Статистическое моделирование и прогнозирование

Основные понятия теории моделирования экономических систем и процессов. Методы статистического моделирования и прогнозирования. Построение баланса производства и распределение продукции предприятий с помощью балансового метода и модели Леонтьева.

Рубрика Экономико-математическое моделирование
Вид курсовая работа
Язык русский
Дата добавления 21.04.2013
Размер файла 1,5 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Курсовой проект

По предмету: «Моделирование производственных и экономических процессов»

На тему: «Статистическое моделирование и прогнозирование»

Выполнил обучающийся

гр. № программист

Проверила преподаватель:

2013г.

СОДЕРЖАНИЕ

ВВЕДЕНИЕ

I. ОСНОВНЫЕ ПОНЯТИЯ ТЕОРИИ МОДЕЛИРОВАНИЯ ЭКОНОМИЧЕСКИХ СИСТЕМ И ПРОЦЕССОВ

1.1 Классификационные признаки моделирования

1.2 Эффективность моделирования систем

II. статистическое моделирование и прогнозирование

2.1 Сущность статистического моделирования

2.2. Сущность статистического прогнозирования

2.3 Методы статистического моделирования

2.4 Методы статистического прогнозирования

3. ПРАКТИЧЕСКАЯ ЧАСТЬ

3.1 Постановка задачи

3.2 Решение задачи

ЗАКЛЮЧЕНИЕ

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

ПРИЛОЖЕНИЕ

ВВЕДЕНИЕ

В практике моделирования систем наиболее часто приходится иметь дело с объектами, которые в процессе своего функционирования содержат элементы стохастичности или подвергаются стохастическим воздействиям внешней среды. Поэтому основным методом получения результатов с помощью имитационных моделей таких стохастических систем является метод статистического моделирования на ЭВМ, использующий в качестве теоретической базы предельные теоремы теории вероятностей.

На этапе исследования и проектирования систем при построении и реализации машинных моделей (аналитических и имитационных) широко используется метод статистических испытаний (Монте-Карло), который базируется на использовании случайных чисел, т. е. возможных значений некоторой случайной величины с заданным распределением вероятностей. Большинство экономико-математических моделей характеризуются статическим подходом к изучению экономики, когда ее состояние изучается на заданный момент времени. Под статической экономической системой понимается такая система, координаты которой на изучаемом отрезке времени могут рассматриваться как постоянные. Соответственно, при формулировке статической экономико-математической модели предполагается, что все зависимостиотносятся к одному моменту времени, а моделируемая система неизменна во времени. При этом полностью игнорируются возможные (а подчас даже неизбежные) изменения, поскольку их учет не требуется для достижения цели моделирования. Кроме того, предполагается, что все интересующие процессы, происходящие в системе, не требуют при своем описании развертывания во времени, т. к. могут быть с достаточной степенью точности охарактеризованы независящими от времени величинами, как известными, так и неизвестными. Поэтому в статической модели время не вводится явно. Статические модели характеризуют моделируемую систему на какойлибо фиксированный момент времени. Такой момент может представлять целый временной интервал, как правило, в качестве его конечной, средней или начальной точки, в течение которого система предполагается неизменной.

Большинство экономико-математических моделей являются статическими. Эта точка зрения настолько укоренилась в сознании большинства экономистов, что практически всегда модель считается статической, а если это не так, то только тогда указывается, что модель является динамической. В самом деле, к статическим моделям естественно приводят самые разнообразные задачи экономического анализа и планирования, которые допускают постановку проблемы при жестко фиксированной структуре моделируемой системы. Поскольку статические модели в формализованном виде не содержат фактора времени, они всегда проще, чем динамические модели тех же экономических систем, с той или иной степенью полноты учитывающих этот фактор. Поэтому для экономико-математического моделирования типична ситуация, когда сначала разрабатываются статические модели, а затем они усложняются введением фактора времени, т. е. преобразуются в динамические. В частности, статическими первоначально были модели межотраслевого баланса, разнообразные модели, сводимые к транспортной задаче и распределительной задаче линейного программирования, к задачам о потоках в сетях и т. д. Впоследствии для всех этих моделей были разработаны динамические аналоги и обобщения. Однако усложнение далеко не всегда оказывается продуктивным даже в тех случаях, когда динамический аспект моделируемой системы небезразличен для цели моделирования.

В статических моделях можно выделить группу макроэкономических моделей. К ним относятся модели народно-хозяйственного уровня, которые предназначены для описания больших секторов экономики или экономики страны в целом. Целью макроэкономического моделирования является изучение экономических законов, связывающих наиболее важные и содержательные показатели. В целом, разработанные к настоящему времени математические модели народного хозяйства можно условно разбить на две большие группы:

* модели экономического роста (часто это динамические модели);

* межотраслевые балансовые модели.

Модели 1-й группы оперируют крупноагрегированными показателями (валовой общественный продукт, национальный доход, объем основных фондов, фонд накопления, фонд потребления). Эти модели предназначены для изучения основных тенденций развития экономики в течение продолжительных периодов времени (порядка нескольких десятилетий). Эти модели часто представляются производственными функциями.

К статическим моделям относится большинство задач линейного программирования (максимизации выпуска в заданном ассортименте, задача о диете, об оптимальных назначениях, раскроя материалов и многие другие).

1. Основные понятия теории моделирования экономических систем и процессов

1.1 Классификационные признаки моделирования

Моделирование (в широком смысле) является основным методом исследований во всех областях знаний и научно обоснованным методом оценок характеристик сложных систем, используемым для принятия решений в различных сферах инженерной деятельности. Существующие и проектируемые системы можно эффективно исследовать с помощью математических моделей (аналитических и имитационных), реализуемых на современных ЭВМ, которые в этом случае выступают в качестве инструмента экспериментатора с моделью системы.

