Бурение нефтяных и газовых скважин

Подготовительные работы к строительству буровой. Особенности режима бурения роторным и турбинным способом. Способы добычи нефти и газа. Методы воздействия на призабойную зону. Поддержание пластового давления. Сбор, хранение нефти и газа на промысле.

Рубрика Геология, гидрология и геодезия
Вид курсовая работа
Язык русский
Дата добавления 05.06.2013
Размер файла 1,8 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

1. Бурение нефтяных и газовых скважин

1.1 Подготовительные работы к строительству буровой

1.1.1 Размещение и монтаж бурового и энергетического оборудования

В ходе подготовительных работ выбирают место для буровой, прокладывают подъездную дорогу, подводят системы электроснабжения, водоснабжения и связи. Если рельеф местности неровный, то планируют площадку.

Монтаж вышки и оборудования производится в соответствии с принятой для данных конкретных условий схемой их размещения. Оборудование стараются разместить так, чтобы обеспечить безопасность в работе, удобство в обслуживании, низкую стоимость строительно-монтажных работ и компактность в расположении всех элементов буровой. На рисунке 1 изображена типовая схема размещения оборудования, инструмента, запасных частей и материалов на буровой

Различают следующие методы монтажа буровых установок: поагрегатный, мелкоблочный и крупноблочный.

При поагрегатном методе буровая установка собирается из отдельных агрегатов, для доставки которых используется автомобильный, железнодорожный или воздушный транспорт.

При мелкоблочном методе буровая установка собирается из 16 - 20 мелких блоков. Каждый из них представляет собой основание, на котором смонтированы один или несколько узлов установки.

При крупноблочном методе установка монтируется из 2 - 4 блоков, каждый из которых объединяет несколько агрегатов и узлов буровой.

Блочные методы обеспечивают высокие темпы монтажа буровых установок и качество монтажных работ. Размеры блоков зависят от способа, условий и дальности их транспортировки.

После этого последовательно монтируют талевый блок с кронблоком, вертлюг и ведущую трубу, присоединяют к вертлюгу напорный рукав. Далее проверяют отцентрированность вышки: ее центр должен совпадать с центром ротора.

Рис. 1. Типовая схема размещения оборудования, инструмента, запасных частей и материалов на буровой: 1 - буровая вышка; 2 - лебедка; 3 - ротор; 4 - бурильные трубы; 5 - стеллажи; 6 - инструментальная площадка; 7 - площадка отработанных долот; 8 - хозяйственная будка; 9 - площадка глинохозяйства; 10 - площадка ловильного инструмента; 11 - площадка горюче-смазочных материалов; 12 - приемные мостки; 13 - верстак слесаря; 14 - стеллаж легкого инструмента; 15 - очистная система; 16 - запасные емкости; 17 - глиномешалка; 18 - силовой привод; 19 - насосы

1.2 Бурение скважин

1.2.1 Буровая вышка и буровое оборудование

Буровая вышка - это сооружение над скважиной для спуска и подъема бурового инструмента, забойных двигателей, бурильных и обсадных труб, размещения бурильных свечей (соединение двух-трех бурильных труб между собой длиной 25…36 м) после подъема их из скважины и защиты буровой бригады от ветра и атмосферных осадков.

Различают два типа вышек; башенные и мачтовые. Их изготавливают из труб или прокатной стали.

Башенная вышка представляет собой правильную усеченную четырехгранную пирамиду решетчатой конструкции. Ее основными элементами являются ноги, ворота, балкон верхнего рабочего, подкронблочная площадка, козлы, поперечные пояса, стяжки, маршевая лестница.

Основные параметры вышки - грузоподъемность, высота, емкость «магазинов» (хранилищ для свечей бурильных труб), размеры верхнего и нижнего оснований, длина свечи, масса.

Грузоподъемность вышки - это предельно допустимая вертикальная статическая нагрузка, которая не должна быть превышена в процессе всего цикла проводки скважины.

Рис. 2. Вышка ВМ-41: 1 - нога; 2 - ворота; 3 - балкон; 4 - подкронблочная площадка; 5 - монтажные козлы; 6 - поперечные пояса; 7 - стяжки; 8 - маршевая лестница

Высота вышки определяет длину свечи, которую можно извлечь из скважины и от величины которой зависит продолжительность спускоподъемных операций. Чем больше длина свечи, тем на меньшее число частей необходимо разбирать колонну бурильных труб при смене бурового инструмента. Сокращается и время последующей сборки колонны. Поэтому с ростом глубины бурения высота и грузоподъемность вышек увеличиваются. Так, для бурения скважин на глубину 300…500 м используется вышка высотой 16…18 м, глубину 2000…3000 м - высотой - 42 м и на глубину 4000…6500 м - 53 м.

Емкость «магазинов» показывает, какая суммарная длина бурильных труб диаметром 114…168 мм может быть размещена в них.

Практически вместимость «магазинов» показывает, на какую глубину может быть осуществлено бурение с помощью конкретной вышки.

Размеры верхнего и нижнего оснований характеризуют условия работы буровой бригады с учетом размещения бурового оборудования, бурильного инструмента и средств механизации спускоподъемных операций. Размер верхнего основания вышек составляет 2x2 м или 2,6x2,6 м, нижнего 8x8 м или 10x10 м.

Общая масса буровых вышек составляет несколько десятков тонн.

Оборудование для механизации спускоподъемных операций включает талевую систему и лебедку. Талевая система состоит из неподвижного кронблока, установленного в верхней части буровой вышки, талевого блока, соединенного с кронблоком талевым канатом, один конец которого крепится к барабану лебедки, а другой закреплен неподвижно, и бурового крюка. Талевая система является полиспастом (системой блоков), который в буровой установке предназначен в основном, для уменьшения натяжения талевого каната, а также для снижения скорости движения бурильного инструмента, обсадных и бурильных труб,

Иногда применяют крюкоблоки - совмещенную конструкцию талевого блока и бурового крюка.

На крюке подвешивается бурильный инструмент: при бурении - с помощью вертлюга, а при спускоподъемных операциях - с помощью штропов и элеватора

Буровая лебедка предназначена для выполнения следующих операций:

1) спуска и подъема бурильных и обсадных труб;

2) удержания на весу бурильного инструмента;

3) подтаскивания различных грузов, подъема оборудования и вышек в процессе монтажа установок и т.п. Буровая установка комплектуется буровой лебедкой соответствующей грузоподъемности.

