Теоретические основы математических и инструментальных методов экономики

Оптимизационные методы решения экономических задач. Классическая постановка задачи оптимизации. Оптимизация функций. Оптимизация функционалов. Многокритериальная оптимизация. Методы сведения многокритериальной задачи к однокритериальной. Метод уступок.

Рубрика Экономико-математическое моделирование
Вид реферат
Язык русский
Дата добавления 20.06.2005
Размер файла 565,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Четвертый этап - практическая проверка получаемых с помощью моделей знаний и их использование для построения обобщающей теории объекта, его преобразования или управления им.

Для понимания сущности моделирования важно не упускать из виду, что моделирование - не единственный источник знаний об объекте. Процесс моделирования "погружен" в более общий процесс познания. Это обстоятельство учитывается не только на этапе построения модели, но и на завершающей стадии, когда происходит объединение и обобщение результатов исследования, получаемых на основе многообразных средств познания.

Моделирование - циклический процесс. Это означает, что за первым четырехэтапным циклом может последовать второй, третий и т.д. При этом знания об исследуемом объекте расширяются и уточняются, а исходная модель постепенно совершенствуется. Недостатки, обнаруженные после первого цикла моделирования, обусловленные малым знанием объекта и ошибками в построении модели, можно исправить в последующих циклах. В методологии моделирования, таким образом, заложены большие возможности саморазвития.

Большинство объектов, изучаемых экономической наукой, может быть охарактеризовано кибернетическим понятием сложная система.

Наиболее распространено понимание системы как совокупности элементов, находящихся во взаимодействии и образующих некоторую целостность, единство. Важным качеством любой системы является эмерджентность - наличие таких свойств, которые не присущи ни одному из элементов, входящих в систему. Поэтому при изучении систем недостаточно пользоваться методом их расчленения на элементы с последующим изучением этих элементов в отдельности. Одна из трудностей экономических исследований - в том, что почти не существует экономических объектов, которые можно было бы рассматривать как отдельные (внесистемные) элементы.

Сложность системы определяется количеством входящих в нее элементов, связями между этими элементами, а также взаимоотношениями между системой и средой. Экономика страны обладает всеми признаками очень сложной системы. Она объединяет огромное число элементов, отличается многообразием внутренних связей и связей с другими системами (природная среда, экономика других стран и т.д.). В народном хозяйстве взаимодействуют природные, технологические, социальные процессы, объективные и субъективные факторы.

Сложность экономики иногда рассматривалась как обоснование невозможности ее моделирования, изучения средствами математики. Но такая точка зрения в принципе неверна. Моделировать можно объект любой природы и любой сложности. И как раз сложные объекты представляют наибольший интерес для моделирования; именно здесь моделирование может дать результаты, которые нельзя получить другими способами исследования.

Потенциальная возможность математического моделирования любых экономических объектов и процессов не означает, разумеется, ее успешной осуществимости при данном уровне экономических и математических знаний, имеющейся конкретной информации и вычислительной технике. И хотя нельзя указать абсолютные границы математической формализуемости экономических проблем, всегда будут существовать еще неформализованные проблемы, а также ситуации, где математическое моделирование недостаточно эффективно.

Уже длительное время главным тормозом практического применения математического моделирования в экономике является наполнение разработанных моделей конкретной и качественной информацией. Точность и полнота первичной информации, реальные возможности ее сбора и обработки во многом определяют выбор типов прикладных моделей. С другой стороны, исследования по моделированию экономики выдвигают новые требования к системе информации.

В зависимости от моделируемых объектов и назначения моделей используемая в них исходная информация имеет существенно различный характер и происхождение. Она может быть разделена на две категории: о прошлом развитии и современном состоянии объектов (экономические наблюдения и их обработка) и о будущем развитии объектов, включающую данные об ожидаемых изменениях их внутренних параметров и внешних условий (прогнозы). Вторая категория информации является результатом самостоятельных исследований, которые также могут выполняться посредством моделирования.

Методы экономических наблюдений и использования результатов этих наблюдений разрабатываются экономической статистикой. Поэтому стоит отметить только специфические проблемы экономических наблюдений, связанные с моделированием экономических процессов.

В экономике многие процессы являются массовыми; они характеризуются закономерностями, которые не обнаруживаются на основании лишь одного или нескольких наблюдений. Поэтому моделирование в экономике должно опираться на массовые наблюдения.

Другая проблема порождается динамичностью экономических процессов, изменчивостью их параметров и структурных отношений. Вследствие этого экономические процессы приходится постоянно держать под наблюдением, необходимо иметь устойчивый поток новых данных. Поскольку наблюдения за экономическими процессами и обработка эмпирических данных обычно занимают довольно много времени, то при построении математических моделей экономики требуется корректировать исходную информацию с учетом ее запаздывания.

Познание количественных отношений экономических процессов и явлений опирается на экономические измерения. Точность измерений в значительной степени предопределяет и точность конечных результатов количественного анализа посредством моделирования. Поэтому необходимым условием эффектного использования математического моделирования является совершенствование экономических измерителей. Применение математического моделирования заострило проблему измерений и количественных сопоставлений различных аспектов и явлений социально-экономического развития, достоверности и полноты получаемых данных, их защиты от намеренных и технических искажений.