В основе моделирования лежит теория подобия, которая утверждает, что абсолютное подобие может иметь место лишь при замене одного объекта другим точно таким же. При моделировании абсолютное подобие не имеет места и стремятся к тому, чтобы модель достаточно хорошо отображала исследуемую сторону функционирования объекта.

Целевое назначение моделирования на этапе внедрения и эксплуатация сложных систем -- это проигрывание возможных ситуаций для принятия обоснованных и перспективных решений по управлению объектом. В качестве одного из первых признаков классификации видов моделирования можно выбрать степень полноты модели и разделить модели в соответствии с этим признаком на:

· полные,

· неполные

· приближенные.

В основе полного моделирования лежит полное подобие, которое проявляется как во времени, так и в пространстве.

Для неполного моделирования характерно неполное подобие модели изучаемому объекту.

В зависимости от характера изучаемых процессов в системе S все виды моделирования могут быть разделены:

· детерминированные;

· стохастические;

· статические и динамические;

· дискретные;

· непрерывные;

· дискретно-непрерывные.

Детерминированное моделирование отображает детерминированные процессы, т.е. процессы, в которых предполагается отсутствие всяких случайных воздействий.

Cтохастическое моделирование отображает вероятностные процессы и события. В этом случае анализируется ряд реализаций случайного процесса, и оцениваются средние характеристики, т. е. набор однородных реализаций.

Статическое моделирование служит для описания поведения объекта в какой-либо момент времени, а динамическое моделирование отражает поведение объекта во времени.

Дискретное моделирование служит для описания процессов, которые предполагаются дискретными, соответственно непрерывное моделирование позволяет отразить непрерывные процессы в системах, а дискретно-непрерывное моделирование используется для случаев, когда хотят выделить наличие как дискретных, так и непрерывных процессов.

В зависимости от формы представления объекта (системы S) можно выделить мысленное и реальное моделирование.

Мысленное моделирование часто является единственным способом моделирования объектов, которые либо практически нереализуемы в заданном интервале времени, либо существуют вне условий, возможных для их физического создания. Например, на базе мысленного моделирования могут быть проанализированы многие ситуации микромира, которые не поддаются физическому эксперименту.

Мысленное моделирование может быть реализовано в виде:

· наглядного;

· символического;

· математического.

При наглядном моделировании на базе представлений человека о реальных объектах создаются различные наглядные модели, отображающие явления и процессы, протекающие в объекте.

1) В основу гипотетического моделирования исследователем закладывается некоторая гипотеза о закономерностях протекания процесса в реальном объекте, которая отражает уровень знаний исследователя об объекте и базируется на причинно-следстненных связях между входом и выходом изучаемого объекта. Гипотетическое моделирование используется, когда знаний об объекте недостаточно для построения формальных моделей.

2) Аналоговое моделирование основывается на применении аналогий различных уровней. Наивысшим уровнем является полная аналогия, имеющая место только для достаточно простых объектов. С усложнением объекта используют аналогии последующих уровней, когда аналоговая модель отображает несколько либо только одну сторону функционирования объекта.

3) Существенное место при мысленном наглядном моделировании занимает макетирование. Мысленный макет может применяться в случаях, когда протекающие в реальном объекте процессы не поддаются физическому моделированию, либо может предшествовать проведению других видов моделирования.

В основе построения мысленных макетов также лежат аналогии, однако обычно базирующиеся на причинно-следственных связях между явлениями и процессами в объекте. Если ввести условное обозначение отдельных понятий, т. е. знаки, а также определенные операции между этими знаками, то можно реализовать знаковое моделирование и с помощью знаков отображать набор понятий -- составлять отдельные цепочки из слов и предложений. Используя операции объединения, пересечения и дополнения теории множеств, можно в отдельных символах дать описание какого-то реального объекта.

В основе языкового моделирования лежит некоторый тезаурус. Последний образуется из набора входящих понятий, причем этот набор должен быть фиксированным. Следует отметить, что между тезаурусом и обычным словарем имеются принципиальные различия.

Тезаурус -- словарь, который очищен от неоднозначности, т. е. в нем каждому слову может соответствовать лишь единственное понятие, хотя в обычном словаре одному слову могут соответствовать несколько понятий.

Символическое моделирование представляет собой искусственный процесс создания логического объекта, который замещает реальный и выражает основные свойства его отношений с помощью определенной системы знаков или символов.

Математическое моделирование. Для исследования характеристик процесса функционирования любой системы S математическими методами, включая и машинные, должна быть проведена формализация этого процесса, т. е. построена математическая модель.

Под математическим моделированием будем понимать процесс установления соответствия данному реальному объекту некоторого математического объекта, называемого математической моделью, и исследование этой модели, позволяющее получать характеристики рассматриваемого реального объекта. Вид математической модели зависит как от природы реального объекта, так и задач исследования объекта и требуемой достоверности и точности решения этой задачи. Любая математическая модель, как и всякая другая, описывает реальный объект лишь с некоторой степенью приближения к действительности. Математическое моделирование для исследования характеристик процесса функционирования систем можно разделить на:

· аналитическое,

· имитационное,

· комбинированное.

Для аналитического моделирования характерно то, что процессы функционирования элементов системы записываются в виде некоторых функциональных соотношений или логических условий. Аналитическая модель может быть исследована следующими методами:

а) аналитическим, когда стремятся получить в общем виде явные зависимости для искомых характеристик;

б) численным, когда, не умея решать уравнений в общем виде, стремятся получить числовые результаты при конкретных начальных данных;

1.2 Эффективность моделирования систем

Обеспечение требуемых показателей качества функционирования больших систем, связанное с необходимостью изучения протекания стохастических процессов в исследуемых и проектируемых системах S, позволяет проводить комплекс теоретических и экспериментальных исследований, взаимно дополняющих друг друга.