Для механизации операций по свинчиванию и развинчиванию замковых соединений бурильной колонны внедрены автоматические буровые ключи АКБ-ЗМ и подвесные ключи ПБК-1, пневматический клиновой захват ПКР-560 для механизированного захвата и освобождения бурильных труб.

Ключ АКБ-ЗМ устанавливается между лебедкой и ротором на специальном фундаменте. Его основными частями являются блок ключа, каретка с пневматическими цилиндрами, стойка и пульт управления. Блок ключа - основной механизм, непосредственно свинчивающий и развинчивающий бурильные трубы. Он смонтирован на каретке, которая перемещается при помощи двух пневматических цилиндров по направляющим: либо к бурильной трубе, установленной в роторе, либо от нее.

Зажимные устройства, как и механизм передвижения блока ключа, работают от пневматических цилиндров, включаемых с пульта управления. Для этого в систему подается сжатый воздух от ресивера.

Ключ ПБК-1 подвешивается в буровой на канате. Высота его подвески регулируется пневматическим цилиндром с пульта управления.

Пневматический клиновой захват ПКР-560 служит для механизированного захвата и освобождения бурильных и обсадных труб. Он монтируется в роторе и имеет четыре клипа, управляемых с пульта посредством пневмоцилиндра,

Наземное оборудование, непосредственно используемое при бурении, включает вертлюг, буровые насосы, напорный рукав и ротор. Вертлюг - это механизм, соединяющий не вращающиеся талевую систему и буровой крюк с вращающимися бурильными трубами, а также обеспечивающий ввод в них промывочной жидкости под давлением. Корпус вертлюга подвешивается на буровом крюке (или крюкоблоке) с помощью штропа. В центре корпуса проходит напорная труба, переходящая в ствол, соединенный с бурильными трубами. Именно к напорной трубе присоединяется напорный рукав для подачи промывочной жидкости в скважину. Напорная труба и ствол жестко не связаны, а последний установлен в корпусе на подшипниках, чем обеспечивается неподвижное положение штропа, корпуса и напорной трубы при вращении бурильных труб вместе со стволом. Для герметизации имеющихся зазоров между неподвижной и подвижной частями вертлюга служат сальники.

Буровые насосы служат для нагнетания бурового раствора в скважину, При глубоком бурении их роль, как правило, выполняют поршневые двухцилиндровые насосы двойного действия. Напорный рукав (буровой шланг) предназначен для подачи промывочной жидкости под давлением от неподвижного стояка к перемещающемуся вертлюгу.

Ротор передает вращательное движение бурильному инструменту, поддерживает на весу колонну бурильных или обсадных труб и воспринимает реактивный крутящий момент колонны, создаваемый забойным двигателем. Ротор состоит из станины, во внутренней полости которой установлен на подшипнике стол с укрепленным зубчатым венцом, вала с цепным колесом с одной стороны и конической шестерней - с другой, кожуха с наружной рифельной поверхностью, вкладышей и зажимов для ведущей трубы. Во время работы вращательное движение от лебедки с помощью цепной передачи сообщается валу и преобразуется в поступательное вертикальное движение ведущей трубы, зажатой в роторном столе зажимами.

Силовой привод обеспечивает функционирование всей буровой установки - он снабжает энергией лебедку, буровые насосы и ротор.

Привод буровой установки может быть дизельным, электрическим, дизель - электрическим и дизель-гидравлическим. Дизельный привод применяют в районах, не обеспеченных электроэнергией необходимой мощности. Электрический привод от электродвигателей переменного и постоянного тока отличается простотой в монтаже и эксплуатации, высокой надежностью и экономичностью, но применим только в электрифицированных районах. Дизель-электрический привод из дизеля, который вращает генератор, питающий, в свою очередь, электродвигатель. Дизель-гидравлический привод состоит из двигателя внутреннего сгорания и турбопередачи. Последние два типа привода автономны, но в отличие от дизельного не содержат громоздких коробок перемены передач и сложных соединительных частей, имеют удобное управление, позволяют плавно изменять режим работы лебедки или ротора в широком диапазоне.

Суммарная мощность силового привода буровых установок составляет от 1000 до 4500 кВт. В процессе бурения она распределяется на привод буровых насосов и ротора. При проведении спускоподъемных операций основная энергия потребляется лебедкой, а остальная часть - компрессорами, вырабатывающими сжатый воздух, используемый в качестве источника энергии для автоматического бурового ключа, подвесного бурового ключа, пневматического клинового захвата и др.

1.2.2 Способы бурения

По способу воздействия на горные породы различают механическое и немеханическое бурение. При механическом бурении буровой инструмент непосредственно воздействует на горную породу, разрушая ее, а при немеханическом разрушение происходит без непосредственного контакта с породой источника воздействия на нее, Немеханические способы (гидравлический, термический, электрофизический) находятся в стадии разработки и для бурения нефтяных и газовых скважин в настоящее время не применяются.

Механические способы бурения подразделяются на ударное и вращательное.

При ударном бурении разрушение горных пород производится долотом 1, подвешенным на канате. По мере углубления скважины канат удлиняют. Цилиндричность скважины обеспечивается поворотом долота во время работы.

По завершении очистки забоя в скважину вновь опускается буровой инструмент и бурение продолжается. Во избежание обрушения стенок скважины в нее спускают обсадную трубу, длину которой наращивают по мере углубления забоя. Нефтяные и газовые скважины сооружаются методом вращательного бурения. При данном способе породы дробятся не ударами, а разрушаются вращающимся долотом, на которое действует осевая нагрузка. Крутящий момент передается на долото или с поверхности от вращателя (ротора) через колонну бурильных труб (роторное бурение) или от забойного двигателя (турбобура, электробура, винтового двигателя), установленного непосредственно над долотом.

Турбобур - это гидравлическая турбина, приводимая во вращение с помощью нагнетаемой в скважину промывочной жидкости. Электробур представляет собой электродвигатель, защищенный от проникновения жидкости, питание к которому подается по кабелю с поверхности. Винтовой двигатель - это разновидность забойной гидравлической машины, в которой для преобразования энергии потока промывочной жидкости в механическую энергию вращательного движения использован винтовой механизм.

По характеру разрушения горных пород на забое различают сплошное и колонковое бурение. При сплошном бурении разрушение пород производится по всей площади забоя. Колонковое бурение предусматривает разрушение пород только по кольцу с целью извлечения керна - цилиндрического образца горных пород на всей или на части длины скважины. С помощью отбора кернов изучают свойства, состав и строение горных пород, а также состав и свойства насыщающего породу флюида.