В процессе моделирования возникает взаимодействие "первичных" и "вторичных" экономических измерителей. Любая модель народного хозяйства опирается на определенную систему экономических измерителей (продукции, ресурсов, элементов и т.д.). В то же время одним из важных результатов народнохозяйственного моделирования является получение новых (вторичных) экономических измерителей - экономически обоснованных цен на продукцию различных отраслей, оценок эффективности разнокачественных природных ресурсов, измерителей общественной полезности продукции. Однако эти измерители могут испытывать влияние недостаточно обоснованных первичных измерителей, что вынуждает разрабатывать особую методику корректировки первичных измерителей для хозяйственных моделей.

С точки зрения "интересов" моделирования экономики в настоящее время наиболее актуальными проблемами совершенствования экономических измерителей являются: оценка результатов интеллектуальной деятельности (особенно в сфере научно-технических разработок, индустрии информатики), построение обобщающих показателей социально-экономического развития, измерение эффектов обратных связей (влияние хозяйственных и социальных механизмов на эффективность производства).

Для методологии планирования экономики важное значение имеет понятие неопределенности экономического развития. В исследованиях по экономическому прогнозированию и планированию различают два типа неопределенности: "истинную", обусловленную свойствами экономических процессов, и "информационную", связанную с неполнотой и неточностью имеющейся информации об этих процессах. Истинную неопределенность нельзя смешивать с объективным существованием различных вариантов экономического развития и возможностью сознательного выбора среди них эффективных вариантов. Речь идет о принципиальной невозможности точного выбора единственного (оптимального) варианта.

В развитии экономики неопределенность вызывается двумя основными причинами. Во-первых, ход планируемых и управляемых процессов, а также внешние воздействия на эти процессы не могут быть точно предсказуемы из-за действия случайных факторов и ограниченности человеческого познания в каждый момент. Особенно характерно это для прогнозирования научно-технического прогресса, потребностей общества, экономического поведения. Во-вторых, общего сударственное планирование и управление не только не всеобъемлющи, но и не всесильны, а наличие множества самостоятельных экономических субъектов с особыми интересами не позволяет точно предвидеть результаты их взаимодействий. Неполнота и неточность информации об объективных процессах и экономическом поведении усиливают истинную неопределенность.

На первых этапах исследований по моделированию экономики применялись в основном модели детерминистского типа. В этих моделях все параметры предполагаются точно известными. Однако детерминистские модели неправильно понимать в механическом духе и отождествлять их с моделями, которые лишены всех "степеней выбора" (возможностей выбора) и имеют единственное допустимое решение. Классическим представителем жестко детерминистских моделей является оптимизационная модель народного хозяйства, применяемая для определения наилучшего варианта экономического развития среди множества допустимых вариантов.

В результате накопления опыта использования жестко детерминистских моделей были созданы реальные возможности успешного применения более совершенной методологии моделирования экономических процессов, учитывающих стохастику и неопределенность. Здесь можно выделить два основных направления исследований. Во-первых, усовершенствуется методика использования моделей жестко детерминистского типа: проведение многовариантных расчетов и модельных экспериментов с вариацией конструкции модели и ее исходных данных; изучение устойчивости и надежности получаемых решений, выделение зоны неопределенности; включение в модель резервов, применение приемов, повышающих приспособляемость экономических решений к вероятным и непредвидимым ситуациям. Во-вторых, получают распространение модели, непосредственно отражающие стохастику и неопределенность экономических процессов и использующие соответствующий математический аппарат: теорию вероятностей и математическую статистику, теорию игр и статистических решений, теорию массового обслуживания, стохастическое программирование, теорию случайных процессов.

Сложность экономических процессов и явлений и другие отмеченные выше особенности экономических систем затрудняют не только построение математических моделей, но и проверку их адекватности, истинности получаемых результатов.

В естественных науках достаточным условием истинности результатов моделирования и любых других форм познания является совпадение результатов исследования с наблюдаемыми фактами. Категория "практика" совпадает здесь с категорией "действительность". В экономике и других общественных науках понимаемые таким образом принцип "практика - критерий истины" в большей степени применим к простым дескриптивным моделям, используемым для пассивного описания и объяснения действительности (анализа прошлого развития, краткосрочного прогнозирования неуправляемых экономических процессов и т.п.).

Однако главная задача экономической науки конструктивна: разработка научных методов планирования и управления экономикой. Поэтому распространенный тип математических моделей экономики - это модели управляемых и регулируемых экономических процессов, используемые для преобразования экономической действительности. Такие модели называются нормативными. Если ориентировать нормативные модели только на подтверждение действительности, то они не смогут служить инструментом решения качественно новых социально-экономических задач.

Специфика верификации нормативных моделей экономики состоит в том, что они, как правило, "конкурируют" с другими, уже нашедшими практическое применение методами планирования и управления. При этом далеко не всегда можно поставить чистый эксперимент по верификации модели, устранив влияние других управляющих воздействий на моделируемый объект.

Ситуация еще более усложняется, когда ставится вопрос о верификации моделей долгосрочного прогнозирования и планирования (как дескриптивных, так и нормативных). Ведь нельзя же 10-15 лет и более пассивно ожидать наступления событий, чтобы проверить правильность предпосылок модели.

Несмотря на отмеченные усложняющие обстоятельства, соответствие модели фактам и тенденциям реальной экономической жизни остается важнейшим критерием, определяющим направления совершенствования моделей. Всесторонний анализ выявляемых расхождений между действительностью и моделью, сопоставление результатов по модели с результатами, полученными иными методами, помогают выработать пути коррекции моделей.