Эффективность экспериментальных исследований сложных систем оказывается крайне низкой, поскольку проведение натурных экспериментов с реальной системой либо требует больших материальных затрат и значительного времени, либо вообще практически невозможно. Эффективность теоретических исследований с практической точки зрения в полной мере проявляется лишь тогда, когда их результаты с требуемой степенью точности и достоверности могут быть представлены в виде аналитических соотношений или моделирующих алгоритмов, пригодных для получения соответствующих характеристик процесса функционирования исследуемых систем.

Обычно модель строится по иерархическому принципу, когда последовательно анализируются отдельные стороны функционирования объекта и при перемещении центра внимания исследователя рассмотренные ранее подсистемы переходят во внешнюю среду. Иерархическая структура моделей может раскрывать и ту последовательность, в которой изучается реальный объект, а именно последовательность перехода от структурного (топологического) уровня к функциональному (алгоритмическому) и от функционального к параметрическому.

Результат моделирования в значительной степени зависит от адекватности исходной концептуальной (описательной) модели, от полученной степени подобия описания реального объекта, числа реализаций модели и многих других факторов. В ряде случаев сложность объекта не позволяет не только построить математическую модель объекта, но и дать достаточно близкое кибернетическое описание, и перспективным здесь является выделение наиболее трудно поддающейся математическому описанию части объекта и включение этой реальной части физического объекта в имитационную модель. Тогда модель реализуется, с одной стороны, на базе средств вычислительной техники, а с другой -- имеется реальная часть объекта. Это значительно расширяет возможности и повышает достоверность результатов моделирования.

Имитационная система реализуется на ЭВМ и позволяет исследовать имитационную модель М, задаваемую в виде определенной совокупности отдельных блочных моделей и связей между ними в их взаимодействии в пространстве и времени при реализации какого-либо процесса. Можно выделить три основные группы блоков:

1. блоки, характеризующие моделируемый процесс функционирования системы S;

2. блоки, отображающие внешнюю среду Е и ее воздействие на реализуемый процесс;

3. блоки, играющие служебную вспомогательную роль, обеспечивая взаимодействие первых двух, а также выполняющие дополнительные функции по получению и обработке результатов моделирования.

Кроме того, имитационная система характеризуется набором переменных, с помощью которых удается управлять изучаемым процессом, и набором начальных условий, когда можно изменять условия проведения машинного эксперимента.

Таким образом, имитационная система есть средство проведения машинного эксперимента, причем эксперимент может ставиться многократно, заранее планироваться, могут определяться условия его проведения. Необходимо при этом выбрать методику оценки адекватности получаемых результатов и автоматизировать как процессы получения, так и процессы обработки результатов в ходе машинного эксперимента.

При имитационном моделировании, так же как и при любом другом методе анализа и синтеза системы S, весьма существен вопрос его эффективности. Эффективность имитационного моделирования может оцениваться рядом критериев, в том числе точностью и достоверностью результатов моделирования, временем построения и работы с моделью М, затратами машинных ресурсов (времени и памяти), стоимостью разработки и эксплуатации модели.

Характеризуя проблему моделирования в целом, необходимо учитывать, что от постановки задачи моделирования до интерпретации полученных результатов существует большая группа сложных научно-технических проблем, к основным из которые можно отнести следующие: идентификацию реальных объектов, выбор вида моделей, построение моделей и их машинную реализацию, взаимодействие исследователя с моделью в ходе машинного эксперимента, проверку правильности полученных в ходе моделирования результатов, выявление основных закономерностей, исследованных в процессе моделирования. В зависимости от объекта моделирования и вида используемой модели эти проблемы могут иметь разную значимость.

II Статистическое моделирование и прогнозирование

2.1 Сущность статистического моделирования

Статистическое моделирование представляет собой метод получения с помощью ЭВМ статистических данных о процессах, происходящих в моделируемой системе. Для получения представляющих интерес оценок характеристик моделируемой системы с учетом воздействий внешней среды статистические данные обрабатываются и классифицируются с использованием методов математической статистики.

Статистическое моделирование - численный метод решения математических задач, при котором искомые величины представляют вероятностными характеристиками какого-либо случайного явления, это явление моделируется, после чего нужные характеристики приближённо определяют путём статистической обработки «наблюдений» модели.

Статистическое моделирование - молодое и перспективное научное направление, получившее развитие в середине двадцатого века в связи с ростом возможностей вычислительной техники. Рассматриваемое научное направление имеет массу приложений в разных областях знания (биология, химия, физика, экономика и др.), что делает его изучение особенно актуальным.

Сущность метода статистического моделирования сводится к построению для процесса функционирования исследуемой системы некоторого моделирующего алгоритма, имитирующего поведение и взаимодействие элементов системы с учетом случайных входных воздействий и воздействий внешней среды, и реализации этого алгоритма с использованием программно-технических средств.

Различают две области применения метода:

1) для изучения стохастических систем;

2) для решения детерминированных задач.

Основной идеей, которая используется для решения детерминированных задач методом статистического моделирования, является замена детерминированной задачи эквивалентной схемой некоторой стохастической системы, выходные характеристики последней совпадают с результатом решения детерминированной задачи. Естественно, что при такой замене вместо точного решения задачи получается приближенное решение и погрешность уменьшается с увеличением числа испытаний (реализаций моделирующего алгоритма).

В результате статистического моделирования системы получается серия частных значений искомых величин или функций, статистическая обработка которых позволяет получить сведения о поведении реального объекта или процесса в произвольные моменты времени. Если количество реализаций достаточно велико, то полученные результаты моделирования системы приобретают статистическую устойчивость и с достаточной точностью могут быть приняты в качестве оценок искомых характеристик процесса функционирования системы.

Теоретической основой метода статистического моделирования систем на ЭВМ являются предельные теоремы теории вероятностей.