Все буровые долота классифицируются на три типа:

долота режуще-скалывающего действия, разрушающие породу лопастями (лопастные долота);

долота дробяще-скалывающего действия, разрушающие породу зубьями, расположенными на шарошках (шарошечные долота);

долота режуще-истирающего действия, разрушающие породу алмазными зернами или твердосплавными штырями, которые расположены в торцевой части долота (алмазные и твердосплавные долота).

Особенности режима бурения роторным способом.

При роторном бурении отсутствует ярко выраженная взаимосвязь параметров режима бурения и, следовательно, влияние их друг на друга. Поэтому оптимальный режим роторного бурения включает в себя сочетание наивыгоднейших значений каждого параметра в отдельности.

Тип долота должен выбираться в соответствии с действующими нормативными документами. При выборе режима бурения долотами серий ГНУ и ГАУ следует учитывать следующее: верхнему уровню величин осевых нагрузок на долота соответствует нижний уровень частот вращения и наоборот; в пластичных, вязких глинистых, а также слабо сцементированных малоабразивных песчано-глинистых и песчаных породах целесообразно бурить при близких к максимальным частотам вращения и пониженных величинах осевой нагрузки на долото; в песчаных и других абразивных породах, а также трещиноватых и обломочных целесообразно снижать частоту вращения ротора во избежание повышенного износа и разрушения вооружения, герметизирующих элементов опор шарошек, козырьков и спинок лап.

Режим бурения, особенно долотами с твердосплавным вооружением и герметизированными опорами, должен выбираться таким, чтобы не допускалось вибраций бурильной колонны,

Во многих случаях, особенно при бурении в мягких неабразивных породах, существенное улучшение показателей работы долот достигается при повышении частоты вращения до 140… 200 об/мин.

Фактическая осевая нагрузка на долото при повышенной частоте вращения инструмента из-за трения бурильной колонны о стенки скважины и вкладыш ротора оказывается существенно /меньше, чем по индикатору массы (веса).

Нагрузку на долото следует корректировать с учетом разницы в показаниях индикатора массы (веса) при вращении и без вращения колонны.

Осевая нагрузка на долото при бурении с повышенной частотой вращения обычно должна быть уменьшена на 20… 25% против величины, создаваемой при низкооборотном режиме в тех же условиях.

Переход на высокооборотный режим вращения бурильной колонны может сопровождаться в отдельных породах обвалами стенок скважины и увеличением момента вращения бурильного инструмента. При возникновении указанных явлений необходимо немедленно тщательно промыть и проработать (на длину ведущей трубы) ствол скважины и только после установления нормальных условий бурения переходить на повышенную частоту вращения ротора. Не рекомендуется применение повышенной частоты вращения ротора при бурении в твердых породах с промывкой технической водой.

При бурении долотами с герметизированными спорами и твердосплавным вооружением неравномерное вращение и подача долота, резкое торможение и внезапные остановки, толчки и удары, повышенный уровень вибрации приводят к разрушению (поломкам, сколам и т.п.) твердосплавных зубцов и преждевременному выходу из строя герметизирующих элементов и опор в целом. При появлении в ходе долбления вибраций для их подавления необходимо уменьшить осевую нагрузку или изменить частоту вращения ротора.

Если изменение, в рациональных пределах, указанных параметров не приводит к уменьшению амплитуды колебаний до приемлемого уровня, то это свидетельствует о завышенной моментоемкости долота или недостаточном маховом моменте УБТ для данного сочетания типа долота и разбуриваемых пород. Следовательно, на очередное долбление необходимо использовать долото, характеризующееся меньшей моментоемкостью или увеличить маховый момент УБТ, желательно за счет увеличения их диаметра.

В нашей стране роторный способ бурения используется главным образом при бурении глубоких скважин, а также нижней части разреза скважин средней глубины.

Следует отметить некоторые особенности режима бурения с очисткой забоя воздухом или газом, одной из которых является бурение на сравнительно невысоких скоростях вращения ротора. В процессе бурения шарошечными долотами пород средней твердости, твердых и крепких при очистке забоя газообразным циркулирующим агентом и при соблюдении других параметров режима бурения скорость вращения ротора не должна превышать 100…200 об/мин, а при бурении сыпучих и мягких пород -200…300 об/мин.

Для обеспечения максимальных показателей бурения при использовании газообразных циркулирующих агентов необходимо соблюдать оптимальное соотношение нагрузки на долото и скорости вращения долота. Это соотношение лучше всего определяется по характеру выноса шлама из выкидной линии. Выбрасываемый на поверхность шлам должен состоять из осколков породы различных размеров (при бурении твердых и крепких пород шарошечными долотами) или скатанных кусочков легких пород, или находиться в естественном состоянии при бурении сыпучих пород и выходить обильным потоком из выкида.

Количество шламовой пыли должно быть минимальным, так как обильное выделение ее, указывает на процесс разрушения истиранием, и для перехода на объемный режим разрушения следует увеличить нагрузку на долото и уменьшить скорость вращения ротора, если она была завышена. Для успешного бурения с газообразными циркулирующими агентами необходимо для каждого конкретного случая устанавливать минимальный предел скорости восходящего потока в затрубном пространстве. Минимальным расходом газообразного циркулирующего агента при бурении следует считать такой, при котором в затрубном пространстве с зазором между бурильными трубами и стенками скважины не менее 12…15 мм создается скорость восходящего потока, способная выносить выбуренную породу размером первичного разрушения с избыточной скоростью 5…8 м/с.

Особенности режима бурения турбинным способом.

Турбобур - это забойный гидравлический двигатель, предназначенный для бурения скважин в различных геологических условиях. В рабочих колесах турбобура гидравлическая энергия бурового раствора, движущегося под давлением, превращается в механическую энергию вращающегося вала, связанного с долотом.

Основная часть турбобура - турбина, состоящая из большого числа (более сотни) совершенно одинаковых ступеней. Каждая ступень турбины, в свою очередь, состоит из двух частей: вращающейся, соединенной с валом турбобура, называемой ротором, и неподвижной, закрепленной в корпусе турбобура, называемой статором. Статор представляет собой гладкое стальное кольцо, на внутренней поверхности которого имеются изогнутые лопатки. Концы лопаток соединяются внутренним ободом. Ротор состоит из кольца и лопаток, подобных лопаткам статора, но обращенных выпуклостью в другую сторону. Наружные концы лопаток ротора соединены ободом. Между статором и ротором имеется зазор, обеспечивающий свободное вращение ротора в статоре.