Значительная роль в проверке моделей принадлежит логическому анализу, в том числе средствами самого математического моделирования. Такие формализованные приемы верификации моделей, как доказательство существования решения в модели, проверка истинности статистических гипотез о связях между параметрами и переменными модели, сопоставления размерности величин и т.д., позволяют сузить класс потенциально "правильных" моделей.

Внутрення непротиворечивость предпосылок модели проверяется также путем сравнения друг с другом получаемых с ее помощью следствий, а также со следствиями "конкурирующих" моделей.

Оценивая современное состояние проблемы адекватности математических моделей экономике, следует признать, что создание конструктивной комплексной методики верификации моделей, учитывающей как объективные особенности моделируемых объектов, так и особенности их познания, по-прежнему является одной из наиболее актуальных задач экономико-математических исследований.

Основы оптимального управления. Экономические процессы и их формализованное представление. Управление и управляющие воздействия. Общая постановка задачи оптимального управления.

Рассмотрим общую постановку задачи оптимизации экономических систем. Пусть имеется система, состояние которой может изме-ниться в результате некоторого количества управляющих воздействий. Задавая эти воздействия, можно получить определенный процесс изменения состояния си-стемы. При этом возникают две задачи: первая предполагает выбор таких воздействий на систему, чтобы проис-ходящий процесс удовлетворял заданным условиям, такие процессы принято называть допустимыми), вторая задача - выбор из этого множества допустимых процессов наилучшего (оптимального) процесса.

Чтобы решать оптимизационные задачи с помощью мате-матических методов, нужно сформулировать на математическом языке рассматриваемые процессы, ограничения, накладываемые на состояние системы и управляющие воздействия, а так же записать математические модели, описывающие эти процессы.

Введем некоторые понятия и обозначения. Рассмотрим множество М с эле-ментами v, где v - пары вида v=(x, у), , ,  - некоторые заданные множества. Проек-цией  множества М на множество Х назовем подмножество Мx, обладающее тем свойством, что для каждого  существу-ет такой элемент , что пара  содержится в мно-жестве М.

Введем понятие сечения Мx множества М при данном x. Сечением Мx будем называть множество всех y, при которых пара  принадлежит множеству М.

Введем понятие функционала, являющегося одним из главных в задачах оптимального управления. Будем говорить, что на мно-жестве М задан функционал F , если известно правило, которое каждому элементу ставит в соответствие определенное действительное число F(v).

В общем виде задача оптимизации формулируется как задача отыскания минимального (или максимального) значения функ-ционала F(v) на множестве М.

Предположим, что требуется минимизировать функционал F(v) на множестве М. Если решение этой задачи существует (обозначим его через ), то называется опти-мальным элементом множества M, а величина  - оптимальным значением функционала. Решения поставленной задачи F и  будем записывать следующим образом:

.

Аналогично формулируется задача о нахождении максималь-ного значения функционала.

Введем понятия точной нижней и верхней границы функцио-нала. Точной нижней границей функционала на множестве М назовем такое число т, если:

1)  для любого ;

2) существует последовательность , на которой .

Точная нижняя граница функционала обозначается

.

Последовательность {vs} называется минимизирующей последовате-ль-ностью.

Точно так же определяется точная верхняя граница n функ-ционала :

Назовем функционал  ограниченным снизу (сверху) на множестве М, если существует такое число A, что при всех   (). Если функционал является ограниченным снизу (сверху), то решение задачи о нахождении его точной нижней (верхней) границы существует, т. е. имеет место следую-щая теорема (приведем без доказательства): Пусть на множестве М задан ограниченный снизу функционал . Тогда реализуется одна из двух возможностей:

1) Существуют элемент  и число , при которых  и  при всех .

2) Существуют последовательность  элементов множе-ства М и число , удовлетворяющее условиям ,   и  при всех .

Данная теорема имеет важное значение для понимания сущности задачи оптимизации по двум причинам. Во-первых, она говорит о том, что постановка задачи об отыскании наименьшего (наибольшего) значения ограниченного снизу (сверху) функционала имеет смысл. Во-вторых, она объясняет природу решения такой задачи. А именно: решением будет либо определенный элемент  множества М, минимизирующий (максимизирующий) функци-онал , либо последовательность  элементов множества М, являющаяся миними-зи-рующей (максимизирующей) последо-вательностью. В первом случае можно говорить о точном решении задачи, а во втором - о приближенном.

Задачи оптимизации управляемых процессов (оптимального управления) являются частными по отношению к сформулированной выше общей задаче оптимизации. Рассмотрим постанову задач оптимального управления.

Введем некоторые понятия.

Важнейшими из них являются понятия состояния системы и управления. Будем рассматривать системы, состояние которых может быть в любой момент времени определено вектором х n-мерного пространства с координатами . Пространст-во Х будем называть пространством состояний системы.

Так как система изменяется во времени, то ее поведение можно описать последовательностью состояний. Такую последовательность системы  называют ее траекторией.

Переменная t (называется аргу-ментом процесса) может быть некоторым отрезком числовой прямой () или отрезком натурального ряда (). В первом случае процесс, происходящий в системе, называется непрерывным, во втором случае - многошаговым, а системы - соот-ветственно непрерывными и дискретными.

Изменение состояния системы, т. е. процесс в ней, может происходить в результате управляющих воздействий. Будем рассматривать системы, управляющие воздействия в которых моделируются с помощью элементов r-мерного про-странства U:

, .

Управляющие воздействия могут задаваться в виде функций от t, т.е. .

