Науки о Земле

Строение и происхождение солнечной системы. Строение Земли, вещественный состав. Эндогенные геологические процессы. Основные закономерности развития земной коры. Распределение воды на земном шаре. Классификация подземных вод и условия их залегания.

Рубрика Геология, гидрология и геодезия
Вид учебное пособие
Язык русский
Дата добавления 23.02.2011
Размер файла 133,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

НАУКИ О ЗЕМЛЕ

Геология. Строение и происхождение Вселенной

Вселенная - это весь существующий материальный мир, безграничный во времени и пространстве и бесконечно разнообразный по формам, которые принимает материя в процессе своего развития. Часть Вселенной, охваченная астрономическими наблюдениями, называется Метагалактикой, или нашей Вселенной. Размеры метагалактики очень велики: радиус космологического горизонта составляет 15-20 млрд. световых лет.

Космология - один из тех разделов естествознания, которые всегда находятся на стыке наук. Строение и эволюция Вселенной изучаются космологией. Космология использует достижения и методы физики, математики, философии. Предмет космологии - весь окружающий нас мегамир, вся «большая Вселенная», и задача состоит в описании наиболее общих свойств, строения и эволюции вселенной.

Современная астрономия не только открыла грандиозный мир галактик, но и обнаружила уникальные явления: расширение Метагалактики, космическую распространенность химических элементов, реликтовое излучение, свидетельствующие о том, что Вселенная непрерывно развивается.

С эволюцией структуры Вселенной связано возникновение скоплений галактик, обособление и формирование звезд и галактик, образование планет и их спутников. Сама Вселенная возникла примерно 20 млрд. лет назад из некоего плотного и горячего протовещества. Существует точка зрения, что с самого начала протовещество с гигантской скоростью начало расширятся. На начальной стадии это плотное вещество разлеталось во всех направлениях и представляло собой однородную бурлящую смесь неустойчивых, постоянно распадающихся при столкновении частиц. Остывая и взаимодействуя на протяжении миллионов лет, вся эта масса рассеянного в пространстве вещества концентрировалась в большие и малые газовые образования, которые в течение сотен миллионов лет, сближаясь и сливаясь, превращались в громадные комплексы. В этих комплексах, в свою очередь возникали более плотные участки - там впоследствии и образовались звезды и даже целые галактики.

В результате гравитационной нестабильности в разных зонах образовавшихся галактик могут сформироваться плотные «протозвездные образования» с массами, близкими к массе Солнца. Начавшийся процесс сжатия будет ускоряться под влиянием собственного поля тяготения. Процесс этот сопровождает свободное падение частиц облака к его центру - происходит гравитационное сжатие. В центре облака образуется уплотнение, состоящее из молекулярного водорода и гелия. Возрастание плотности и температуры в центре приводит к распаду молекул на атомы, ионизации атомов и образованию плотного ядра протозвезды.

Существует гипотеза о цикличности состояния Вселенной. Когда-то возникнув из сверхплотного сгустка материи, Вселенная, возможно, уже в первом цикле породила внутри себя миллиарды звездных систем и планет. Н затем Вселенная начинает стремиться к тому состоянию, с которого начиналась история цикла. В конце концов вещество Вселенной возвращается в первоначальное сверхплотное состояние, уничтожив всю жизнь, попавшуюся на пути. И так повторяется каждый раз, в каждом цикле на протяжении вечности.

К началу 30-х годов ХХ в. сложилось мнение, что главные составляющие Вселенной - галактики, каждая из которых в среднем состоит из 100 млрд. звезд. Солнце вместе с планетной системой входит в нашу Галактику, основную массу звезд которой мы наблюдаем в форме Млечного Пути. Кроме звезд и планет, Галактика содержит значительное количество разреженных газов и космической пыли.