Теория малогабаритных турбин для бурения нефтяных и газовых скважин создана советским инженером П.П. Шумиловым. Основные условия построения турбин турбобуров следующие. Для получения необходимой мощности и приемлемого для бурения числа оборотов турбина должна быть многоступенчатой. Все ступени турбины должны быть совершенно одинаковыми и обеспечивать пропорционально числу ступеней увеличение мощности и скорости вращения инструмента.

Особенности режима бурения винтовыми (объемными) забойными двигателями.

Назначение винтового (объемного) забойного двигателя - бурение скважин в различных геологических условиях. В 1962 г. американской фирмой «Смит Тул» был создан винтовой двигатель «Дайна-Дрилл», представляющий собой обращенный одновинтовой насос, изобретенный французским инженером Р. Муано в 1930 г. Характеристики двигателя «Дайна-Дрилл» незначительно отличаются от характеристик современных турбобуров. Его эксплуатационные данные оказались более подходящими для наклонного бурения, что и определило его широкое распространение за рубежом в этой области бурения.

На выбор режимов бурения в течение последних лет решающее значение оказали успехи в развитии конструкций шарошечных долот с маслонаполненными опорами и вооружением из твердо- сплавных зубьев. Эти долота установили жесткие ограничения в частоте вращения долота (до 200 об/мин). Для работы на таких режимах в 1966 г. (М.Т. Гусманом, С.С. Никомаровым, Ю.В. Захаровым, В.Н. Меньшениным и Н.Д. Деркачем) был предложен новый тип винтового двигателя, в котором многозаходные винтовые рабочие органы выполняют функцию планетарного редуктора. Это позволило получить тихоходную (100…200 об/мин) машину с высоким вращающим моментом.

В последующие годы во ВНИИБТ и его Пермском филиале Д.Ф. Балденко, Ю.В. Вадецким, М.Т. Гусманом, Ю.В. Захаровым, А.М. Кочневым, С.С. Никомаровым и другими были созданы основы теории рабочего процесса, конструирования и технологии ' изготовления, разработана технология бурения винтовыми (объемными) двигателями.

Особенности режима бурения электробурами.

Электробур - это буровая забойная машина, приводимая в действие электрической энергией и сообщающая вращательное движение породоразрушающему инструменту

Электробур с долотом опускается в скважину на бурильных трубах. Колонна бурильных труб служит для поддержания электробура, восприятия реактивного момента, подачи к забою бурового раствора и размещения в нем токоподвода. Вал электробура полый, через него буровой раствор попадает к долоту.

Электроэнергия к электробуру подается по кабелю, подведенному к буровому шлангу, соединенному посредством токоприемника с кабелем, вмонтированным в бурильные трубы. Токоприемник представляет собой систему контактных колец и щеток, которые помещены в герметически закрытом корпусе, предохраняющем их от попадания бурового раствора. Подвод электроэнергии через контактные кольца и щетки позволяет вращать колонну бурильных труб, не нарушая подвода тока к электробуру. Кабель (трех- или двужильный) вмонтирован в бурильные трубы отрезками, которые при свинчивании труб автоматически соединяются специальными муфтами, укрепленными в бурильных замках.

Рис. 3. Схема бурения электробуром 1-токоприемник, 2-кабель, 3-буровая лебедка, 4-пульт управления, 5-бурильная труба с вмонтированными вутрикабельными муфтами, 6-электробур, 7 - долото

Особенности бурения электробурами.

Основные особенности бурения электробуром следующие;

- двигатель электробура получает питание непосредственно от бурового трансформатора по кабелю, проложенному внутри колонны бурильных труб. Электроэнергия подается с малыми потерями вследствие применения высокого напряжения;

- мощность электробура практически не зависит от количества и свойств бурового раствора и глубины погружения электробура;

- частота вращения вала электробура не зависит от количества и свойств бурового раствора и незначительно зависит от нагрузки;

- количество прокачиваемого бурового раствора при электробурении определяется условиями нормальной очистки забоя независимо от мощности, развиваемой электробуром;

- электробур - герметичная маслонаполненная машина, рабочие органы которой не подвержены действию абразивных частиц, содержащихся в промывочной жидкости. Поэтому характеристики электробура неизменны в течение всего срока его службы;

- изменение момента сопротивления на долоте при бурении мгновенно отражается на изменении величины тока и мощности. Это дает возможность наблюдать по ваттметру за нагрузкой на долото, определять характер его работы, устанавливать степень износа и предупреждать аварии с долотом;

- изменения тока и мощности, отражающие нагрузку на долото, дают возможность автоматизировать процесс бурения при максимальном использовании мощности, развиваемой электробуром;

- отсутствие вращения бурильной колонны и особенности конструкции электробура позволяют при помощи специальной погружной аппаратуры в процессе бурения наклонных скважин осуществлять контроль за углом наклона и азимутом, а также устанавливать отклонитель в нужном направлении и корректировать его положение в процессе бурения.

Многолетний опыт эксплуатации электробуров позволил определить наиболее целесообразные области их применения для бурения:

- глубоких скважин с применением утяжеленных буровых растворов;

- наклонно-направленных скважин;

- разветвленно-горизонтальных скважин;

- скважин с применением газообразных агентов;

- опорно-технологических скважин.

1.2.3 Оптимизация режима бурения

Как показала практика, в силу разнообразия условий проводки скважин и множества переменных, от которых зависят показатели, не представляется возможным, даже при помощи ЭВМ, заранее абсолютно точно рассчитать и установить величины параметров, отвечающих оптимальном режиму. В любом случае в процессе бурения приходится корректировать расчетные параметры режима бурения применительно к конкретным условиям. Однако эта корректировка зависит от индивидуальных способностей бурильщика и его квалификации и поэтому в ряде случаев связана с лишними затратами времени. Для того чтобы максимально исключить влияние бурильщика и вместе с тем помочь ему в принятии окончательных решений, разработаны и используются, особенно за рубежом, устройства для управления буровыми операциями с помощью ЭВМ главным образом персональных. Аппаратура и датчики, размещенные в различных пунктах буровой установки, обеспечивают ЭВМ исходными данными, необходимыми для оценок. Обрабатывая полученную информацию, ЭВМ выдает: прогноз проходки на долото до его износа, прогноз времени работы долота до его износа, оптимальную величину нагрузки на долото, оптимальную частоту вращения долота, а также другие рекомендации по проводке скважины.