На допустимые состояния системы  и управ-ления  могут быть наложены ограничения. Рассмотрим множество троек  - совокупность  - мерных векто-ров в пространстве . Тогда ограничения на состояние системы и управление в самом общем случае могут быть записаны в виде

,

где  - некоторая область (подмножество) рассматривае-мого  - мерного пространства. Ограничения на величины ,  в каждый фиксированный момент времени t могут быть заданы и в виде

,

где Vt  -  сечение множества V при заданном значении t.

Пару функций  назовем процессом. Между функ-циями  имеется связь: как только задано управление  системой, последовательность ее состояний (траектория системы)  определяется однозначно. Связь между  и  моделируется по-разному в зависимости от того, является система непрерывной или дискретной.

Для непрерывных систем модели процессов задаются системой дифференциальных уравнений вида

 ,

 или в векторной форме

.                                    (4.2.1)

Пусть задано состояние, в котором система находилась в начальный момент . Для простоты этот момент примем равным нулю, а момент окончания процесса - равным Т. Тогда аргумент процесса t изменяется в пределах , а начальным состоянием системы будет вектор

,     (4.2.2)

где  - начальное значение i-й координаты вектора со-стояния системы.

Проанализируем, каким образом модель отражает связь между управлениями и состоянием системы, изменяющимся под их воздействием. Пусть на промежутке  задано управление . Подставляя его в правую часть системы (4.2.3), получим

                                 (4.2.3)

Имеем систему дифференциальных уравнений относительно неиз-вестной функции . Решая ее с учетом начальных условий (4.2.2), получим . Это решение и есть траектория, отвечающая заданному управлению .

Модель дискретной управляемой системы имеет вид системы рекуррентных уравнений:

, .

В векторной форме эту модель можно записать в виде

 ,       (4.2.4)

Здесь t принимает значение . Начальное зна-чение  будем считать известным.

В дискретной системе, как и в непрерывной, задание управляющих воздействий  при  позволяет однозначно определить отвечающую им траекторию системы. При подстановке значения u(t) в правую часть (4.2.4) получаем систему уравнений, которая позволяет при известном значении состояния  в момент времени t определить состояние  в следующий момент времени. Так как в начальный момент  состояние  известно, то, подставив его в правую часть (4.2.4), получим

.

Подставляя затем найденное значение  и  в (4.2.4), так же найдем значение . Продолжая этот процесс, через Т шагов получим последнее искомое значение .

Таким образом, и в дискретном случае уравнения модели (4.2.4) позволяют однозначно определить траекторию системы , если задано управление .

Следовательно, процесс  должен удовлетворять следующим ограничениям:

1) при всех ;

2) Пара удовлетворяет системе уравнений процесса:

а) системе (4.2.1) в непрерывном случае при ;

б) системе (4.2.4) в дискретном случае при ;

3) Заданы начальные условия (4.2.2);

4) В непрерывном случае на функции ,  накла-дываются некоторые дополнительные ограничения, связанные с применимостью употребляемых здесь математических записей. Функцию  будем считать кусочно-непрерывной, а век-тор-функцию  - непрерывной и кусочно-дифференцируемой.

Процессы , удовлетворяющие условиям 1) - 4), будем называть допустимыми. Таким образом, допустимый процесс - это управляющие воздействия  и соответствующая им траектория системы , удовлетворяющие перечисленным ограничениям.

Для постановки оптимизационной задачи необходимо ввести в рассмотрение функционал F, задан-ный на множестве М. Задача оптимального управления будет состоять в выборе элемента  множества M, на котором функционал F достигает минимального значения. Такой процесс называют оптимальным процессом, управление  - оптимальным управлением, а траекторию  оптималь-ной траекторией.

Функционал  F, заданный на множестве допустимых процессов, описывает цель, согласно которой оптимизируется процесс.

В задачах оптимального управления для непрерывных систем будем рассматривать функционалы следующего вида:

,                 (4.2.5)

где ;  - задан-ные функции. Выражение (4.2.5) позволяет вычислить для каждого допустимого процесса  определенное значение и тем самым задать функционал на множестве допустимых процессов. Для этого необходимо подставить x(t), вместо аргументов функции , которая становится функцией времени, после чего вычислить ее интеграл. Затем к значению интеграла прибавляем значение функции  при .

Функционал  состоит из двух частей:  и . Первое из этих слагаемых оценивает качество процесса на  на всем промежутке , второе слагаемое - качество конечного состояния системы. Иногда в за-дачах оптимального управления конечное состояние системы  задается. В этом случае второе слагаемое функционала (4.2.5) есть величина постоянная и, следовательно, не влияет на его минимизацию. Такие задачи называются задачами с фик-сированным правым концом траектории.

Для задач оптимизации в дискретных системах функционал имеет вид

.           (4.2.6)

К функционалу (4.2.6) относятся все замечания и комментарии, сделанные к функционалу (4.2.5).

Таким образом задача оптимизации управляемых процессов сводится к постановке задачи о ми-нимуме функционала (4.2.5) в непрерывном и (4.2.6) в дискретном случае на множестве М допустимых процессов , удовлетворяющих ограничениям 1)-4).

Эта задача может решаться в двух вариантах:

1. Определить оптимальный процесс , чтобы

;

2. Определить минимизирующую последовательность , чтобы

.

В теории оптимального управления термины «состояние» и «управление» имеют содержательный смысл. Он заключается в том, что, задавая управление , мы задаем и траекторию процесса , а изменяя управляющие воздействия   - «управляем» процессом.

