Уравнения регрессии

Особенности расчета параметров уравнений линейной, степенной, полулогарифмической, обратной, гиперболической парной и экспоненциальной регрессии. Методика определения значимости уравнений регрессии. Идентификация и оценка параметров системы уравнений.

Рубрика Экономико-математическое моделирование
Вид контрольная работа
Язык русский
Дата добавления 21.08.2010
Размер файла 200,1 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

УГСХА

Контрольная работа

по дисциплине «Эконометрика»

студента 1 курса

заочного отделения

экономического факультета

специальность 060500

«Финансы и кредит»

Кириллова Юрия Юрьевича

шифр 07045

Ульяновск 2008

Задание 1

Рассчитанные параметры уравнений линейной (I), степенной (II), полулогарифмической (III), обратной (IV), гиперболической парной (V), экспоненциальной (VI) регрессии приведены в таблице 1.

Во всех 6 уравнениях связь умеренная (r ~ 0.5), однако в уравнении IV связь обратная, во всех остальных - прямая. Коэффициент детерминации rІ также различается не сильно. Наиболее сильное влияние вариации фактора на вариацию результата в уравнении I, наиболее слабое в уравнении V.

Средний коэффициент эластичности колеблется от 0,1277 в уравнении V до 0,1628 в уравнении III, из чего можно сделать вывод о слабом влиянии прожиточного минимума на размер пенсий.

Средняя ошибка аппроксимации чрезвычайно высока (96%) для третьего уравнения и незначительна (~3%) для остальных пяти.

Fтабл.=4,84 для б=0,05. Неравенство Fтабл.<Fфакт. выполняется только для уравнения линейной регрессии, следовательно, все остальные уравнения регрессии ненадежны.

Итак, уравнение линейной регрессии является лучшим уравнением регрессии, применительно к данной задаче. Оно статистически надежно, обладает невысокой ошибкой аппроксимации и умеренным коэффициентом корелляции.

Для уровня значимости б=0,05 доверительный интервал прогноза результата, при увеличении прогнозного значения фактора на 10% для уравнения I 231,44±19,324, для уравнения II 231,52±0,0377, для уравнения III 455,06±19,953, для уравнения IV 231,96±20,594, для уравнения V 231,39±0,0004, для уравнения VI 231,17±0,0842.

Задание 2

Таблица 2. Исходные данные задания 2 (n=25).

Для расчета значимости уравнений сначала необходимо найти стандартизированные коэффициенты регрессии по формуле

.

По этой формуле получаем в первом уравнении в?=0,6857, в?=-0,2286, во втором уравнении в?=0,7543, в третьем уравнении в?=-0,4686. Из стандартизированных уравнений находим для первого уравнения , , для второго уравнения , для третьего . Далее находим Дr и Дr??. Для первого уравнения

,

.

Для второго уравнения

,

для третьего

.

Для второго и третьего уравнений Дr??=1. Находим

.

Для первого уравнения получаем , для второго , для третьего .

Далее находим F-критерий Фишера

.

Для первого уравнения Fфакт.=18,906>Fтабл.=3,44, что подтверждает статистическую значимость уравнения. Для второго уравнения Fфакт.=30,360>Fтабл.=4,28, что подтверждает статистическую значимость уравнения. Для третьего уравнения Fфакт.=6,472>Fтабл.=4,28, что подтверждает его статистическую значимость. Итак, F-критерий Фишера подтверждает значимость всех трех уравнений с вероятностью 95%.

Для оценки значимости коэффициентов регрессии первого уравнения вычисляем t-критерий Стьюдента

,

где частный F-критерий

.

Получаем , . Отсюда , . Для б=0,05 . Следовательно, коэффициент регрессии b? является статистически значимым, а коэффициент b? таковым не является.

Показатели частной корелляции для первого уравнения вычисляются по формуле

.

Получаем , .

Средние коэффициенты эластичности для линейной регрессии рассчитываются по формуле

.