Множества случайных явлений (событий, величин) подчиняются определенным закономерностям, позволяющим не только прогнозировать их поведение, но и количественно оценить некоторые средние их характеристики, проявляющие определенную устойчивость. Характерные закономерности наблюдаются также в распределениях случайных величин, которые образуются при сложении множества воздействий.

Принципиальное значение предельных теорем состоит в том, что они гарантируют высокое качество статистических оценок при весьма большом числе испытаний (реализаций). Практически приемлемые при статистическом моделировании количественные оценки характеристик систем часто могут быть получены уже при сравнительно небольших (при использовании ЭВМ). Статистическое моделирование систем на ЭВМ требует формирования значений случайных величин, что реализуется с помощью датчиков (генераторов) случайных чисел.

При использовании статистического моделирования независимо от природы объекта исследования (будет ли он детерминированным или стохастическим) необходимо предварительно построить стохастическую систему, выходные характеристики которой позволяют оценить искомые.

Моделирование многофункциональное исследование, применяющееся для определения или уточнения характеристик существующих или вновь конструируемых объектов. Его основной научной задачей является воспроизводство модели на основании ее сходства с существующим объектом. Модель должна иметь сходство с оригиналом, но не быть его полным аналогом (это основное условие), так как в этом случае моделирование теряет смысл. Основное отличие модели от оригинала -- способность к гибкому прогнозному изменению, не влияющему на исходные данные модели.

Необходимо учитывать, что моделирование всегда применяется вместе с другими общенаучными и специальными методами, на основе междисциплинарного подхода, особенно когда оно используется для исследования глобальных проблем, отличающихся многоплановостью, т.е. охватывающих, по существу, всю жизнедеятельность человека. Моделирование в таких случаях является многомодульным построением. Оно сохраняет свои сущностные характеристики при моделировании и более «узких» проблем социальной сферы: демографической ситуации в условиях рыночных отношений (в отдельных конкретных регионах); динамики занятости; состояния образования, здравоохранения, сферы услуг, рынка жилья и т.д. -- так как эти проблемы, в сущности, представляют собой сложные социальные компоненты.

Цель моделирования -- воспроизвести данные, оценивающие натуральные нагрузки, ход работы объекта, а также исследовать его внутренние процессы. Потребность в моделировании возникает в том случае, когда исследование непосредственно самого объекта невозможно, затруднительно, слишком дорого или требует слишком длительного времени-- это как раз и относится к социальным объектам, представленным отдельными людьми, социальными группами, обществом в целом.

Модели, если отвлечься от областей, сфер их применения, бывают трех типов: познавательные, прагматические и инструментальные.

Познавательная модель - форма организации и представления знаний, средство соединения новых и старых знаний. Познавательная модель, как правило, подгоняется под реальность и является теоретической моделью.

Прагматическая модель - средство организации практических действий, рабочего представления целей системы для ее управления. Реальность в них подгоняется под некоторую прагматическую модель. Это, как правило, прикладные модели.

Инструментальная модель - средство построения, исследования и/или использования прагматических и/или познавательных моделей.

Познавательные отражают существующие, а прагматические - хоть и не существующие, но желаемые и, возможно, исполнимые отношения и связи.

По уровню, "глубине" моделирования модели бывают:

· эмпирические - на основе эмпирических фактов, зависимостей;

· теоретические - на основе математических описаний;

· смешанные, полуэмпирические - на основе эмпирических зависимостей и математических описаний.

Функции моделирования:

1)углубление познания существующих систем и объектов;

2)определение основных параметров, путей последующего их применения;

3)проведение сравнительного анализа оригинала и модели, определение качественных характеристик.

Моделирование выполняет также важные эвристические функции: определяет негативные тенденции, определяет позитивные пути решения проблем, предлагает альтернативные варианты.

Моделирование должно соответствовать определенным требованиям:

1. Быть наиболее простым, наиболее удобным, давать информацию про объект, способствовать усовершенствованию самого объекта.

2.Способствовать определению или облегчению характеристик объекта, рационализации способов построения, управления или познания его.

2.2 Сущность статистического прогнозирования

В процессе реформирования экономики все в большей степени возрастает спрос на прогнозные исследования социально-экономических процессов на различных уровнях управления и принятия решений. Правильный выбор решения находится в прямой зависимости от качества его обоснования. Прогнозирование является одной из функций управления, наряду с анализом, организацией, планированием, мотивацией и т.д. Активными потребителями прогнозных разработок являются миллионы агентов рынка, домашние хозяйства, органы государственного и территориального управления. В демократическом обществе необходимо представлять альтернативные варианты развития общества, возможности, существующие у каждого участника рыночных отношений.

К настоящему времени накоплен достаточный опыт и набор инструментов как для долгосрочного, так и краткосрочного прогнозирования. Прогнозирование - это научно-обоснованное предсказание наиболее вероятного состояния, тенденций и особенностей развития управляемого объекта в перспективном периоде на основе выявления и правильной оценки устойчивых связей и зависимостей между прошлым, настоящим и будущим. Отличительная особенность прогнозирования состоит в том, что оно обосновывает возникновение таких процессов и форм материальной и духовной жизни общества, которые в данный момент недоступны непосредственному восприятию, а также проверке на практике.

Прогнозирование позволяет раскрыть устойчивые тенденции, или, наоборот, существенные изменения в социально-экономических процессах, оценить их вероятность для будущего планового периода, выявить возможные альтернативные варианты, накопить научный и эмпирический материал для обоснованного выбора той или иной концепции развития или планового решения.

Таким образом, прогнозирование является специальным научным исследованием перспектив развития явлений.