Из условия можно выделить ограничения на состояние и управление:

 , ,         (4.2.7)

где  - проекция множества  на пространство X;  - сечение множества при данном

В задачах оптимального управления область  возможных состояний часто является постоянной или совпадает со всем пространством, а область  возможных управлений не зависит от x. Эти предположения выполняются в большом числе практических случаев, что упрощает решение задачи.

Выше предполагалось, что про-межуток времени  фиксирован, т. е. задан момент Т окон-чания процесса. Однако возможны постановки задач, где этот момент не задан, а определяется решением задачи. Это относится, в частности, к так называемым задачам о быстродействии, когда требуется перевести систему (4.2.4) из заданного начального состояния х(0)=х0 в заданное конечное состояние , минимизируя при этом время  протекания процесса.

 Классификация экономико-математических моделей. Примеры.

Математические модели экономических процессов и явлений более кратко можно назвать экономико-математическими моделями. Для классификации этих моделей используются разные основания.

По целевому назначению экономико-математические модели делятся на теоретико-аналитические, используемые в исследованиях общих свойств и закономерностей экономических процессов, и прикладные, применяемые в решении конкретных экономических задач (модели экономического анализа, прогнозирования, управления).

Экономико-математические модели могут предназначаться для исследования разных сторон народного хозяйства (в частности, его производственно-технологической, социальной, территориальной структур) и его отдельных частей. При классификации моделей по исследуемым экономическим процессам и содержательной проблематике можно выделить модели народного хозяйства в целом и его подсистем - отраслей, регионов и т.д., комплексы моделей производства, потребления, формирования и распределения доходов, трудовых ресурсов, ценообразования, финансовых связей и т.д.

Остановимся более подробно на характеристике таких классов экономико-математических моделей, с которыми связаны наибольшие особенности методологии и техники моделирования.

В соответствии с общей классификацией математических моделей они подразделяются на функциональные и структурные, а также включают промежуточные формы (структурно-функциональные). В исследованиях на народнохозяйственном уровне чаще применяются структурные модели, поскольку для планирования и управления большое значение имеют взаимосвязи подсистем. Типичными структурными моделями являются модели межотраслевых связей. Функциональные модели широко применяются в экономическом регулировании, когда на поведение объекта ("выход") воздействуют путем изменения "входа". Примером может служить модель поведения потребителей в условиях товарно-денежных отношений. Один и тот же объект может описываться одновременно и структурой, и функциональной моделью. Так, например, для планирования отдельной отраслевой системы используется структурная модель, а на народнохозяйственном уровне каждая отрасль может быть представлена функциональной моделью.

Выше уже показывались различия между моделями дескриптивными и нормативными. Дескриптивные модели отвечают на вопрос: как это происходит? или как это вероятнее всего может дальше развиваться?, т.е. они только объясняют наблюдаемые факты или дают вероятный прогноз. Нормативные модели отвечают на вопрос: как это должно быть?, т.е. предполагают целенаправленную деятельность. Типичным примером нормативных моделей являются модели оптимального планирования, формализующие тем или иным способом цели экономического развития, возможности и средства их достижения.

Применение дескриптивного подхода в моделировании экономики объясняется необходимостью эмпирического выявления различных зависимостей в экономике, установления статистических закономерностей экономического поведения социальных групп, изучения вероятных путей развития каких-либо процессов при неизменяющихся условиях или протекающих без внешних воздействий. Примерами дескриптивных моделей являются производственные функции и функции покупательского спроса, построенные на основе обработки статистических данных.

Является ли экономико-математическая модель дескриптивной или нормативной, зависит не только от ее математической структуры, но от характера использования этой модели. Например, модель межотраслевого баланса дескриптивна, если она используется для анализа пропорций прошлого периода. Но эта же математическая модель становится нормативной, когда она применяется для расчетов сбалансированных вариантов развития народного хозяйства, удовлетворяющих конечные потребности общества при плановых нормативах производственных затрат.

Многие экономико-математические модели сочетают признаки дескриптивных и нормативных моделей. Типична ситуация, когда нормативная модель сложной структуры объединяет отдельные блоки, которые являются частными дескриптивными моделями. Например, межотраслевая модель может включать функции покупательского спроса, описывающие поведение потребителей при изменении доходов. Подобные примеры характеризуют тенденцию эффективного сочетания дескриптивного и нормативного подходов к моделированию экономических процессов. Дескриптивный подход широко применяется в имитационном моделировании.

По характеру отражения причинно-следственных связей различают модели жестко детерминистские и модели, учитывающие случайность и неопределенность. Необходимо различать неопределенность, описываемую вероятностными законами, и неопределенность, для описания которой законы теории вероятностей неприменимы. Второй тип неопределенности гораздо более сложен для моделирования.

По способам отражения фактора времени экономико-математические модели делятся на статические и динамические. В статических моделях все зависимости относятся к одному моменту или периоду времени. Динамические модели характеризуют изменения экономических процессов во времени. По длительности рассматриваемого периода времени различаются модели краткосрочного (до года), среднесрочного (до 5 лет), долгосрочного (10-15 и более лет) прогнозирования и планирования. Само время в экономико-математических моделях может изменяться либо непрерывно, либо дискретно.

