руб. |
Изменение количества продукции в отчетном периоде по сравнению с базисным, + (рост) - (снижение) |
||
qо pо |
||||
Сахарный песок меласса жом свежий |
27458 3012 384 |
+12 -5 +8 |
1,12 0,95 1,08 |
Индивидуальные индексы физического объема продукции определим по формуле:
- изменение количества произведенной или реализованной продукции в отчетном периоде по сравнению с базисным по каждой группе в %;
100% - база сравнения, то есть количество продукции (или товаров) по группам в базисном периоде
Так, по сахару-песку величина ,
по мелассе
по жому
Поскольку известны только индивидуальные индексы (iq) и товарооборот по группам товаров в базисном периоде (qо pо), то общий индекс физического объема продукции определяется расчетным путем по формуле среднего арифметического индекса:
На основе этой формулы общего индекса можно определить общий абсолютный прирост производства и реализации продукции в предстоящем отчетном периоде:
Следовательно, физический объем продукции в целом увеличится на 10,3% или на 3175 тыс.руб.
Типовой пример 3. По приведенным ниже данным определить индивидуальные и общий индексы цен и абсолютную сумму экономии (или перерасхода) от среднего изменения цен на макаронные изделия:
Виды продукции |
Стоимость продукции в отчетном периоде, тыс.руб. |
Изменение цен за единицу продукции в отчетном периоде по сравнению с базисным +(увеличение) -(снижение) |
||
p1q1 |
||||
Макароны Вермишель Лапша |
108 1614 1035 |
+ 10 -3 без изменения |
1,10 0,97 1,00 |
Индивидуальные индексы цен вычислены по формуле:
- изменение цен по группам продукции в отчетном периоде по сравнению с базисным в %;
100% - первоначальные цены в базисном периоде по группам продукции или товаров, принятые за 100%.
Величина индексов по группам продукции составляет:
макароны
вермишель
лапша
Общий индекс цен определим по формуле среднего гармонического индекса:
Вычтем из числителя индекса знаменатель и получим абсолютную величину изменения товарооборота в отчетном периоде в результате изменения цен:
Следовательно, объем товарооборота в отчетном периоде в результате снижения цен снизился на 1,4% или на 40,2 тыс.руб.
1.4 Индексы средних величин
Качественные индексируемые показатели чаще всего встречаются в виде средних величин - средняя цена, средняя трудоемкость, средняя выработка одного работника, средняя заработная плата, средний доход, средняя урожайность и т.д.
Из формулы средней арифметической взвешенной вытекает, что средняя величина зависит от отдельных вариант (X) и частот (f ). Поэтому бывают случаи роста средней величины при снижении индивидуальных значений о средняемого признака. Например, может наблюдаться рост среднего заработка при снижении его величины у отдельных работников. Это будет объясняться увеличением доли (удельного веса) работников с более высоким заработком, то есть структурным сдвигом.
В подобных случаях особое внимание должно обращаться на индексы, отражающие изменение средних уровней за счет двух факторов: изменения величины о средняемых уровней и изменения удельных весов (структуры) совокупности. Такие индексы называются индексами среднего уровня. Они образуют систему взаимосвязанных индексов, в которую входят три индекса: переменного состава, постоянного состава и структурных сдвигов, причем
Совместное влияние двух последних факторов на общую динамику среднего уровня изучается с помощью индекса переменного состава.
Индекс переменного состава () - это отношение двух средних взвешенных величин с переменными (изменяющимися) весами, показывающее общее изменение индексируемой средней величины.
Формула его расчета для любого качественного показателя имеет вид:
где x1 и xо - уровни осредняемого признака в отчетном и базисном периодах;
f1 и f0 - веса (частоты) осредняемого признака соответственно в отчетном и базисных периодах.
Индексы переменного состава можно применять для характеристики изменений только качественно однородных величин и только тогда, когда для изучаемого явления можно вычислить среднюю величину.
Индекс переменного состава разлагается на частные индексы - индекс постоянного (фиксированного) состава и индекс структурных сдвигов.
Индекс постоянного (фиксированного) состава () рассчитывается как обычный агрегатный индекс. Он показывает, как изменяется средний уровень под влиянием изменения индексируемого качественного показателя и позволяет устранить (элиминировать) влияние структурных сдвигов. При этом отношение средних взвешенных величин берется с одними и теми же весами (обычно на уровне отчетного периода):
откуда
Индекс структурных сдвигов () показывает влияние изменения структуры и определяется как отношение среднего уровня индексируемой величины базисного периода, рассчитанного применительно к структуре отчетного периода, к фактической средней этого же показателя в базисном периоде, В таком случае переменной величиной являются лишь веса-соозмерители f1 и f0:
Используя взаимосвязь трех индексов, индекс структурных сдвигов можно определить делением индекса переменного состава на индекс постоянного (фиксированного) состава:
Наряду с абсолютными частотами f в качестве весов индексируемых величин могут применяться и относительные величины (доли) d.