Строение и происхождение солнечной системы

Согласно современным представлениям, планеты солнечной системы образовались из холодного газопылевого облака, окружавшего Солнце миллиарды лет назад. Такая точка зрения наиболее последовательно отражена в гипотезе российского ученого, академика О.Ю. Шмидта (1891-1956), который показал, что проблемы космологии можно решить согласованными усилиями астрономии и наук о Земле, прежде всего географии, геологии, геохимии. В основе гипотезы О.Ю. Шмидта лежит мысль об образовании планет путем объединения твердых тел и пылевых частиц. Возникшее около Солнца газопылевое облако сначала состояло на 98% из водорода и гелия. Остальные элементы конденсировались в пылевые частицы. Беспорядочное движение газа в облаке быстро прекратилось: оно сменилось спокойным движением облака вокруг Солнца.

Пылевые частицы сконцентрировались в центральной плоскости, образовав слой повышенной плотности. Когда плотность слоя достигла некоторого критического значения, его собственное тяготение стало «соперничать» с тяготением Солнца. Слой пыли оказался неустойчивым и распался на отдельные пылевые сгустки. Сталкиваясь друг с другом, они образовали множество сплошных плотных тел. Наиболее крупные из них приобретали почти круговые орбиты и в своем росте начали обгонять другие тела, став потенциальными зародышами будущих планет. Как более массивные тела, новообразования присоединяли к себе оставшееся вещество газопылевого облака. В конце концов сформировалось девять больших планет, движение которых по орбитам остается устойчивым на протяжение миллиардов лет.

С учетом физических характеристик все планеты делятся на две группы. Одна из них состоит из сравнительно небольших планет земной группы - Меркурия, Венеры, Земли и Марса. Их вещество отличается относительно высокой плотностью: в среднем около 5,5 г/см3, что в 5,5 раза превосходит плотность воды. Другую группу составляют планеты -гиганты: Юпитер, Сатурн, Уран и Нептун. Эти планеты обладают огромными массами. Так, масса Урана равна 15 земным массам, а Юпитера- 318. Состоят планеты-гиганты главным образом из водорода и гелия, а средняя плотность их вещества близка к плотности воды. Судя по всему, у этих планет нет твердой поверхности, подобной поверхности планет земной группы. Особое место занимает девятая планета - Плутон, открытая в марте 1930 г. По своим размерам она ближе к планетам земной группы. Не так давно обнаружено, что Плутон - двойная планета: она состоит из центрального тела и очень большого спутника. Оба небесных тела обращаются вокруг общего центра масс.

В процессе образования планет их деление на две группы обусловливается тем, что в далеких от Солнца частях облака температура была низкой и все вещества, кроме водорода и гелия, образовали твердые частицы. Среди них преобладал метан, аммиак и вода, определившие состав Урана и Нептуна. В составе самых массивных планет - Юпитера и Сатурна, кроме того, оказалось значительное количество газов. В области планет земной группы температура была значительно выше, и все летучие вещества (в том числе метан и аммиак) остались в газообразном состоянии, и, следовательно, в состав планет не вошли. Планеты этой группы сформировались в основном из силикатов и металлов.

Общие сведенья о земле

В определенном плане Земля выделена самой природой: в Солнечной системе только на этой планете существуют развитые формы жизни, только на ней локальное упорядочение вещества достигло необычайно высокой ступени, продолжая общую линию развития материи. Именно на Земле пройден сложнейший этап самоорганизации, знаменующий глубокий качественный скачок к высшим формам упорядоченности.

Отличие планет земной группы от планет-гигантов очевидны. Но и среди ближайших соседей Земли нет двух одинаковых планет: все они различаются размерами, физико-химическими параметрами, строением недр и поверхностей, атмосферами и другими характеристиками. Основными различия определены начальными условиями формирования планет - химическим составом, плотностью вещества в тех частях протопланетного облака, где эти планеты формировались, расстоянием от Солнца, резонансными взаимодействиями с другими планетными телами и Солнцем.

Прямые исследования других ближних планет только начаты. Тем не менее, имеющиеся сведения уже позволяют проводить сравнительное изучение внешних оболочек Земли и других планет Солнечной системы. На этой основе возникло новое научное направление, названное сравнительной планетологией.