Модели экономических процессов чрезвычайно разнообразны по форме математических зависимостей. Особенно важно выделить класс линейных моделей, наиболее удобных для анализа и вычислений и получивших вследствие этого большое распространение. Различия между линейными и нелинейными моделями существенны не только с математической точки зрения, но и в теоретико-экономическом отношении, поскольку многие зависимости в экономике носят принципиально нелинейный характер: эффективность использования ресурсов при увеличении производства, изменение спроса и потребления населения при увеличении производства, изменение спроса и потребления населения при росте доходов и т.п. Теория "линейной экономики" существенно отличается от теории "нелинейной экономики". От того, предполагаются ли множества производственных возможностей подсистем (отраслей, предприятий) выпуклыми или же невыпуклыми, существенно зависят выводы о возможности сочетания централизованного планирования и хозяйственной самостоятельности экономических подсистем.

По соотношению экзогенных и эндогенных переменных, включаемых в модель, они могут разделяться на открытые и закрытые. Полностью открытых моделей не существует; модель должна содержать хотя бы одну эндогенную переменную. Полностью закрытые экономико-математические модели, т.е. не включающие экзогенных переменных, исключительно редки; их построение требует полного абстрагирования от "среды", т.е. серьезного огрубления реальных экономических систем, всегда имеющих внешние связи. Подавляющее большинство экономико-математических моделей занимает промежуточное положение и различаются по степени открытости (закрытости).

Для моделей народнохозяйственного уровня важно деление на агрегированные и детализированные.

В зависимости от того, включают ли народнохозяйственные модели пространственные факторы и условия или не включают, различают модели пространственные и точечные.

Таким образом, общая классификация экономико-математических моделей включает более десяти основных признаков. С развитием экономико-математических исследований проблема классификации применяемых моделей усложняется. Наряду с появлением новых типов моделей (особенно смешанных типов) и новых признаков их классификации осуществляется процесс интеграции моделей разных типов в более сложные модельные конструкции.

В виде примеров можно привести простейшие модели - транспортная задача, задача распределения ресурсов, и прочее.

Дескриптивные модели представляют собой в основном статистические модели (кривые роста, регрессионные линии), предназначенные для исследования объектов путем установления количественных соотношений между их характеристиками или параметрами.

Примеры:

1. Требуется определить зависимость потребления бытовых услуг от уровня дохода населения, обеспеченности бытовыми предметами на душу населения и других факторов потребления. Для этого составляют регрессионное уравнение

где Y - потребление бытовых услуг на душу населения;  - факторы потребления;  - коэффициенты уравнения. Если известны коэффициенты, то зависимость потребления бытовых услуг от принятых факторов считается определенной. Она отражает реальную ситуацию только в среднем, или в статистическом смысле.

2. Требуется определить количество заместителей директора для типовых структур управления предприятием. В этом случае проводят статистическое исследование численности указанной категории работников на существующих предприятиях и выводят степенное уравнение. При определенной специализации количество заместителей директора определяют по формуле

,

где  - численность промышленного персонала;  - основные и оборотные фонды.

Модели без управления применяются для изучения фактически существующих процессов, без вмешательства в их течение. К моделям без управления принадлежат модели экономики страны, расширенного воспроизводства, прогнозирования рождаемости, численности населения и т.д. Как правило, они дают общее представление об объекте. Процессы в моделируемом объекте отображаются в агрегированном виде и максимально обобщены. Поэтому модели без управления не дают полного представления об объекте моделирования и пригодны для изучения только самых общих изменений и тенденций. Модели без управления позволяют изучать явления в целом, комплексно и устанавливают общие фундаментальные свойства объектов и процессов.

Оптимизационные модели. Их появление и применение вызвано необходимостью решения практических задач экономики и техники. Особенностью оптимизационных моделей является целенаправленность решения и явная оценка эффективности (качества) различных вариантов решения. В отличие от моделей без управления оптимизационные модели предполагают выявление цели управления и построение целевой функции.

Суть получения оптимального решения на модели заключается в выборе из множества возможных решений одного, обеспечивающего максимальную эффективность.

Задача об оптимальной перевозке грузов (транспортная задача). Пусть осуществляется производство некоторого товара в пунктах . Объем производства товара в каждом пункте равен соответственно . Товар необходимо доставить в магазины или потребителям, находящимся в других населенных пунктах: . Известна потребность каждого потребителя в товаре: . Задана также стоимость  транспортировки товара из каждого пункта производства  каждому потребителю . Требуется составить план завоза товара в магазины, обеспечивающий удовлетворение их спроса при минимальных транспортных издержках.

Транспортная задача

Пусть необходимо перевезти некоторые партии товара из трех складов четырем покупателям, при этом известен объем товара на каждом складе и требуемое количество для каждого покупателя, также в таблице указаны стоимости перевозки от каждого склада к каждому покупателю. Найти оптимальный по цене план перевозок.

14

28

21

28

27

10

17

15

24

20

14

30

25

21

43

33

13

27

17

Построение оптимального плана, методом северо-западного угла

14

27

28

21

28

27

10

6

17

13

15

1

24

20

14

30

25

26

21

17

43

33

13

27

17

Расчет потенциалов

 если .

                                    u          v

0

7

5

1

-14

14

27

28

21

21

19

28

15

27

+

-10

10

6

17

13

15

1

24

11

20

+

-20

14

20

30

27

25

26

21

17

43

33

13

27

17

Полученную разность потенциалов можно трактовать как увеличение цены продукта при перевозке из пункта i в пункт j. По критерию оптимальности, если потенциалы в нулевых клетках меньше цен на перевозку, то план оптимален. Иначе план может быть улучшен.