Типовой пример 4. Определить индексы переменного, постоянного состава и структурных сдвигов, если известны следующие данные по хлебозаводу:
Вид продукции |
Себестоимость 1 кг продукции, руб. |
Количество продукции, кг |
|||
Базисный период |
Отчетный период |
Базисный период |
Отчетный период |
||
z0 |
z1 |
q0 |
q1 |
||
Батон нарезной, в/с, 0,4кг Батон горчичный, в/с, 0,4кг |
21,1 23,3 |
22,6 25,5 |
3576 564 |
3681 517 |
Определяем индекс средней себестоимости продукции переменного состава для чего сравним среднюю себестоимость продукции отчетного и базисного периодов:
Следовательно, средняя себестоимость одного кг повысилась на 7,3% или на 1,56 руб. (22,96-21,40). Это могло произойти за счет увеличения себестоимости каждого вида продукции и изменения структуры выпуска продукции.
Посмотрим, какие произошли изменения только за счет динамики себестоимости продукции, но для этого устраним влияние физического объема продукции, определив агрегатный индекс себестоимости продукции постоянного состава:
Разница в значениях полученных индексов небольшая, но она - результат изменения структуры.
индекс агрегатный товарооборот себестоимость
Вывод
Средняя себестоимость продукции повысилась на 7,3% , хотя за счет увеличения затрат на каждый вид продукции она выросла на 7,4% . Расхождение объясняется тем, что под влиянием структурных сдвигов себестоимость продукции снизилась на 0,01% (99,9% - 100%).
Список использованной литературы
1. Карева Л.М. Общая теория статистики. Практикум для студентов экономических и технологических специальностей, всех форм обучения. - М.,МГУТУ, 2006
2. Кареева Л.М. Статистика. Рабочая программа, методические указания и контрольные задания. - М.,МГУТУ, 2007
Размещено на Allbest.ru
Подобные документы
Понятие, классификация, применение и определение индексов. Характеристика индивидуальных, общих, агрегатных, средневзвешенных индексов. Особенности показателей динамики средних величин, переменного, постоянного составов и структурных сдвигов, дефляторов.
реферат [272,0 K], добавлен 19.12.2010Решение задач на вычисление индивидуальных индексов и общих индексов цен, объема продукции, товарооборота в фактических ценах. Динамика объема производства и исчисление индексов физического объема промышленной продукции. Динамика натуральных показателей.
контрольная работа [30,2 K], добавлен 23.06.2009Определение вида рядов динамики. Методы расчета цепных и базисных абсолютных приростов, темпов роста и прироста, среднего уровня ряда. Определение индивидуальных индексов себестоимости по видам продукции, агрегатных индексов товарооборота и реализации.
контрольная работа [97,9 K], добавлен 03.05.2010Определение абсолютного прироста, темпов роста и прироста реализованной продукции на предприятии. Расчет среднего годового темпа роста и прироста. Расчет себестоимости, индивидуальных базисных индексов себестоимости и физического объема продукции.
контрольная работа [19,4 K], добавлен 15.11.2011Методы и приемы экономического анализа данных о составе населения страны за определенный период. Расчет индивидуальных индексов цены и объема, общих индексов цен, объема и стоимости (товарооборота). Определение показателей использования рабочей силы.
контрольная работа [297,8 K], добавлен 05.04.2011Понятие индексов, правила их построения и классификация, их взаимосвязь и применение. Примеры использования индексов в статистическом анализе деятельности различных предприятий. Расчет суммы экономии или перерасхода в результате изменения себестоимости.
курсовая работа [192,9 K], добавлен 25.09.2014Понятия об индексах, их значение и применение в статистических исследованиях. Задачи, решаемые посредством использования индексов. Особенности индексов выполнения плана и территориальных индексов. Агрегатные и средние, базисные и цепные формы индексов.
реферат [40,8 K], добавлен 04.06.2010Расчет средней себестоимость единицы продукции. Определение динамического ряда на графике. Исчисление индексов сезонности. Вычисление индексов средней цены и структурных сдвигов в объеме продажи. Определение численности населения на указанный период.
контрольная работа [209,0 K], добавлен 20.10.2010Способы анализа ряда динамики: приведение параллельных данных, смыкание рядов динамики, аналитическое выравнивание. Расчет средних цен на товар; определение дисперсии, среднего квадратического отклонения, коэффициента вариации, индивидуальных индексов.
контрольная работа [65,5 K], добавлен 12.04.2012Расчет базисных и среднегодовых показателей абсолютного прироста и темпов роста производства макаронных изделий. Построение уравнения прямой на основе метода аналитического выравнивания. Определение общих индексов цен и физического объема товарооборота.
контрольная работа [145,9 K], добавлен 16.10.2010