Экономико-математическое моделирование
Определение нижней и верхней цены игры, заданной платежной матрицей. Имеет ли игра седловую точку? Решение геометрически задачи линейного программирования. Построение графа состояний случайного процесса. Предельные вероятности для заданной системы.
Рубрика | Экономико-математическое моделирование |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 04.02.2011 |
Размер файла | 280,0 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
8
1. Определить нижнюю и верхнюю цену игры, заданной платежной матрицей
Имеет ли игра седловую точку?
Решение:
Найдем по каждой строчке платежной матрицы минимальное число бi = min (бi1, бi2, бi3) - это гарантированный выигрыш игрока А, при выборе им соответствующей стратегии. Чтобы получить максимально возможный гарантированный выигрыш, игрок А должен выбрать ту стратегию, для которой бij имеет максимальное значение - б = max(б1, б2, б3) - это нижняя цена игры.
Для игрока В выберем по каждому столбцу максимальное число вj = max(б1j, б2j, б3j) - это гарантированный проигрыш игрока В при выборе им стратегии Вj. Найдем минимальное из этих чисел в = min (в 1, в 2, в 3) - это верхняя цена игры. Занесем полученные данные в таблицу 1.
Нижняя цена игры б = 8 равна верхней цене игры в = 8. Значит, игра имеет седловую точку. Для игрока А оптимальная стратегия - А1, для игрока В оптимальная стратегия - В1.
Ответ: б = в = 8, игра имеет седловую точку, оптимальные стратегии (А1, В1).
Таблица 1 - Определение цены игры платежной матрицы
В1 |
В2 |
В3 |
|||
А1 |
8 |
9 |
9 |
б1 = min (8, 9, 9) = 8 |
|
А2 |
6 |
5 |
8 |
б2 = min (6, 5, 8) = 5 |
|
А3 |
3 |
4 |
5 |
б3 = min (3, 4, 5) = 3 |
|
в1 = max(8, 6, 3) в1= 8 |
в2 = max(9, 5, 4) в2= 9 |
в3 = max(9, 8, 5) в3= 9 |
б = max(8, 5, 3) = 8 в = min (8, 9, 9) = 8 |
2. Решить графически игру, заданную платежной матрицей
Решение:
Дана игра 4 х 2 , то есть у игрока А имеется 4 стратегии, а у игрока В - 2. Поэтому, будем решать игру для игрока В. Построим оси: ОХ - на ней будем отмечать вероятности, с которыми игрок использует ту или иную стратегии, и ОУ - на ней будем откладывать цену игры. На расстоянии единица от оси ОУ проведем еще ось параллельную ей, как показано на рисунке 1.
Если игрок А выбирает стратегию А1, то игрок В, используя свои стратегии с вероятностями (q1, q2), будет проигрывать, в среднем, q1?б11+q2?б12 = q1•(-3) +q2•(-4). Отметим на оси ОУ б11 = -3, а на оси ей параллельной б12 = -4 и соединим эти точки прямой линией - она показывает, сколько, в среднем, получает игрок В, если А использует стратегию А1, а В чередует стратегии В1 и В2 с некоторыми вероятностями (q1, q2). Аналогично отмечаем на оси ОУ точку -1, а на параллельной ей оси - точку 2 и соединяем отрезком. Получаем линию, показывающую, сколько, в среднем, получает игрок В, если А выбрал стратегию А2. Точно также для А3 и А4.
Для игрока В надо выбрать верхнюю границу, так как он должен рассчитывать, что А выберет ту стратегию, которая соответствует наибольшему проигрышу для игрока В. На рисунке 1 это ломанная А3КА2, выделенная толстой линией. Игроку В следует выбрать ту смешанную стратегию, которая соответствует наименьшему проигрышу для В - точка К. Это точка пересечения прямых, соответствующих стратегиям А3 и А2. Выпишем уравнения этих прямых.