Прогнозирование не сводится к попыткам предугадать детали будущего, хотя в некоторых случаях это существенно. Исследователь исходит в данном случае из диалектической детерминации явлений будущего, из понимания того, что необходимость пробивает себе дорогу через преодоление случайности, что к явлениям будущего нужен вероятностный подход с учетом широкого набора возможных вариантов. Только при таком подходе прогнозирование может быть эффективно использовано для выбора наиболее вероятного или наиболее желательного, оптимального варианта при обосновании цели, плана, программы, проекта, вообще, решения.

Прогнозы должны предшествовать планам, содержать оценку хода последствий выполнения (или невыполнения) планов, охватывать все, что не поддается планированию, решению. Они могут охватывать в принципе любой отрезок времени. Прогноз и план отличаются способами оперирования информацией о будущем. Вероятностное описание возможного или желательного - это прогноз.

Обоснованное решение относительно мероприятий по достижению возможного, желательного - это план. Прогноз и план могут разрабатываться независимо друг от друга. Но чтобы план был эффективным, оптимальным, ему должен предшествовать прогноз, по возможности непрерывный,

позволяющий обосновать данный и последующие планы.

Одним из важных направлений прогнозирования общественного развития является социально экономическое прогнозирование - научная дисциплина, имеющая своим объектом социально-экономическую систему, а предметом - познание возможных состояний функционирующих объектов в будущем, исследование закономерностей и способов разработки экономических прогнозов.

Социально-экономическое прогнозирование основывается на достижениях науки в области познания закономерностей развития общества, выяснения тенденций социально-экономического и технологического прогресса.

Прогнозирование тесно связано со статистикой и во многом базируется на статистических данных и методах исследования массовых явлений.

Основным критерием типологии прогнозов является функциональный, с точки зрения которого прогнозы делятся на два основных типа: поисковые и целевые прогнозы.

Нормативный прогноз - определение путей и сроков достижения возможных состояний явления, принимаемых в качестве цели. Такой прогноз отвечает на вопрос: какими путями достичь желаемого?

Поисковый прогноз строится на определенной шкале (поле, спектре) возможностей, на которой затем устанавливается степень вероятности прогнозируемого явления. При нормативном прогнозировании происходит такое же распределение вероятностей, но уже в обратном порядке: от заданного состояния к наблюдаемым тенденциям.

По масштабу прогнозирования выделяют: макроэкономические (национальной экономики) и структурные (межотраслевые, межсекторальные, межрегиональные прогнозы, прогнозы развития отдельных комплексов, секторов и регионов, прогнозы хозяйствующих субъектов, а также отдельных производств и продуктов. Отметим, что объекты макроэкономики более устойчивы и инерционны в своем развитии по сравнению с объектами микроэкономики.

2.3 Методы статистического моделирования

Моделирование является логико-математическим отображением структуры и процесса функционирования планируемого объекта с целью проведения с помощью данной модели эксперимента. Сущность моделирования заключается в создании такого аналога изучаемых объектов, в котором отражены все их важнейшие с точки зрения цели исследования свойства и опущены второстепенные, малосущественные черты.

Новые методы широко применяются в планировании, как правило, крупными компаниями. Они основаны на использовании экономико-математических моделей. Чтобы правильно применять эти методы в планировании, менеджеры, плановые работники должны знать области их использования и ограничения на различных этапах планирования при решении конкретных задач.

Методы моделирования включают следующие модели:

1. Матричные модели. К ним относятся:

а) статические модели межотраслевого баланса. Предназначены для проведения прогнозных макроэкономических расчетов на краткосрочный период (год, квартал, месяц).

б) динамические модели межотраслевого баланса. Предназначены для расчетов развития экономики на долгосрочную перспективу, отражают процесс воспроизводства в динамике, обеспечивают увязку прогноза производства продукции (услуг) с инвестициями [11,c.22].

2. Модели оптимального планирования. Базируются на экономико-математических моделях, которые состоят из целевой функции и системы ограничений.

Целевая функция описывает цель оптимизации и представляет собой зависимость показателя, по которому ведется оптимизация, от независимых переменных.

На макроуровне критерием оптимальности является максимум валового национального продукта. На микроуровне - максимум прибыли, минимум затрат, максимум выпуска продукции (услуг) и др Система ограничений отражает объективные экономические связи и зависимости и представляет собой систем)' равенств и неравенств.

3. Экономико-статистические модели. Различают:

а) однофакторные, позволяют учитывать воздействие одного фактора на уровень прогнозируемого показателя;

б) многофакторные, позволяют одновременно учитывать воздействие нескольких факторов на уровень прогнозируемого показателя. Используются при прогнозировании спроса на продукцию, себестоимости, цен, прибыли и других показателей.

в) эконометрические модели, служит для описания сложных социально-экономических процессов (ВНП, доходы населения, потребление товаров и услуг и др.). 3 Имитационные модели. Суть состоит в создании модели реальной хозяйственной ситуации и манипулирование ею при различных параметрах управляемых переменных в целях обоснования развития объекта прогнозирования или планирования.

Применяются для распределения капвложений в условиях возможного риска, и других случаях.

Наиболее известны модели Джея Форрестера «Индустриальная динамика», которая охватывает весь производственно-хозяйственный процесс и модель Монте-Карло - используют при моделировании любого процесса.

4.Модели принятия решений. Основываются на теории игр. Применяются в условиях неопределенности или ситуациях, когда интересы сторон не совпадают. Каждая из сторон выбирает такую стратегию действий, которая с их точки зрения обеспечивает наибольший выигрыш или наименьший проигрыш. Причем каждой из сторон ясно, что результат зависит не только от своих действий, но и от действий конкурентов.

6.Модели сетевого планирования. В основу положено построение сетевого графика с изображение комплекса взаимосвязанных работ и последовательность проводимых этапов, необходимых для достижения заранее поставленной цели.

Применяются с целью сокращения сроков выполнения сложных проектов и других работ. Примером сетевых моделей планирования является метод ПЕРТ-время, ПЕРТ-затраты.