1.2.4 Назначение, состав и свойства промывочных растворов, их роль в предупреждении осложнений

При вращательном бурении нефтяных и газовых скважин в качестве промывочных жидкостей используются:

- агенты на водной основе (техническая вода, естественные буровые растворы, глинистые и неглинистые растворы);

- агенты на углеводородной основе;

- агенты на основе эмульсий;

- газообразные и аэрированные агенты.

Техническая вода - наиболее доступная и дешевая промывочная жидкость. Имея малую вязкость, она легко прокачивается, хорошо удаляет шлам с забоя скважины и лучше, чем другие жидкости, охлаждает долото. Однако она плохо удерживает частицы выбуренной породы (особенно при прекращении циркуляции), не образует упрочняющей корки на стенке скважины, хорошо поглощается низконапорными пластами, вызывает набухание глинистых пород, ухудшает проницаемость коллекторов нефти и газа.

Естественным буровым раствором называют водную суспензию, образующуюся в скважине в результате диспергирования шлама горных пород, разбуриваемых на воде.

Основное достоинство применения естественных буровых растворов состоит в значительном сокращении потребности в привозных материалах на их приготовление и обработку, что ведет к удешевлению растворов. Однако их качество и свойства зависят от минералогического состава и природы разбуриваемых глин, способа и режима бурения, типа породоразрушающего инструмента. Нередко в них велико содержание абразивных частиц. Поэтому естественные буровые растворы применяют в тех случаях, когда по геолого-стратиграфическим условиям не требуется промывочная жидкость высокого качества.

Глинистые буровые растворы получили наибольшее распространение при бурении скважин. Для бурового дела наибольший интерес представляют три группы глинистых минералов: бентонитовые (монтмориллонит, бейделлит, нонтроиит, сапонит и др.) каолиновые (каолинит, галлуазит, накрит и др.) и гидрослюдистые (иллит, бравиазит и др.). Наилучшими качествами с точки зрения приготовления бурового раствора обладают монтмориллонит и другие бентонитовые минералы. Так, из 1 тонны бентонитовой глины можно получить около 15 м? высококачественного глинистого раствора, тогда как из глины среднего качества - 4…8 м?, а из низкосортных глин - менее 3 м? Глинистые растворы глинизируют стенки скважины, образуя тонкую плотную корку, которая препятствует проникновению фильтрата в пласты. Их плотность и вязкость таковы, что растворы удерживают шлам разбуренной породы даже в покое, предотвращая его оседание на забой при перерывах в промывке. Утяжеленные глинистые растворы, создавая большое противодавление на пласты, предупреждают проникновение пластовых вод, нефти и газа в скважину и открытое фонтанирование при бурении. Однако по этим же причинам затруднено отделение частиц породы в циркуляционной системе бурового раствора.

Применяются также другие буровые растворы на водной основе: малоглинистые (для бурения верхней толщи выветренных и трещиноватых горных пород), соленасыщениые (при бурении в мощных толщах соленосных пород), ингибированные (обработанные химреагентами для предупреждения набухания разбуриваемых пород и чрезмерного обогащения раствора твердой фазой) и т.д.

К неглинистым относятся буровые растворы, приготовленные без использования глины. Безглинистый буровой раствор с конденсированной твердой фазой готовится на водной основе. Дисперсная фаза в нем получается химическим путем, в результате взаимодействия находящихся в растворе ионов магния с щелочью NaOH или Са(ОН) г Химическая реакция приводит к образованию в растворе микроскопических частиц гидрооксида магния Mg(OH)2. Раствор приобретает гелеобразную консистенцию и после химической обработки превращается в седиментационно устойчивую систему. Такой раствор сохраняет свои структурно-механические свойства при любой минерализации. Поэтому его применяют в случаях, когда требуется обеспечить высокую устойчивость стенок скважины, но обеспечить контроль и регулирование минерализации раствора сложно.

Другим типом неглинистых буровых растворов являются биополимерные растворы. Биополимеры получают при воздействии некоторых штаммов бактерий на полисахариды. Свойства биополимерных растворов регулируются так же легко, как свойства лучших буровых растворов из бентонитовых глин. Вместе с тем, некоторые из них оказывают флокулирующее воздействие на шлам выбуренных пород, предупреждая таким образом, образование суспензии. Кроме того, растворы биополимеров термоустойчивы. Сдерживает их применение относительно высокая стоимость.

Буровые растворы на углеводородной основе представляют собой многокомпонентную систему, в которой дисперсионной (несущей) средой является нефть или жидкие нефтепродукты (обычно дизельное топливо), а дисперсной (взвешенной) фазой - окисленный битум, асфальт или специально обработанная глина (гидрофобизированный бентонит).

Буровые растворы на углеводородной основе не оказывают отрицательного влияния на свойства коллекторов нефти и газа, обладают смазывающей способностью: при их использовании уменьшается расход мощности на холостое вращение бурильной колонны в стволе скважины и снижается износ бурильных труб и долот. Однако стоимость приготовления таких буровых растворов довольно высока, они пожароопасны, трудно удаляются с инструмента и оборудования.

Применяют буровые растворы на углеводородной основе для повышения эффективности бурения в породах-коллекторах и сохранения их нефтегазоотдачи па исходном уровне, а также для проводки скважин в сложных условиях при разбуривании мощных пачек набухающих глин и растворимых солей.

У эмульсионных буровых растворов дисперсионной средой является эмульсия типа «вода в нефти», а дисперсной фазой - глина.

Буровой раствор, приготовленный на основе эмульсии типа «вода в нефти», называется обращенным эмульсионным или инвертной эмульсией. Жидкая фаза такого раствора на 60…70% состоит из нефти или нефтепродуктов, остальное - вода. Однако содержание воды в инвертной эмульсии может быть доведено до 80% и выше, если в нее ввести специальные эмульгаторы. Эмульсионные буровые растворы используются при бурении в глинистых отложениях и солевых толщах. Они обладают хорошими смазочными свойствами и способствуют предупреждению прихвата инструмента в скважине.

Сущность бурения с продувкой газом заключается в том, что для очистки забоя, выноса выбуренной породы на дневную поверхность, а также для охлаждения долота используют сжатый воздух, естественный газ или выхлопные газы двигателей внутреннего сгорания. Применение газообразных агентов позволяет получить большой экономический эффект: увеличивается механическая скорость (в 10…12 раз) и проходка на долото (в 10 раз и более). Благодаря высоким скоростям восходящего потока в затрубном пространстве, ускоряется вынос выбуренных частиц породы. Использование газообразных агентов облегчает проведение гидрогеологических наблюдений в скважинах. Кроме того, увеличивается коэффициент нефтегазоотдачи пласта.