Земля - самая большая планета в своей группе. Но даже такие размеры и масса оказываются минимальными, при которых планета способна удерживать свою газовую атмосферу. Земля интенсивно теряет водород и некоторые другие легкие газы, что подтверждают наблюдения за так называемым шлейфом Земли. Венера почти равна по размерам и массе Земли, но она ближе к Солнцу и получает от него больше тепла. Поэтому она давно потеряла весь свободный водород. У остальных двух планет этой группы атмосфера либо отсутствует (Меркурий), либо сохранилась в очень разряженном состоянии (Марс).

Наиболее близкие к Солнцу планеты - Меркурий и Венера - очень медленно вращаются вокруг оси, с периодом в десятки-сотни земных суток. Медленное вращение этих планет, связано с их резонансными взаимодействиями с Солнцем и друг с другом. Земля и Марс вращаются почти с одинаковыми периодами около 24 ч. Земля и Венера также образуют резонансную структуру. В этой группе планет только Венера имеет обратное вращение (противоположное направлению вращения Солнца вокруг своей оси), она как бы опрокинута «вверх ногами» на своей орбите. Наконец, только Земля в своей группе имеет сильное собственное магнитное поле, более чем на два порядка величины превосходящее значения магнитных полей у других планет.

Ни одна из планет земной группы не имеет развитой системы спутников, что характерно для планет группы Юпитера. Планетоподобный спутник Земли - Луна - близок по размерам к планете Меркурий. Два спутника Марса - Фобос и Деймос - имеют неправильную форму, напоминая небольшие астероиды. До сих пор, как о происхождении Луны, так и о происхождении спутников Марса нет ясного представления.

Три из четырех планет земной группы обладают заметной атмосферой. Атмосфера каждой планеты несет отпечаток особенностей ее развития. Атмосфера Земли кардинально отличается от атмосфер других планет: в ней низкое содержание углекислого газа, высоко содержание молекулярного кислорода и относительно велико содержание паров воды. Две причины создают выделенность атмосферы Земли: вода океанов и морей хорошо поглощает углекислый газ, а биосфера насыщает атмосферу молекулярным кислородом, образующимся в процессе растительного фотосинтеза. Расчеты показывают, что если освободить всю поглощенную и связанную в океанах углекислоту, убрав одновременно из атмосферы весь накопленный в результате жизнедеятельности растений кислород, то состав земной атмосферы в своих основных чертах стал бы подобен составу атмосфер Венеры и Марса.

В атмосфере Земли насыщенные водяные пары создают облачный слой, охватывающий значительную часть планеты. Облака Земли входят важнейшим элементом в системе гидросфера-атмосфера-суша.

Рельефы поверхности Земли и двух ближайших к ней планет существенно различны, что объясняется, прежде всего, различиями вулканических и геологических процессов на каждой из них. Считают, что тектоническая активность может служить мерилом уровня жизнеспособности планеты в целом. Сокращение, а тем более прекращение такой деятельности рассматривается как признак умирания планеты, завершения цикла ее эволюционного развития. Ведь суть такого развития - активный обмен веществом и энергией между недрами и поверхностью планеты, в ходе которого формируются и поддерживаются атмосфера, гидросфера и господствующие типы рельефа поверхности. С прекращением тектонической деятельности планета превращается в мертвое небесное тело, на котором преобладают процессы деградации.

На Земле тектонические процессы активно протекают и в наши дни, ее геологическая история далека от завершения. Палеонтологи утверждают, что в эпоху ранней молодости Земли ее тектоническая активность была еще выше. Современный рельеф планеты сложился и продолжает видоизменяться под влиянием совместного действия на ее поверхности тектонических, гидросферных, атмосферных и биологических процессов. На других планетах такое сочетание факторов отсутствует.

Рельеф земной поверхности в целом характеризуется глобальной асимметрией двух полушарий (северного и южного): одно из них представляет собой гигантское пространство, заполненное водой. Это океаны, занимающие более 70 % всей поверхности. В другом полушарии сосредоточены поднятия коры, образующие континенты. Океаническая и континентальная разновидности коры различаются и по возрасту, и по химико-геологическому составу. Рельеф океанического дна отличен от континентального рельефа.