При статистическом моделировании систем одним из основных вопросов является учет стохастических воздействий. Количество случайных чисел, используемых для получения статистически устойчивой оценки характеристики процесса функционирования системы S при реализации моделирующего алгоритма на ЭВМ, колеблется в достаточно широких пределах в зависимости от класса объекта моделирования, вида оцениваемых характеристик, необходимой точности и достоверности результатов моделирования. Для метода статистического моделирования на ЭВМ характерно, что большое число операций, а соответственно и большая доля машинного времени расходуются на действия со случайными числами. Кроме того, результаты статистического моделирования существенно зависят от качества исходных (базовых) последовательностей случайных чисел. Поэтому наличие простых и экономичных способов формирования, последовательностей случайных чисел требуемого качества во многом определяет возможность практического использования машинного моделирования систем.

2.4 Методы статистического прогнозирования

По оценкам некоторых ученых насчитывается более 150 методов прогнозирования. Базовых методов гораздо меньше, многие из "методов" скорее относятся к отдельным способам и процедурам прогнозирования, либо представляют собой набор отдельных приемов, отличающихся от базовых методов количеством частных приемов и последовательностью их применения.

Под методом прогнозирования понимается совокупность приемов и способов мышления, позволяющих на основе анализа ретроспективных данных, экзогенных (внешних) и эндогенных (внутренних) связей объекта прогнозирования, а также их измерения в рамках рассматриваемого явления или процесса вывести суждения определенной достоверности относительно будущего развития объекта. По степени формализации методы экономического прогнозирования можно подразделить на интуитивные и формализованные.

Интуитивные методы базируются на интуитивно-логическом мышлении. Они используются в тех случаях, когда невозможно учесть влияние многих факторов из-за значительной сложности объекта прогнозирования или объект слишком прост и не требует проведения трудоемких расчетов. Такие методы целесообразно использовать и в других случаях в сочетании с формализованными методами для повышения точности прогнозов.

Среди интуитивных методов широкое распространение получили методы экспертных оценок. Они используются как в нашей стране, так и за рубежом для получения прогнозных оценок развития производства, научно-технического прогресса, эффективности использования ресурсов и т.п.

Применяются также методы исторических аналогий и прогнозирования по образцу. Здесь имеет место своеобразная экстраполяция. Техника прогнозирования состоит в анализе высокоразвитой системы (страны, региона, отрасли) одного и того же приближенного уровня, который теперь имеется в менее развитой аналогичной системе, и на основании истории развития изучаемого процесса в высокоразвитой системе строится прогноз для менее развитой системы. Практика свидетельствует, что такие аналогии можно использовать при определении путей развития новых отраслей и видов техники (производство ЭВМ, телевизоров и т.п.), структуры производства, потребления и т.д. Естественно, что полученный таким образом "образец" -- лишь начальный пункт прогнозирования. К окончательному выводу можно прийти, лишь исследуя внутренние условия и закономерности развития.

К формализованным методам относятся методы экстраполяции и методы моделирования. Они базируются на математической теории.

Среди методов экстраполяции широкое распространение получил метод подбора функций, основанный на методе наименьших квадратов (МНК). В современных условиях все большее значение стали придавать модификациям МНК: методу экспоненциального сглаживания с регулируемым трендом и методу адаптивного сглаживания.

Методы моделирования предполагают использование в процессе прогнозирования и планирования различного рода экономико-математических моделей, представляющих собой формализованное описание исследуемого экономического процесса (объекта) в виде математических зависимостей и отношений. Различают следующие модели: матричные, оптимального планирования, экономико-статистические (трендовые, факторные, эконометрические), имитационные, принятия решений. Для реализации экономико-математических моделей применяются экономико-математические методы.

В практике прогнозирования и планирования широко используются -также метод экономического (системного) анализа, нормативный и балансовый методы. Для разработки целевых комплексных программ используется программно-целевой метод (ПЦМ) в сочетании с другими методами. Следует отметить, что представленный перечень методов и их групп не является исчерпывающим. Рассмотрим методы, получившие широкое распространение в мировой практике.

Методы экспертных оценок

Основная идея прогнозирования на основе экспертных оценок заключается в построении рациональной процедуры интуитивно-логического мышления человека в сочетании с количественными методами оценки и обработки получаемых результатов.

Сущность методов экспертных оценок заключается в том, что в основу прогноза закладывается мнение специалиста или коллектива специалистов, основанное на профессиональном, научном и практическом опыте. Различают индивидуальные и коллективные экспертные оценки.

Различают формальную и прогнозную экстраполяцию. Формальная базируется на предположении о сохранении в будущем прошлых и настоящих тенденций развития объекта прогноза; при прогнозной фактическое развитие увязывается с гипотезами о динамике исследуемого процесса с учетом" изменений влияния различных факторов в перспективе. Следует отметить, что методы экстраполяции необходимо применять на начальном этапе прогнозирования для выявления тенденций изменения показателей.

3. ПРАКТИЧЕСКАЯ ЧАСТЬ

3.1 Постановка задачи

статистический моделирование прогнозирование

Используя балансовый метод планирования и модель Леонтьева, построить баланс производства и распределения продукции предприятий.

Промышленная группа предприятий (холдинг) выпускает продукцию трех видов, при этом каждое из трех предприятий группы специализируется на выпуске одного вида: первое предприятие специализируется на выпуске продукции первого вида; второе предприятие - продукции второго вида; третье предприятие - продукции третьего вида. Часть выпускаемой продукции потребляется предприятиями холдинга (идет на внутренне потребление), остальная часть поставляется за его пределы (внешним потребителям, является конечным продуктом). Специалистами управляющей компании получены экономические оценки aij (i=1,2,3; j=1,2,3) элементов технологической матрицы А (норм расхода, коэффициентов прямых материальных затрат) и элементов yi вектора конечной продукции Y.