За основу преобразования обычно берется клетка с максимальной разностью.

                        u          v         

0

13

11

7

+

-14

14

27

28

27

21

25

28

21

27

-4

10

4

17

13

15

6

24

11

20

+

-14

14

6

30

27

25

20

21

17

43

33

13

27

17

Данный план тоже не оптимален: клетка (1,3)

                                    u          v

0

9

7

7

+

-14

14

7

28

23

21

20

28

21

27

-8

10

8

17

13

15

7

24

15

20

+

-14

14

26

30

23

25

10

21

17

43

33

13

27

17

По данному плану вычисляется оптимальное (наименьшее) значение суммарных значений на перевозку:

F=14*7+21*20+17*13+15*7+14*26+21*17=1565

Задача о пользе услуг. Построим оптимизационную модель, у которой некоторые переменные могут принимать только целые значения. Она называется целочисленной задачей линейного программирования. Допустим, перед человеком  стоит вопрос, какими видами бытовых услуг -  - ему следует воспользоваться, чтобы максимально облегчить свой быт (сэкономить время). Предполагается, что сумма денег, которой он располагает равна d. Можно составить такой список:

Класс оптимизационных моделей очень широк. Приведенные выше задачи относятся к линейному программированию. Существуют также модели динамического программирования, в которых требуется отыскать не одно, а несколько решений, например, решения принимаемые в различные моменты времени; экстремальные модели, позволяющие найти экстремальное значение одного или нескольких параметров объекта; гомеостатические модели, предназначенные для удержания параметров объекта в определенных пределах при наличии каких-либо возмущающих воздействий, и т.д.

Игровые модели. В некоторых ситуациях оптимизационные модели не могут быть применены непосредственно. В основном в тех ситуациях, когда система содержит подсистемы с разными и отчасти противоречивыми целями. Например, при описании целенаправленной деятельности коллективов людей, принятии политических и экономических решений в условиях неопределенности необходимо анализировать интересы и цели объектов, вступающих в контакт.

Случаи, когда для объекта моделирования характерно наличие противодействующих сил или неопределенности параметров, свойств или поведения, рассматриваются теорией игр. Это теория математических моделей принятия оптимальных решений в условиях конфликта или неопределенности. Под конфликтом следует понимать любое разногласие, возникающее вследствие несовпадения интересов.

Большое значение имеет понятие неопределенности. Рассмотрим на примерах. При моделировании спроса на какой-либо товар могут быть известны только либо верхний и нижний пределы колебания спроса, либо статистическое распределение возможных значений спроса. Тогда в первом случае имеет место статистическая неопределенность, когда неизвестен даже закон распределения событий (значений спроса), а во втором - статистическая неопределенность, соответствующая случаю, при котором нельзя точно назвать значение спроса, хотя закон распределения известен. Неопределенности такого рода могут возникнуть в результате действий конкурента, удовлетворяющих какую-то часть спроса, или вследствие «игры природы» (изменения климатических, социальных и других условий). В любой игре имеются следующие элементы: множество всех игроков , где i - произвольный игрок. Всякий игрок имеет в своем распоряжении множество стратегий поведения, или возможных действий, .

Процесс игры заключается в выборе каждым игроком одной определенной стратегии , обеспечивающей игроку, например, максимальный выигрыш . Здесь функция  называется функцией выигрыша игрока. Таким образом, налицо множество стратегий игроков называемое ситуацией, в которой каждый игрок или их группа (коалиция) имеет какой-либо выигрыш (проигрыш).

Игры бывают бескоалиционными, когда целью каждого участника является получение максимального индивидуального выигрыша, и коалиционные, связанные с обеспечением максимального выигрыша для всей коалиции игроков. Если выигрыш одного игрока равен проигрышу другого при любой стратегии, то игра называется антагонистической. Если число стратегий одного игрока конечно, то такая игра носит название матричной.

Основные принципы определения оптимального поведения игроков сводятся к принципам устойчивости, которые состоят в том, чтобы отклонение от выбранной оптимальной стратегии уменьшает выигрыш игрока. Например, для бескоалиционной игры наилучшая стратегия поведения соответствует принципу равновесия, при котором ни одному игроку не выгодно менять стратегию, если у остальных игроков остаются неизменными.

Имитационные системы. Применение оптимизационных и игровых моделей в практических задачах встречает затруднение, когда заходит речь о моделировании «больших систем». К ним относятся социально-экономические системы, характеризуемые большим числом параметров, сложным переплетением интересов, неопределенной структурой и многочисленными целями. Объекты такого типа плохо поддаются формализации и математическому описанию на основе аппарата оптимизационных и игровых моделей. Сложность построения моделей «больших систем» заключается прежде всего в трудности постановки или формулирования задачи моделирования, которая требует комплексного системного описания наиболее важных сторон объекта.

Имитационное моделирование представляет собой систему, состоящую из совокупностей следующих элементов:

· имитационных моделей, отображающих определенные черты, свойства или части «большой системы» и позволяющих отвечать на вопрос: что будет при данных условиях и принятом решении (прямя задача моделирования)?

· экспертов и экспертных процедур, необходимых для анализа и оценки различных решений, исключения заведомо слабых решений, построения «сценариев» развития событий, выработки целей и критериев;

· «языков ЭВМ», на основе которых осуществляется двусторонний контакт экспертов с ЭВМ. Эксперт задает исходные данные, меняет структуру моделей, формулирует вопросы ЭВМ при помощи специальных языков моделирования.