На границах литосферных плит, называемых геосинклиналиями, происходит либо сжатие, либо растяжение коры, что зависит от направления местного горизонтального смещения плит.

Успехи науки и техники сделали доступным прямое изучение планет Солнечной системы, открыв принципиально новые возможности для сравнительного познания нашей собственной планеты. Тем самым открыта новая страница в постижении окружающего нас мира, но на ней пока записаны лишь первые строки. Все еще остается нерешенным вопрос: что выделило Землю среди семейства планет одного с ней типа так, что она смогла стать обителью жизни? Поиск ответа на этот вопрос может проходить только на путях движения от частного к общему, от планеты Земля с существующей на ней жизнью к осознанию космической природы жизни - этого важнейшего звена самоорганизации вещества в процессе развития материи.

Форма и размеры Земли

Астрономические наблюдения, а также измерения из космоса и непосредственные замеры на поверхности Земли позволили определить форму и размеры нашей планеты, ее массу, гравитационное и магнитное поля, величину теплового потока, идущего из недр, и ряд физических свойств земной поверхности. Средний радиус Земли равен 6371 км, при этом экваториальный радиус составляет 6378,86 км, а полярный - 6356,78 км. Экваториальное вздутие и полярное сжатие возникли из-за вращения Земли вокруг своей оси и ее наклона. В целом же форма Земли очень близка к эллипсоиду вращения, который носит название геоида.

Масса Земли составляет 5,976*1027 г, или 5.976*109трлн. т. Объем Земли 1,083-1027 см3.

Зная объем и массу Земли, можно определить ее среднюю плотность. Она равна 5,52 г/см3, или в 5,52 раза выше плотности воды. Лабораторными исследованиями установлено, что плотность горных пород на земной поверхности равна 2,8 г/см3. Это значит, что в ее недрах должны находиться горные породы с плотностью, в несколько раз превышающей среднюю плотность Земли.

Ускорение свободного падения на поверхности Земли определяется с помощью измерительных приборов, называемых гравиметрами. За единицу измерения принят 1 см/с2. Современные гравиметры допускают измерение силы тяжести с точностью до 0,001 см/с2. Ускорение свободного падения на экваторе равно в среднем 978,049 см/с2. В нем учтено центробежное ускорение, создаваемое вращением Земли и равное 3,392 см/с2. На полюсах центробежное ускорение отсутствует, и поэтому там ускорение свободного падения больше, чем на экваторе, всего на 1/189.

В разных точках Земли существуют отклонения от средней величины ускорения свободного падения. Это так называемые гравитационные аномалии. Последние нередко достигают нескольких сот см/с2.

Хорошо известно, что наша планета обладает магнитным полем. Каждый может по компасу проверить существование земного магнетизма, стоит только взглянуть на его стрелку. Компас был изобретен в глубокой древности в Китае и до настоящего времени верно служит путешественникам и мореходам. Единицей измерения магнитной индукции служит тесла (Тл). Современные магнитометры, т. е. приборы, с помощью которых измеряется индукция геомагнитного поля, обладают высокой точностью.

Положение магнитных полюсов Земли не совпадает с географическим Северный конец магнитной стрелки притягивается к полюсу, расположенному около Гренландии (73° с. ш. и 100° з. д.), а южный - к полюсу, находящемуся в австралийском секторе Антарктики (68° ю. ш. и 134° в. д.). Величина индукции геомагнитного поля максимальная у магнитных полюсов (0,7*10-4 Тл у Южного и 0,6*10-4 Тл у Северного) и минимальная у экватора (0,42*10-4 Тл).

Оболочки Земли

Современная Земля состоит из нескольких неоднородных оболочек - атмосферы, гидросферы, биосферы, литосферы, под литосферой в глубоких недрах находятся мантия и ядро.

Атмосфера - внешняя газовая оболочка, ограниченная снизу твердой и жидкой поверхностью Земли. В настоящее время земная атмосфера содержит 5,3*103 трлн. т воздуха, что составляет одну миллионную часть массы всей Земли. Давление воздуха на уровне моря в среднем равно 1,013*105 Па, а плотность- 1,3* 10-3 г/см3.