Аэрированные буровые растворы представляют собой смеси пузырьков воздуха с промывочными жидкостями (водой, нефтеэмульсиями и др.) в соотношении до 30:1. Для повышения стабильности аэрированных растворов в их состав вводят реагенты - поверхностно-активные вещества и пенообразователи.

Аэрированные буровые растворы обладают теми же свойствами, что и жидкости, из которых они приготовлены (для глинистых растворов - образуют глинистую корку, обладают вязкостью и напряжением сдвига, сохраняют естественную проницаемость призабойной зоны пласта при его вскрытии). Вместе с тем, большим преимуществом аэрированных жидкостей является возможность их применения в осложненных условиях бурения, при катастрофических поглощениях промывочных жидкостей, вскрытии продуктивных пластов с низким давлением.

Основными параметрами буровых растворов являются плотность, вязкость, показатель фильтрации, статическое напряжение сдвига, стабильность, суточный отстой, содержание песка, водородный показатель.

Плотность промывочных жидкостей может быть различной: у растворов на нефтяной основе она составляет 890…980 кг/м?, у малоглинистых растворов - 1050… 1060 кг/м?, у утяжеленных буровых растворов - до 2200 кг/м? и более.

Выбор бурового раствора должен обеспечить превышение гидростатического давления столба в скважине глубиной до 1200 м над пластовым на 10…15%, а для скважин глубже 1200 м - на 5…10%.

Вязкость характеризует свойство раствора оказывать сопротивление его движению. Показатель фильтрации - способность раствора при определенных условиях отдавать воду пористым породам. Чем больше в растворе свободной воды и чем меньше глинистых частиц, тем большее количество воды проникает в пласт.

Статическое напряжение сдвига характеризует усилие, которое требуется приложить, чтобы вывести раствор из состояния покоя.

Стабильность характеризует способность раствора удерживать частицы во взвешенном состоянии. Она определяется величиной разности плотностей нижней и верхней половин объема одной пробы после отстоя в течение 24 ч. Для обычных растворов ее величина должна быть не более 0,02 г./см?, а для утяжеленных - 0,06 г./см?.

Суточный отстой - количество воды, выделяющееся за сутки из раствора при его неподвижном хранении. Для высокостабильных растворов величина суточного отстоя должна быть равна нулю.

Содержание песка - параметр, характеризующий содержание в растворе частиц (породы, не разведенных комочков глины), не способных растворяться в воде. Его измеряют по величине осадка, выпадающего из бурового раствора, разбавленного водой, после интенсивного взбалтывания. В хорошем растворе содержание песка не должно превышать 1%.

1.2.5 Оборудование для промывки скважин

При бурении осуществляется промывка скважины при помощи буровых насосов. Буровые насосы предназначены для подачи под давлением промывочной жидкости в скважину. Для бурения используются только горизонтальные приводные двух- и трехцилин-дровые поршневые насосы, при передвижении поршня в какую-либо сторону в одной половине цилиндра происходит всасывание, а в другой - нагнетание жидкости, т.е. наблюдается двойное действие насоса.

Достаточно широко применяются трехцилиндровые (трехпоршневые) буровые насосы одностороннего действия. К основным отличиям и особенностям буровых насосов этого типа относятся: наличие трех цилиндропоршневых пар одностороннего действия; повышенные линейные скорости поршней (число ходов в единицу времени) и связанная с этим необходимость установки во всасывающей трубе подпорного насоса; значительно меньшая степень неравномерности подачи жидкости и улучшенные динамические характеристики работы приводной и гидравлических частей,

Подачей бурового насоса называют количество жидкости, подаваемое насосом в единицу времени.

От буровых насосов промывочная жидкость по нагнетательной линии (манифольду) подается в буровой шланг и далее в вертлюг. В состав нагнетательной линии входят: компенсаторы, нагнетательный трубопровод, стояк и задвижки. Компенсаторы (воздушные колпаки) служат для уменьшения колебаний давления, вызываемых неравномерностью подачи промывочной жидкости буровыми насосами. Компенсатор представляет собой резервуар, в котором газовая подушка является своеобразной пружиной, смягчающей гидравлические толчки при движении неравномерно поступающей жидкости. Компенсаторы устанавливаются непосредственно на насосе.

1.3 Заканчивание и освоение скважин

1.3.1 Работы по креплению и цементированию скважин

При бурении нефтяных и газовых скважин необходимо крепить их стенки, в результате: укрепляются стенки скважин, сложенные недостаточно устойчивыми торными породами; разобщаются нефтеносные или газоносные пласты друг от друга, а также от водоносных пород. Это позволяет создать долговечный и герметичный канал, по которому нефть или газ поднимаются с забоя до устья скважины без потерь. Пласты разобщают при помощи специальных труб, которые называются обсадными. Так как одно крепление стенок скважины обсадными трубами не создает разобщения пластов, то затрубное пространство заполняют цементным раствором при помощи специального цементировочного оборудования и приспособлений. Этот процесс называется цементированием скважины.

1.3.2 Оборудование для цементирования скважин

К оборудованию, необходимому для цементирования скважин, относятся: цементировочные агрегаты, цементосмесительные установки, цементировочная головка, заливочные пробки и другое мелкое оборудование (краны высокого давления, устройства для распределения раствора, гибкие металлические шланги и т.п.).

При помощи цементировочного агрегата производят затворение цемента (если не используется цементосмесительная установка), закачивают цементный раствор в скважину и продавливают его в затрубное пространство. Кроме того, цементировочные агрегаты используются и для других работ (установка цементных мостов, нефтяных ванн, испытание колонн на герметичность и др.).

Учитывая характер работ, цементировочные агрегаты изготавливают передвижными, с монтажом всего необходимого оборудования на грузовой автомашине. На открытой платформе автомашины смонтированы: поршневой насос высокого давления для прокачки цементного раствора в колонну обсадных труб; ротационный насос, которым подают воду в цементную мешалку во время приготовления цементного раствора; замерные баки, при помощи которых определяют количество жидкости, закачиваемой в колонну для продавки цементного раствора; двигатель для привода насоса.