Прямая (А3 А3) проходит через точки с координатами (0;2) и (1;-4). Уравнение этой прямой запишется в следующем виде:
Уравнение прямой (А2 А2), проходящей через точки (0;-1) и (1;2), запишется в следующем виде:
Рисунок 1 -Графическое решение
Точка К - точка пересечения этих прямых, имеет координаты, удовлетворяющие системе:
Решение системы:
Следовательно, цена игры н = 0, оптимальная стратегия для игрока В:
Для игрока А, стратегии А1 и А4 будут не активными, игроку А не выгодно их использовать. Максимально возможный выигрыш, равный цене игры н = 0, игрок А будет получать, используя стратегии А2 и А3. Найдем оптимальную смешанную стратегию для игрока А из следующей системы, учитывая, что А1 и А4 не активные стратегии, то есть р1 = р4 = 0:
Ответ: Цена игры н = 0, оптимальные стратегии игроков
3. Решить геометрически следующую задачу линейного программирования:
при ограничениях:
Решение:
Построим область ограничений. Строим прямую (1): x1 - 4x2 - 4 = 0 по двум точкам, координаты которых удовлетворяют уравнению: (8; 1), (4; 0), как показано на рисунке 2. Проверяем, какая полуплоскость удовлетворяет неравенству , для этого подставим значение произвольной точки (0; 0) в это неравенство, получим - выполняется. Аналогичным способом строим прямые (2): и (3): , выделяем «бородой» области значений x1, x2, удовлетворяющие условиям и . На рисунке 2 изображена область, удовлетворяющая представленной в условиях задачи системе. Заметим, что и одно из неравенств системы - , тогда, очевидно, функция F принимает значения интервала , но , тогда Fmax = .
Ответ: Fmax = .
Рисунок 2 - Графическое решение
4. Для выпуска двух видов продукции А и В предприятие использует 4 вида ресурсов, все данные представлены в следующей таблице:
Вид ресурса |
Расход ресурсов для выпуска одного изделия |
Наличие ресурса |
||
А |
В |
|||
Рабочая сила |
1 |
3 |
3 |
|
Сырье |
6 |
3 |
24 |
|
Оборудование |
2 |
5 |
20 |
|
Производственные ресурсы |
2 |
2 |
10 |
Прибыль от реализации единицы продукции А и В составляет 50 и 70 ДЕ, соответственно. Предприятие может нанять людей на работу, а увольнять людей не разрешается. Составить план выпуска продукции, чтобы прибыль от ее реализации была максимальной. Сколько человек придется нанять?
Решение:
Обозначим x1, x2 - число единиц продукции соответственно А и В, запланированных к производству. По условию для их изготовления потребуется (1• x1 + 3• x2) единиц ресурса «Рабочая сила», (6• x1 + 3• x2) единиц ресурса «Сырье», (2• x1 + 5• x2) единиц ресурса «Оборудование», (2• x1 + 2• x2) единиц ресурса «Производственные ресурсы». Так как потребление всех этих видов ресурсов не должно превышать наличие ресурсов, то связь между потреблением ресурсов и их запасами выразится системой неравенств:
где а ? 3 и а - целое число (количество работников).
Суммарная прибыль стремиться к максимальному значению:
Все значения x1 и x2 лежат в I четверти, а функция F - луч, исходящий из точки (0; 0) под углом б к оси ОX1, где т.е. - функция прибыли F. Строим графическое решение для неравенств (2): , (3): , (4): , как это показано на рисунке 3.
Максимально возможная прибыль из графического решения в точке К, координаты которой находим из системы:
С учетом, x1, x2 - целые числа (только конечный продукт можно продать и получить прибыль), находим: при х1 = х2 = 2 возможно получение максимальной прибыли Подставив х1 = х2 = 2 в неравенство (1): , получим ,т.е. а = 8. Необходимо дополнительно нанять 8 - 3 = 5 человек.
Ответ: Максимально возможная прибыль 240 ДЕ возможна при производстве изделий А - 2шт. и изделий В - 2 шт., при этом придется дополнительно нанять 5 работников.
Рисунок 3 - Графическое решение
5. Построить граф состояний следующего случайного процесса: система состоит из двух аппаратов по продаже билетов, каждый из которых в случайный момент времени может быть либо занятым, либо свободным.
Решение:
Система может находиться в четырех состояниях, так как у каждого аппарата по продаже билетов есть два состояния (быть занятым или свободным). Пусть S0 - оба аппарата заняты; S1 - 1-ый занят, 2-ой свободен; S2 - 1-ый свободен, 2-ой занят; S3 - оба аппарата свободны. Построим граф состояний, отметив на нем все возможные состояния кругами, а возможные переходы из состояния в состояние обозначим стрелками. Получаем, что переход из S0 в S3 возможен либо через S1, либо через S2, либо напрямик, как показано на рисунке 4.
Рисунок 4 - Граф состояний аппаратов по продаже билетов
6. Найти предельные вероятности для системы S, граф которой изображен на рисунке.