Атмосфера Земли состоит из азота (78,09%), кислорода (20,94%), аргона (0,93%), углекислого газа (0,033%), а также неона, гелия, метана, ксенона, криптона, водорода и Других газов, содержание которых незначительно. Кроме того, в воздухе имеются термодинамически активные примеси. Важнейшей такой примесью в атмосфере является водяной пар - около 12,4 трл. т. Он способен конденсироваться с образованием облаков и тумана.

Частицы водяного пара, и особенно облачность, перераспределяют потоки коротко и длинноволнового изучения в атмосфере. При этом они вносят большой вклад в развитие парникового эффекта. Атмосфера свободно пропускает солнечную радиацию до земной поверхности, но поглощает собственное излучение Земли и задерживает поток тепла, идущий в космос от нагретой земной поверхности.

Другими термодинамическими активными примесями в атмосфере являются углекислый газ, озон и различные мельчайшие взвешенные частицы, или аэрозоль. Углекислый газ играет огромную роль в развитии парникового эффекта.

Озона в атмосфере очень мало, всего одна миллионная доля, но его роль в развитии жизни на Земле весьма велика. Озон в основном сконцентрирован на высоте 17-25 км, здесь он образуется из молекулярного кислорода под действием ультрафиолетовых лучей в результате фотохимических реакций. Вся ультрафиолетовая радиация Солнца, губительная для живых организмов, поглощается озоновым экраном, и тем самым обеспечивается безопасность жизни на суше и на поверхности океана. Водная поверхность также поглощает ультрафиолетовую радиацию, и поэтому сотни миллионов лет назад, когда еще не существовало озонового экрана, жизнь зародилась и развивалась в глубинах океанов и морей. Аэрозоль рассеивает солнечную радиацию, частично отражает ее, а частично поглощает. Поэтому его роль для Земли двояка. С одной стороны, он препятствует прохождению солнечного тепла к земной поверхности, а с другой - поглощая солнечную радиацию, затем излучает инфракрасный спектр и тем самым увеличивает действие парникового эффекта.

По характеру распределения температуры в атмосфере различают несколько слоев. Средняя температура воздуха у земной поверхности +14,3°C. В тропосфере (нижнем слое атмосферы) протекают погодообразующие процессы. Она ограничена во внетропических широтах высотой 8-12 км, а в экваториальной зоне и тропиках до высоты 16-17 км. Воздух в тропосфере нагревается от поверхности Земли, и поэтому с высотой он становится все холоднее - на каждый 1 км высоты температура в среднем понижается на 6-6,5°С. Здесь формируются и развиваются атмосферные вихри, в том числе циклоны и антициклоны. В ней сосредоточен почти весь водяной пар и образуются облака.

Стратосфера располагается выше и занимает слой от 8-17 до 50-55 км. Здесь также образуются крупные атмосферные вихри, а горизонтальный перенос воздуха сопровождается восходящими и нисходящими движениями.

Характерной особенностью стратосферы является повышение температуры с высотой на 1-2° на каждый километр. На верхней границе стратосферы температура не только оказывается равной 0°С, но и нередко даже выше этой точки. В стратосфере находится озоновый экран. Наибольшая его концентрация приходится на высоту от 18 до 24 км.

Мезосфера расположена на высоте от 50-55 до 80 км. Здесь температуры вновь понижаются и на ее верхней границе достигают -60/-100°С. На каждый километр высоты в мезосфере температура снижается на 2-3°.

В следующем слое - термосфере температура вновь увеличивается. На высоте 100 км она переходит нулевую отметку, а в слое 150-200 км достигает +500°С. На ее верхней границе, на высоте около 800 км, температура определяется в +2000°C. Здесь происходит интенсивное поглощение ультрафиолетовой радиации Солнца, нагрев и ионизация атмосферы. В мезосфере и нижней части термосферы образуются электрически заряженные ионы. Поэтому слой, расположенный на высоте от 60 до 400 км, обычно называют ионосферой.