Рис. 4. Схема действия цементировочного агрегата при затворении и закачке цементировочного раствора: 1-замерный бак, 2-цементный насос, 3-коробка отбора мощности, 4-коробка передач автомобиля, 5-двигатель, 6-ротационный насос, 7-цементосмеситель, 8-цементный бачок

Для цементирования обсадных колонн в отечественной отечественной практике применяют цементировочные агрегаты (ЦА) различных типов ЦА 320А; ЦА 320С; ЗЦА 400А; УНБ 2-630-50; УНБ-2-160; УНБ2-400-40. Они отличаются друг от друга прежде всего гидравлической мощностью насосов. Для централизованной обвязки цементировочных агрегатов с устьем скважины применяют блок манифольдов. Он состоит из коллектора высокого давления для соединения ЦА с устьем скважины и коллектора низкого давления для распределения воды и продавочной жидкости, подаваемой к ЦА. Блок манифольдов, как правило, оборудован грузоподъемным устройством.

Рис. 5. Агрегат смесительный АСМ - 25: 1 - шасси несущего автомобиля; 2 - редуктор; 3 - сальниковое уплотнение валов мешалок; 4 - коробка раздаточная цепная; 5 - загрузочный шнековый транспортер; б - редуктор загрузочного шнекового транспортера; 7 - смотровой люк; 8 - моечный люк; 9 - указатель уровня; 10 - заливочный трубопровод; 11 - вал мешалки; 12 - резервуар; 13 - выносная опора; 14 - шламовый люк; /5 - донный клапан; 26 - патрубок для соединения с приемным манифольдом ЦА; 17 - коробка раздаточная цепная; I8 - коробка отбора мощностей

В отечественной практике цементирования скважин для приготовления тампонажных растворов применяю цементно-смесительные установки, снабженные смесительными устройствами гидровакуумного типа. Выпускаются: агрегат смесительный ЗАС-30, установка цементно-смесительная УС630, изготавливается по индивидуальным заказам агрегат смесительный АСМ-25.

Цементировочные головки предназначены для промывки скважины и проведения цементирования. Спущенная обсадная колонна оборудуется специальной цементировочной головкой, к которой присоединяются нагнетательные трубопроводы (манифольды) от цементировочных агрегатов. В настоящее время применяются цементировочные головки типа ГЦУ-140-146; ГЦУ-16в; ГЦУ-245; ГЦУ-243; ГЦУ-324; ГЦУ-340. Конструкция цементировочной головки типа ГЦУ рассчитана на максимальное давление 40 МПа. Диаметр обвязываемых колонн этими головками от 140 до 340 мм. Головка состоит из корпуса, крышки с разделительным устройством, трехходовым краном и манометром, двух стопорных винтов, пробковых кранов, цементировочной пробки, элементов обвязки и накидной гайки. Корпус головки имеет семь отводов, к четырем из которых, расположенным в нижней части, присоединены угловые трехходовые пробковые краны, а к верхнему боковому - проходной пробковый кран. В остальные два отвода ввинчены стопоры для поддержания цементировочной пробки. Заливочные (разделительные) пробки предназначены для отделения бурового раствора и продавочной жидкости от цементного раствора при цементировании обсадных колонн и получения сигнала об окончании продавки цементного раствора. При двухступенчатом цементировании используются специальные цементировочные пробки.

1.3.3 Вскрытие пластов и испытание скважин

Для вскрытия продуктивных горизонтов (пластов) в целях их эксплуатации или опробования в эксплуатационной колонне и цементном кольце пробивают отверстия при помощи пулевой или беспулевой перфорации. Перфораторы, соединенные в гирлянды, спускают в скважину на каротажном кабеле. В камеры перфоратора закладывают заряд пороха и запал. При подаче тока по кабелю с поверхности порох воспламеняется и пуля с большой скоростью выталкивается из ствола перфоратора. За один спуск и подъем перфоратор простреливает 6…12 отверстий пулями диаметром 11,0…11,5 мм. Эффективность перфорации пулевым перфоратором часто бывает недостаточна в связи с быстрой потерей энергии пулями при ударе о трубы.

Большой пробивной способностью, обеспечивающей лучшее вскрытие пласта, обладают торпедные перфораторы Ю.А. Колодяжного. Они отличаются от пулевых перфораторов тем, что колонна простреливается снарядами большего диаметра и замедленного действия. Снаряд, войдя в пласт, разрывается и создает дополнительные трещины.

Торпедный перфоратор дает хорошие результаты при вскрытии плотных пород (известняков, песчаников), заглинизированных в процессе бурения или зацементированных при ремонтных работах, а также при простреле скважин многоколонной конструкции.

Широкое распространение получила беспулевая перфорация. В этом случае отверстия в колонне создается не пулями, а фокусированными струями газов, которые возникают при взрыве кумулятивных зарядов. Сущность кумулятивного эффекта заключается в том, что при взрыве заряда, обладающего выемкой, симметричной относительно направления распространения взрывной волны, происходит направленное истечение продуктов взрыва. С появлением беспулевых перфораторов стало возможным создавать отверстия без повреждения колонны и цементного кольца. Кроме того, беспулевая перфорация обеспечивает надежное вскрытие пласта и улучшение проницаемости за счет образования более глубоких каналов, чем при пулевой перфорации.

Применяются корпусные и бескорпусные кумулятивные перфораторы. Как правило, используются полностью разрушающиеся бескорпусные перфораторы, т.е. однократного действия. Перфораторы кумулятивные корпусные выпускаются различных диаметров, в том числе и для спуска через насосно-комгтрессорные трубы (НКТ).

В каждом отдельном случае геологической службой в зависимости от коллекторских свойств пласта, конструкции скважины, температуры и давления в интервале перфорации устанавливается плотность прострела (число отверстий на один погонный метр) и тип перфоратора. Для улучшения связи скважины с продуктивным горизонтом (пластом) может применяться гидропескоструйный метод вскрытия пласта. В скважину на колонне насосно-компрессорных труб спускают струйный аппарат, состоящий из корпуса и сопел. При нагнетании в трубы под большим давлением жидкости с песком она выходит из сопел с большой скоростью, и песок разрушает колонну, цементное кольцо и породу. Гидропескоструйная перфорация имеет следующие преимущества перед другими методами: отверстия в колонне и цементе не имеют трещин; есть возможность регулировать диаметр и глубину отверстий; можно создать горизонтальные и вертикальные надрезы. К недостаткам этого вида перфорации относятся большая стоимость и потребность в громоздком наземном оборудовании.

Последнее мероприятие перед сдачей скважины в эксплуатацию - вызов притока жидкости из горизонта (пласта). Приток жидкости в скважину возможен только в том случае, когда давление на забой в скважине меньше пластового давления. Поэтому все работы по освоению скважин заключаются в понижении давления на забой и очистке забоя от грязи, бурового раствора и песка. Эти работы осуществляются различными способами в зависимости от характеристик горизонта (пласта), величины пластового давления, количества газа, содержащегося в нефти, и технической оснащенности.