Для первого уравнения получаем , , для второго уравнения , для третьего уравнения .

Задание 3

Исходная система уравнений

содержит эндогенные четыре переменные и две предопределенные .

В соответствии с необходимым условием идентификации D+1=H первое и второе уравнения сверхидентифицируемы (H=2, D=2), третье уравнение идентифицируемо (H=1, D=0), четвертое уравнение является тождеством и в проверке не нуждается.

Для первого уравнения

, Det A*?0, rk A=3.

Для второго уравнения

, Det A*?0, rk A=3.

Для третьего уравнения

, Det A*?0, rk A=3.

Четвертое уравнение является тождеством и в проверке не нуждается.

Достаточное условие идентификации выполняется для всех уравнений.

Для оценки параметров данной модели применяется двухшаговый МНК.

Приведенная форма модели

~

~


Подобные документы

  • Основные методы анализа линейной модели парной регрессии. Оценки неизвестных параметров для записанных уравнений парной регрессии по методу наименьших квадратов. Проверка значимости всех параметров модели (уравнения регрессии) по критерию Стьюдента.

    лабораторная работа [67,8 K], добавлен 26.12.2010

  • Определение количественной зависимости массы пушного зверька от его возраста. Построение уравнения парной регрессии, расчет его параметров и проверка адекватности. Оценка статистической значимости параметров регрессии, расчет их доверительного интервала.

    лабораторная работа [100,5 K], добавлен 02.06.2014

  • Понятие регрессии. Оценка параметров модели. Показатели качества регрессии. Проверка статистической значимости в парной линейной регрессии. Реализация регрессионного анализа в программе MS Excel. Условия Гаусса-Маркова. Свойства коэффициента детерминации.

    курсовая работа [233,1 K], добавлен 21.03.2015

  • Анализ метода наименьших квадратов для парной регрессии, как метода оценивания параметров линейной регрессии. Рассмотрение линейного уравнения парной регрессии. Исследование множественной линейной регрессии. Изучение ошибок коэффициентов регрессии.

    контрольная работа [108,5 K], добавлен 28.03.2018

  • Расчет параметров уравнения линейной регрессии, экономическая интерпретация ее коэффициента. Проверка равенства математического ожидания уровней ряда остатков нулю. Построение степенной модели парной регрессии. Вариация объема выпуска продукции.

    контрольная работа [771,6 K], добавлен 28.04.2016

  • Методика определения параметров линейной регрессии, составления экономической интерпретации коэффициентов регрессии. Проверка выполнения предпосылок МНК. Графическое представление физических и модельных значений. Нахождение коэффициентов детерминации.

    контрольная работа [218,0 K], добавлен 25.05.2009

  • Определение параметров уравнения линейной регрессии. Экономическая интерпретация коэффициента регрессии. Вычисление остатков, расчет остаточной суммы квадратов. Оценка дисперсии остатков и построение графика остатков. Проверка выполнения предпосылок МНК.

    контрольная работа [1,4 M], добавлен 25.06.2010

  • Построение гипотезы о форме связи денежных доходов на душу населения с потребительскими расходами в Уральском и Западно-Сибирском регионах РФ. Расчет параметров уравнений парной регрессии, оценка их качества с помощью средней ошибки аппроксимации.

    контрольная работа [4,5 M], добавлен 05.11.2014

  • Определение количественной взаимосвязи между средней заработной платой, выплатами социального характера и потребительскими расходами на душу населения. Построение уравнений линейной, степенной, показательной, обратной, гиперболической парной регрессии.

    курсовая работа [634,6 K], добавлен 15.05.2013

  • Расчет параметров парной линейной регрессии. Оценка статистической значимости уравнения регрессии и его параметров с помощью критериев Фишера и Стьюдента. Построение матрицы парных коэффициентов корреляции. Статистический анализ с помощью ППП MS EXCEL.

    контрольная работа [1,6 M], добавлен 14.05.2008

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.