Решение:
В теории случайных процессов доказывается, что если число состояний системы конечно и из каждого из них можно (за конечное число шагов) перейти в любое другое состояние, то предельные вероятности существуют. Их можно найти из уравнений Колмогорова, составив систему по данному размеченному графу состояний, по следующему правилу:
Слева в уравнении стоит предельная вероятность данного состояния pi, умноженная на суммарную интенсивность всех потоков, ведущих из данного состояния, а справа - сумма произведений интенсивностей всех потоков, входящих в данное состояние, на вероятности тех состояний, из которых эти состояния выходят.
Кроме этого надо учитывать, что сумма всех вероятностей данной конечной системы равна единице. Составим уравнения для состояний S1 и S2 (уравнение для состояния S0 - «лишнее»):
Ответ: Система примерно 66,67% времени пребывает в состоянии S0, 25% - в состоянии S1 и 8,33% времени находится в состоянии S2.
7. Найти валовой выпуск для сбалансированной многоотраслевой экономики в модели Леонтьева, если дана матрица прямых затрат А и вектор конечного потребления У:
Решение:
Для сбалансированной многоотраслевой экономики выполняется следующее соотношение:
где |
Х |
- |
вектор валового выпуска; |
|
У |
- |
вектор конечного потребления; |
||
А |
- |
матрица прямых затрат. |
Выразим валовой выпуск через конечное потребление и матрицу затрат:
Находим матрицу, обратную к (Е - А):
Найдем валовой выпуск:
Х =
Ответ: Валовой выпуск равен (811,3; 660,4).
*При решении задач использовался источник:
Алесинская Т.В. Учебное пособие по решению задач по курсу "Экономико-математические методы и модели". - Таганрог: Изд-во ТРТУ, 2002. - 153 с.
Подобные документы
Расчет количества изделий для изготовления на предприятии, чтобы прибыль от их реализации была максимальной (решение графическим способом и в среде MS Excel). Определение равновесной цены спроса-предложения на товар, нижней и верхней цены матричной игры.
контрольная работа [352,0 K], добавлен 13.09.2013Построение сетевого графика согласно данным структурно-временной таблицы. Определение вероятности отказа и средней длины очереди для систем массового обслуживания. Решение игры в чистых стратегиях, по принципу доминирования и графическим методом.
контрольная работа [455,9 K], добавлен 13.11.2010Решение графическим методом задачи линейного программирования с двумя неизвестными. Решение транспортной задачи методом северо-западного угла и методом минимальной стоимости. Системы массового обслуживания. Стохастическая модель управления запасами.
контрольная работа [458,1 K], добавлен 16.03.2012Примеры решения задач линейного программирования в Mathcad и Excel. Нахождение минимума функции f(x1, x2) при помощи метода деформируемого многогранника. Построение многофакторного уравнения регрессии для решения экономико-статистической задачи.
курсовая работа [1,3 M], добавлен 17.12.2011Предмет и задачи теории игр. Сведение матричной игры к задачам линейного программирования. Основные принципы разработки деловых игр для исследования экономических механизмов. Деловая игра "Снабжение". Решение матричной игры в смешанных стратегиях.
курсовая работа [1,8 M], добавлен 15.10.2012Нахождение начального опорного плана методом минимальной стоимости, оптимизация его методом потенциалов. Решение задачи о назначениях с заданной матрицей затрат. Построение набора дуг, соединяющих все вершины сети и имеющих минимальную протяженность.
контрольная работа [341,0 K], добавлен 24.04.2012Определение чистых стратегий холдинга. Составление платежной матрицы игры, ее верхней и нижней цены. Принятие оптимального решения об инвестиции в банк для получения наибольшей выгоды при улучшении финансового состояния металлургическому консорциуму.
курсовая работа [85,3 K], добавлен 19.05.2014Характеристика моделируемого процесса - организация угодий. Оценка деятельности АО "Россия". Построение экономико-математической задачи. Обозначение неизвестных и формулирование систем ограничений. Построение числовой модели и решение задачи на ЭВМ.
курсовая работа [24,8 K], добавлен 25.04.2012Решение задачи линейного программирования симплекс-методом. План перевозок при минимальных затратах на них. Определение оптимального значения изменения численности работников. Решение матричной игры двух лиц с применением чистой и смешанной стратегий.
контрольная работа [152,3 K], добавлен 16.05.2013Экономико-математическое моделирование как метод научного познания, классификация его процессов. Экономико-математическое моделирование транспортировки нефти нефтяными компаниями на примере ОАО "Лукойл". Моделирование личного процесса принятия решений.
курсовая работа [770,1 K], добавлен 06.12.2014