Масса гидросферы составляет 1,46*106 трлн. т. Она в 275 раз больше массы атмосферы, но всего лишь равна 1/4000 массы всей Земли. Около 94% массы гидросферы представлено водами Мирового океана, 4% приходится на подземные воды, почти 1,8%-на ледники Антарктиды и Гренландии, менее 0,2% - на горные ледники, реки и озера.

Площадь Мирового океана составляет 70,8% площади земного шара, а его средняя глубина 3880 м. Континенты окаймляются мелководной зоной с глубинами до 200 м - это материковая отмель (или шельф), занимающая около 8% площади Мирового океана. Ложе Мирового океана с глубинами более 3 км охватывает более 77% всей его площади. Наибольшая глубина зафиксирована в тихоокеанском Марианском глубоководном желобе - 11023 м.

В пределах океанов выделяются отдельные крупные поднятия, подводные горы и протяженные хребты. Последние, так называемые срединно-океанические хребты образуют непрерывную глобальную цепь длиной свыше 60 тыс. км. Они возвышаются над дном котловин на 3-4 км и нарушают глубинную циркуляцию океанических вод.

В океанических водах растворено огромное количество химических элементов и соединений, которые, как известно, в растворе распадаются на положительные и отрицательные ионы, называемые соответственно катионами и анионами. Главными катионами являются натрий, магний, кальций, калий и стронций, а главными анионами - Cl, S04, НС03, Вг, С02.

В морской воде находится и некоторое количество газов. Всего в океане присутствует 140 трлн. т углекислого газа (это почти в 60 раз больше, чем в атмосфере) и 8 трлн. т кислорода.

Верхний слой каменной оболочки Земли, или литосферы, отделенный от нижележащих слоев так называемой поверхностью Мохоровичича, именуется земной корой. Поверхность Мохоровичича является границей раздела между земной корой и мантией, здесь происходит скачкообразное увеличение скорости распространения сейсмических волн. Различают два основных типа земной коры: континентальную, из которой состоят материки, и океаническую, образующую дно океанов. Первая гораздо старше: некоторые ее участки датируются в 3,8 млрд. лет, тогда как у океанической коры возраст немногим более 150 млн. лет. Средняя мощность континентальной коры равна 25-75 км, а океанической - намного меньше.

Верхнюю часть континентальной коры слагают осадочные породы мощностью около 3 км, средней плотностью 2,5 г/см3. Скорость распространения сейсмических волн изменяется от 2 до 5 км/с. Ниже залегает гранитно-метаморфический слой средней мощностью около 17 км. Плотность его составляет 2,6-2,8 г/см3, а скорость прохождения волн равна 5,5-6,5 км/с. В этом слое сосредоточена основная масса радиоактивных элементов и соединений. Ниже находится базальтовый слой. Средняя его мощность равна 15 км, плотность 2,9- 3,3 г/см3, а скорость прохождения в нем волн 6,4 - 7,3 км/с.

Совсем по-иному выглядит разрез океанической коры. Под слоем рыхлых осадков средней мощностью всего 0,7 км и со скоростями прохождения сейсмических волн 1,5-1,8 км/с находятся два слоя. Первый, мощностью около 1,7 км, слагается преимущественно базальтами, а нижний, мощностью около 5 км, со скоростью прохождения волн примерно 6,7 км/с состоит из преобразованных путем гидратации (реакции с водой) горячих глубокозалегающих ультраосновных пород - серпентинитов.

Для поверхности океанической коры характерны специфические формы рельефа. Это срединно-океанические хребты, в осевой части которых располагаются рифтовые долины, представляющие собой протяженные провалы с крутыми боковыми стенками. Другими интересными формами являются глубоководные желоба. Их ширина не превышает нескольких десятков километров, а длина составляет сотни километров. Глубоководные желоба располагаются на периферии океанов и как бы отделяют от океана островные дуги. Примерами служат Курило-Камчатский и Алеутский желоба.