Требуется:

1. Проверить продуктивность технологической матрицы А=( aij) (матрицы коэффициентов прямых материальных затрат).

2. Построить баланс (заполнить таблицу) производства и распределения продукции предприятий холдинга.

3.

Предприятие (виды продукции)

Коэффициенты прямых затрат aij

Конечный продукт Y

1

2

3

1

0,2

0,3

0

120

2

0,3

0,1

0,2

250

3

0,1

0

0,3

180

3.2 Решение задачи

1) Проверить продуктивность технологической матрицы A=(аij) (матрицы коэффициентов прямых материальных затрат).

1.1. Для решения данной экономической задачи будет выбрана среда табличного процессора MS Excel.

Приложение 1 (рис. 1.1)

1.2. Найдем разность между единичной матрицей Е и матрицей А.

Для этого воспользуемся правилом вычитания матриц одинаковой размерности.

0,8

-0,3

-0,1

E-A

-0,3

0,9

-0,2

-0,1

0

0,7

1.3. Найдем обратную матрицу . Воспользуемся встроенными функциями MS Excel (математические, обратная матрица)

Приложение 1 (рис. 1.2)

1.4. Чтобы определить Валовую продукцию (матрицу), надо матрицу = умножить на Конечный продукт (матрицу ). Воспользуемся опять встроенными функциями MS Excel (математические, умножение матриц).

Приложение 1 (рис. 1.3)

1.5. Матрица (матрица коэффициентов прямых материальных затрат) продуктивна, т.к. существует неотрицательный вектор .

2) Построить баланс (заполнить таблицу) производства и распределения продукции предприятий холдинга.

2.1. Для распределения продукции предприятий холдинга необходимо найти

Приложение 1 (рис. 1.4)

2.2. Построим межотраслевой баланс производства .

Приложение 1 (рис. 1.5)

Условно чистая продукция - это разность между валовым продуктом и суммой продуктов, которые потребляет каждая отрасль.

Ответ:

1) Матрица (матрица коэффициентов прямых материальных затрат) продуктивна, т.к. существует неотрицательный вектор .

Приложение 1 (рис. 1.6)

ЗАКЛЮЧЕНИЕ

К статическим моделям относится большинство задач линейного программирования (максимизации выпуска в заданном ассортименте, задача о диете, об оптимальных назначениях, раскроя материалов и многие другие).

В случае использования производительных функций экономика рассматривается как «черный ящик», структура которого неизвестна. Отсюда следует, что в этой модели экономика выступает в качестве целостной неструктурированной единицы, на входе которой ресурсы, а на выходе, как результат функционирования -- валовой выпуск или валовой внутренний продукт. Ресурсы рассматриваются как аргументы, а валовой выпуск или валовой внутренний продукт -- как функция.

При создании модели процесса или объекта приходится рассматривать все компоненты с той или иной степенью детализации. Излишняя детализация при этом отнюдь не способствует более точному и адекватному анализу экономического явления, а только делает модель более громоздкой и затрудняет получение решения. Следовательно, степень детализации описания экономического явления, отраженного в модели, должна быть необходимой и достаточной для адекватного отражения действительности и соответствовать поставленным целям моделирования. Наиболее часто приходится осуществлять переход к более крупным компонентам и единицам. Например, при моделировании работы предприятия целесообразно рассматривать в качестве производственных подразделений цеха, а не производственные участки, а при моделировании цеха -- участки, а не рабочие места. Поэтому одним из принципов, которого следует придерживаться, является представление описания компонентов модели с одинаковой степенью детализации. С другой стороны, вся информация, представляющая интерес с точки зрения цели моделирования, должна быть представлена с максимальной степенью детализации -- это принцип целевого представления информации. Эти два принципа вместе определяют общую суть необходимой и достаточной степени детализации описаний экономических объектов в модели в соответствии с поставленными целями и задачами моделирования.

В статических моделях можно выделить группу макроэкономических моделей. К ним относятся модели народно-хозяйственного уровня, которые предназначены для описания больших секторов экономики или экономики страны в целом.

Большинство экономико-математических моделей являются статическими. Эта точка зрения настолько укоренилась в сознании большинства экономистов, что практически всегда модель считается статической, а если это не так, то только тогда указывается, что модель является динамической. В самом деле, к статическим моделям естественно приводят самые разнообразные задачи экономического анализа и планирования, которые допускают постановку проблемы при жестко фиксированной структуре моделируемой системы. Поскольку статические модели в формализованном виде не содержат фактора времени, они всегда проще, чем динамические модели тех же экономических систем, с той или иной степенью полноты учитывающих этот фактор. Поэтому для экономико-математического моделирования типична ситуация, когда сначала разрабатываются статические модели, а затем они усложняются введением фактора времени, т. е. преобразуются в динамические. В частности, статическими первоначально были модели межотраслевого баланса, разнообразные модели, сводимые к транспортной задаче и распределительной задаче линейного программирования, к задачам о потоках в сетях и т. д. Впоследствии для всех этих моделей были разработаны динамические аналоги и обобщения. Однако усложнение далеко не всегда оказывается продуктивным даже в тех случаях, когда динамический аспект моделируемой системы небезразличен для цели моделирования.

Соответственно, при формулировке статической экономико-математической модели предполагается, что все зависимостиотносятся к одному моменту времени, а моделируемая система неизменна во времени. При этом полностью игнорируются возможные (а подчас даже неизбежные) изменения, поскольку их учет не требуется для достижения цели моделирования. Кроме того, предполагается, что все интересующие процессы, происходящие в системе, не требуют при своем описании развертывания во времени, т. к. могут быть с достаточной степенью точности охарактеризованы независящими от времени величинами, как известными, так и неизвестными. Поэтому в статической модели время не вводится явно. Статические модели характеризуют моделируемую систему на какойлибо фиксированный момент времени. Такой момент может представлять целый временной интервал, как правило, в качестве его конечной, средней или начальной точки, в течение которого система предполагается неизменной.