Для каждой скважины, подлежащей испытанию, составляется план с учетом технологических регламентов на эти работы. В нем должны быть указаны: число объектов испытания, их геолого-геофизические характеристики, интервалы и плотность перфорации, тип перфоратора, порядок вызова притока в зависимости от коллекторских свойств горизонтов (пластов) конструкции скважин, пластовое давление и температура, допустимый предел снижения давления в эксплуатационной колонне, схемы оборудования лифта и устья, данные об объемах и методах исследования. План утверждается главными инженером и геологом объединения.

Вызов притока и очистка забоя при освоении фонтанных скважин производятся промывкой скважины, нагнетанием в скважину сжатого воздуха (или газа), свабированием или комбинацией этих способов. При промывке глинистый раствор, находящийся в скважине, заменяется водой или нефтью. Благодаря этому давление на забой уменьшается, а также происходит очистка его от глинистой корки и грязи. Промывку осуществляют при собранной арматуре на устье скважины, со спущенными в нее до фильтра насосно-компрессорными трубами. Эти трубы после промывки остаются в скважине для эксплуатационных целей.

Часто скважины осваиваются при помощи сжатого воздуха (или газа). При этом в межтрубное пространство (между эксплуатационной колонной и насосно-компрессорными трубами) компрессором нагнетается сжатый воздух (или газ), вытесняющий жидкость в насосно-компрессорные трубы. В этом случае трубы спускают не до фильтра, а только до глубины, с которой давлением, создаваемым компрессором, можно продавить жидкость. Жидкость в трубах газируется, плотность ее уменьшается, уровень смеси газа и жидкости повышается до выкида и наступает выброс. При дальнейшем нагнетании газа или воздуха в межтрубное пространство плотность жидкости в трубах еще больше уменьшается, что влечет за собой снижение давления на забой и поступление нефти из пласта в скважину.

Главный недостаток этого способа освоения скважины - большое и быстрое снижение уровня жидкости в скважине, вызывающее усиленный приток жидкости из пласта, что ведет к образованию мощных песчаных пробок, прихвату насосно-компрессорных труб и т.д. При освоении скважин поршневанием в спущенные до фильтра насосно-компрессорные трубы опускают на стальном канате поршень или, как его иначе называют, сваб, имеющий клапан, открывающийся вверх. Поршень свободно погружается в жидрегламентов на эти работы. В плане кость, при подъеме же его вверх клапан закрывается и весь столб жидкости, находящийся над поршнем, выносится на поверхность. При непрерывном поршневании уровень жидкости, заполняющей скважину, будет постепенно понижаться. Пластовое давление превысит давление столба жидкости в скважине, и пласт начнет работать. Вызов притока (независимо от способа) на фонтанных скважинах должен производится при собранной фонтанной арматуре.

Освоение скважин, вскрывших пласт с низким давлением, начинают с промывки забоя водным раствором специальных химических реагентов или нефтью. Затем приступают к возбуждению пласта тартанием при помощи желонки. Это длинное узкое ведро с клапаном в днище, которое спускают в скважину на стальном канате. Многократным спуском желонки скважину очищают от грязи, столб жидкости в ней постепенно замещается нефтью, поступающей из пласта.


Подобные документы

  • Методы поиска и разведки нефтяных и газовых месторождений. Этапы поисково-разведочных работ. Классификация залежей нефти и газа. Проблемы при поисках и разведке нефти и газа, бурение скважин. Обоснование заложения оконтуривающих разведочных скважин.

    курсовая работа [53,5 K], добавлен 19.06.2011

  • Физические свойства и месторождения нефти и газа. Этапы и виды геологических работ. Бурение нефтяных и газовых скважин и их эксплуатация. Виды пластовой энергии. Режимы разработки нефтяных и газовых залежей. Промысловый сбор и подготовка нефти и газа.

    реферат [1,1 M], добавлен 14.07.2011

  • История возникновения и особенности развития нефтяных и газовых месторождений. Методы сбора, подготовки, способы транспортировки и хранение газа и нефти, продукты их переработки. Обеспечение технической и экологической безопасности при транспортировке.

    дипломная работа [162,1 K], добавлен 16.06.2010

  • Спуско-подъемные операции, способы их механизации и автоматизации. Объекты по сбору, подготовке и транспортировке нефти, газа и воды. Бурильные и обсадные колонны и их элементы. Документальное обеспечение бурения скважин. Методы интенсификации добычи.

    отчет по практике [494,3 K], добавлен 14.11.2015

  • Понятие о буровой скважине. Классификация и назначение скважин. Методы вскрытия и оборудования забоя, применяемые для извлечения из пластов нефти и газа. Способы воздействия на горные породы. Схема ударного бурения. Спуско-подъёмный комплекс установки.

    курсовая работа [1,9 M], добавлен 24.09.2012

  • Знакомство со скважиной, способы бурения, обустройства. Буровая установка. Фонтанный и насосный методы добычи нефти и газа. Повышение нефтеотдачи пластов. Технические мероприятия для воздействия на призабойную зону пласта. Подземный ремонт скважин.

    отчет по практике [78,2 K], добавлен 24.03.2015

  • Основные сведения о месторождениях нефти и газа, способы их формирования и особенности разведки полезных ископаемых. Сферы применения и режимы эксплуатации различных видов скважин, используемых для добычи. Промысловый сбор и подготовка нефти, газа и воды.

    отчет по практике [3,2 M], добавлен 21.07.2012

  • Разработка нефтяных месторождений. Техника и технология добычи нефти. Фонтанная эксплуатация скважин, их подземный и капитальный ремонт. Сбор и подготовка нефти на промысле. Техника безопасности при выполнении работ по обслуживанию скважин и оборудования.

    отчет по практике [4,5 M], добавлен 23.10.2011

  • Виды скважин, способы добычи нефти и газа. Вскрытие пласта в процессе бурения. Причины перехода газонефтепроявлений в открытые фонтаны. Общие работы по ремонту скважин. Обследование и подготовка ствола скважины. Смена электрического центробежного насоса.

    учебное пособие [1,1 M], добавлен 24.03.2011

  • Происхождение нефти, образование месторождений. Оборудование, необходимое для бурения скважин. Транспортировка нефти и газа на нефтеперерабатывающие заводы и электростанции. Особенности переработки нефти. Добыча растворенного газа в Томской области.

    реферат [52,3 K], добавлен 27.11.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.