Имитационные модели представляют собой программы для компьютера, описывающие поведение компонентов системы и взаимодействие между ними. Расчеты при различных исходных данных позволяют имитировать динамические процессы, происходящие в реальной систем.

Математический аппарат, используемый для построения имитационных моделей, может быть самым разнообразным, например, теория массового обслуживания, теория агрегативных систем, теория автоматов, теория дифференциальных уравнений и т.д. Имитационные модели обычно требуют статистической обработки результатов моделирования, поэтому в основу всякой имитации входят методы теории вероятностей и математической статистики.

Экспертные процедуры используют коллективный опыт людей и предназначены для усреднения мнений и получения объективной оценки какого-либо события или явления. Например, для определения пропорций развития отраслевых групп обслуживания экспертам раздают анкеты определенного образца и прелагают ознакомиться со «сценарием» развития сферы обслуживания населения. «Сценарий» представляет собой прогноз определенного рода состояния развития общественных потребностей на длительную перспективу, включая численность населения, его доходы и расходы по статьям затрат, жилищные условия, внедрение в практику новой техники и технологий, совершенствование видов и форм обслуживания и т.п.

После ознакомления со «сценарием» эксперты выражают свое мнение в виде баллов. Затем анкеты собирают, и результаты экспертного анализа усредняют по каждой отраслевой группе и нормируют, т.е. баллы по каждой отраслевой группе делят на их общую сумму. Полученные нормированные баллы отражают желаемые пропорции развития отраслевых групп обслуживания. Можно осуществить учет компетентности эксперта, проставив ему соответствующий «вес», аналогичный баллам.

При оценке качества функционирования какой-либо имитационной модели эксперты определяют, какие параметры модели главные, а какие - второстепенные; устанавливают желаемые пределы изменения параметров; осуществляют выбор лучшего варианта модели. В задачи эксперта входит также изменение условий моделирования в тех случаях, когда после проведения модельных экспериментов выявляются новые неучтенные факторы.

Эконометрика. Основные понятия эконометрического моделирования

Под статистическими данными понимают систематизированные и группированные однородные, количественные сведения о реальной экономической деятельности за прошлые периоды времени или результаты многократно проводимых экспериментов и наблюдений. Такие данные играют важную роль в экономико-математическом моделировании, в частности, для

· построения аналитического вида функций, описывающих взаимосвязи между экономическими величинами;

· оценки параметров и проверки адекватности экономико-математических моделей реальным явлениям;


Подобные документы

  • Многокритериальная оптимизация. Методы сведения многокритериальной задачи к однокритериальной. Гладкая и выпуклая оптимизации. Условие выпуклости. Экономико-математическая модель реструктуризации угольной промышленности. Критерий оптимизационной задачи.

    реферат [159,8 K], добавлен 17.03.2009

  • Постановка, анализ, графическое решение задач линейной оптимизации, симплекс-метод, двойственность в линейной оптимизации. Постановка транспортной задачи, свойства и нахождение опорного решения. Условная оптимизация при ограничениях–равенствах.

    методичка [2,5 M], добавлен 11.07.2010

  • Общая постановка задачи линейного программирования (ЛП). Приведение задачи ЛП к стандартной форме. Примеры экономических задач, приводящихся к задачам ЛП. Геометрический и симплексный методы решения. Теоремы двойственности и их использование в задачах ЛП.

    курсовая работа [1,1 M], добавлен 21.11.2010

  • Аналитические и численные методы безусловной оптимизации. Метод исключения и метод множителей Лагранжа (ММЛ). Метод Эйлера – классический метод решения задач безусловной оптимизации. Классическая задача условной оптимизации. О практическом смысле ММЛ.

    реферат [387,0 K], добавлен 17.11.2010

  • Теоретические основы экономико-математических методов. Этапы принятия решений. Классификация задач оптимизации. Задачи линейного, нелинейного, выпуклого, квадратичного, целочисленного, параметрического, динамического и стохастического программирования.

    курсовая работа [2,3 M], добавлен 07.05.2013

  • Применение методов нелинейного программирования для решения задач с нелинейными функциями переменных. Условия оптимальности (теорема Куна-Таккера). Методы условной оптимизации (метод Вульфа); проектирования градиента; штрафных и барьерных функций.

    реферат [3,2 M], добавлен 25.10.2009

  • Виды задач линейного программирования и формулировка задачи. Сущность оптимизации как раздела математики и характеристика основных методов решения задач. Понятие симплекс-метода, реальные прикладные задачи. Алгоритм и этапы решения транспортной задачи.

    курсовая работа [268,0 K], добавлен 17.02.2010

  • Понятие, определение, выделение особенностей, возможностей и характеристика существующих проблем многокритериальной оптимизации и пути их решения. Расчет метода равных и наименьших отклонений многокритериальной оптимизации и применение его на практике.

    курсовая работа [321,9 K], добавлен 21.01.2012

  • Общая характеристика математических моделей, применяемых в экономических исследованиях. Постановка экономико-математической задачи по оптимизации посевных площадей, развитие её содержания и цели решения. Расчет потребности в кормах по указанным данным.

    курсовая работа [23,7 K], добавлен 02.04.2012

  • Суть математического моделирования процессов и теории оптимизации. Метод дихотомии и золотого сечения. Поиск точки min методом правильного симплекса. Графическое решение задачи линейного программирования, моделирование и оптимизация трёхмерного объекта.

    курсовая работа [1,8 M], добавлен 15.01.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.