Под статической экономической системой понимается такая система, координаты которой на изучаемом отрезке времени могут рассматриваться как постоянные.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

Основные

1. Акулич И.Л. Математическое программирование впримерах и задачах. - М.: Высшая школа, 1986 г.

2. Власов М.П., Шимко П.Д. Моделирование экономичексих процессов. - Ростов-на -Дону, Феникс - 2005 (электронный учебник)

3. Яворский В.В., Амиров А.Ж. экономическая информатика и информационные системы (лабораторный практикум) - Астана, Фолиант, 2008 г.

4. Симонович С.В. Информатика, Питер, 2003 г.

5. Воробьев Н.Н. Теория игр для экономистов - кибернетиков. - М.: Наука, 1985 (электронный учебник)

6. Алесинская Т.В. Экономико-математические методы и модели. - Таган Рог, 2002 (электронный учебник)

7. Гершгорн А.С. Математическое программирование и его применение в экономических расчетах. -М. Экономика, 1968 г.

Дополнительно

1. Дарбинян М.М. Товарные запасы в торговле и их оптимизация. - М. Экономика, 1978 г.

2. Джонстон Д.Ж. Экономические методы. - М.: Финансы и статистика, 1960 г.

3. Епишин Ю.Г. Экономико-математические методы и планировании потребительской кооперации. - М.: Экономика, 1975 г.

4. Житников С.А., Биржанова З.Н., Аширбекова Б.М. Экономико-математические методы и модели: Учебное пособие. - Караганда, издательство КЭУ, 1998 г.

5. Замков О.О., Толстопятенко А.В., Черемных Ю.Н. Математические методы в экономике. - М.: ДИС, 1997 г.

6. Иванилов Ю.П., Лотов А.В. Математические методы в экономике. - М.: Наука, 1979 г.

7. Калинина В.Н., Панкин А.В. Математическая статистика. М.: 1998 г.

8. Колемаев В.А. Математическая экономика. М., 1998 г.

9. Кремер Н.Ш., Путко Б.А., Тришин И.М., Фридман М.Н. Исследование операции в экономике. Учебное пособие - М.: Банки и биржи, ЮНИТИ, 1997 г

10. Спирин А.А:, Фомин Г.П. Экономико-математические методы и модели в торговле. - М.: Экономика, 1998 г.

11. http://ru.wikipedia.org

12. http://psbatishev.narod.ru/internet/11.htm

13. http://kk.wikipedia.org

14. www.kaznau.kz

15. http://45minut.kz

Приложение 1

Рис. 1.1

Исходные данные

Рис 1.2

Рис. 1.3

Определение валовой продукции (матрица)

Рис. 1.4

Распределение продукции предприятий холдинга

Рис 1.5

Рис 1.6

Размещено на Allbest.ru


Подобные документы

  • Методы исследования и моделирования социально-экономических систем. Этапы эконометрического моделирования и классификация эконометрических моделей. Задачи экономики и социологии труда как объект эконометрического моделирования и прогнозирования.

    курсовая работа [701,5 K], добавлен 14.05.2015

  • Статические и динамические модели. Анализ имитационных систем моделирования. Система моделирования "AnyLogic". Основные виды имитационного моделирования. Непрерывные, дискретные и гибридные модели. Построение модели кредитного банка и ее анализ.

    дипломная работа [3,5 M], добавлен 24.06.2015

  • Метод имитационного моделирования, его виды, основные этапы и особенности: статическое и динамическое представление моделируемой системы. Исследование практики использования методов имитационного моделирования в анализе экономических процессов и задач.

    курсовая работа [54,3 K], добавлен 26.10.2014

  • Изучение сущности метода экономического моделирования и особенностей его применения. Экономическая оценка качества планов и прогнозов. Прогнозирование урожайности картофеля методом экстраполяции. Составление баланса производства и распределения картофеля.

    контрольная работа [86,5 K], добавлен 09.11.2010

  • Изучение и отработка навыков математического моделирования стохастических процессов; исследование реальных моделей и систем с помощью двух типов моделей: аналитических и имитационных. Основные методы анализа: дисперсионный, корреляционный, регрессионный.

    курсовая работа [701,2 K], добавлен 19.01.2016

  • Эффективность макроэкономического прогнозирования. История возникновения моделирования экономики в Украине. Особенности моделирования сложных систем, направления и трудности моделирования экономики. Развитие и проблемы современной экономики Украины.

    реферат [28,1 K], добавлен 10.01.2011

  • Анализ методов моделирования стохастических систем управления. Определение математического ожидания выходного сигнала неустойчивого апериодического звена в заданный момент времени. Обоснование построения рациональной схемы статистического моделирования.

    курсовая работа [158,0 K], добавлен 11.03.2013

  • Постановка цели моделирования. Идентификация реальных объектов. Выбор вида моделей, математической схемы. Построение непрерывно-стахостической модели. Основные понятия теории массового обслуживания. Определение потока событий. Постановка алгоритмов.

    курсовая работа [50,0 K], добавлен 20.11.2008

  • Сущность экономико-математической модели, ее идентификация и определение достаточной структуры для моделирования. Построение уравнения регрессии. Синтез и построение модели с учетом ее особенностей и математической спецификации. Верификация модели.

    контрольная работа [73,9 K], добавлен 23.01.2009

  • Российский рынок бензина. Рост цен на бензин. Обоснование возможности применения статистических методов для моделирования и прогнозирования цен на бензин. Обработка результатов. Построение трендовой, регрессионных моделей и прогнозирование с их помощью.

    курсовая работа [2,5 M], добавлен 16.04.2008

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.