На Земле выделяется еще одна оболочка, называемая биосферой. Это глобальная система, обладающая свойствами саморегуляции. Она имеет свой «вход» и «выход». «Вход» - это поток солнечной энергии, поступающей из космоса, а «выход» - образования, возникающие в результате жизнедеятельности организмов. Верхней границей биосферы служит озоновый экран, поглощающий губительные для жизни ультрафиолетовые лучи. Примером саморегуляции является Мировой океан. Реки ежегодно выносят в океан около 1,5 млн.т растворенного карбоната кальция, а также большое количество других элементов и соединений. Однако при этом солевой состав океанической воды не меняется. В чем же дело? Оказывается, организмы в процессе своей жизнедеятельности используют для построения скелета карбонат кальция. Весь его избыток расходуется организмами. Но после гибели организмов раковины выпадают в осадок.

Нижняя граница биосферы довольно расплывчата. Организмы существуют в глубоких зонах океана. Даже в глубоководной Марианской впадине были обнаружены живые организмы. Не только бактерии, но и различные микроорганизмы по трещинам и порам проникают в осадочный слой и толщу рыхлых пород дна океана вплоть до базальтового слоя океана и гранитно-метаморфического слоя на континентах. По-видимому, этими слоями надо ограничивать биосферу.

В современной биосфере существует около 2 млн., видов живых организмов, каждый из которых, в свою очередь, миллионы и миллионы особей.

Академик Владимир Иванович Вернадский, разрабатывая проблему роли органического мира в жизни нашей планеты, пришел к выводу, что живое вещество принимает активное участие во всех геологических процессах на поверхности Земли и в образовании атмосферы.

Строение Земли. Вещественный состав.

Земная кора

1 - Толщина Земной коры (внешней оболочки) изменяется от нескольких километров (в океанических областях) до нескольких десятков километров (в горных районах материков). Сфера земной коры очень небольшая, на ее долю приходится всего около 0,5% общей массы планеты. Основной состав коры - это окислы кремния, алюминия, железа и щелочных металлов. В составе континентальной коры, содержащей под осадочным слоем верхний (гранитный) и нижний (базальтовый), встречаются наиболее древние породы Земли, возраст которых оценивается более чем в 3 млрд. лет. Океаническая же кора под осадочным слоем содержит в основном один слой, близкий по составу к базальтовым. Возраст осадочного чехла не превышает 100-150 миллионов лет.

От низлежащей мантии земную кору отделяет во вмогом еще загадочный Слой Мохо (назван так в честь сербского сейсмолога Мохоровичича, открывшего его в 1909 году), в котором скорость распространения сейсмических волн скачкообразно увеличивается.

Мантия

2 - На долю Мантии приходится около 67% общей массы планеты. Твердый слой верхней мантии, распространяющийся до различных глубин под океанами и континентами, совместно с земной корой называют литосферой - самой жесткой оболочкой Земли. Под ней отмечен слой, где наблюдается некоторое уменьшение скорости распространения сейсмических волн, что говорит о своеобразном состоянии вещества. Этот слой, менее вязкий и более пластичный по отношению к выше и ниже лежащим слоям, называют астеносферой. Считается, что вещество мантии находится в непрерывном движении, и высказывается предположение, что в относительно глубоких слоях мантии с ростом температуры и давления происходит переход вещества в более плотные модификации. Такой переход подтверждается и экспериментальными исследованиями.

3 - В нижней мантии на глубине 2900 км отмечается резкий скачок не только в скорости продольных волн, но и в плотности, а поперечные волны сдесь исчезают совсем, что указывает на смену вещественного состава пород. Это внешняя граница ядра Земли.

Ядро

4,5 - Земное ядро открыто в 1936 году. Получить его изображение было чрезвычайно трудно из-за малого числа сейсмических волн, достигавших его и возвращавшихся к поверхности. Кроме того, экстремальные температуры и давления ядра долгое время трудно было воспроизвести в лаборатории. Земное ядро разделяется на 2 отдельные области: жидкую (внешнее ядро) и твердую (внутреннее), переход между ними лежит на глубине 5156 км. Железо - элемент, который соответствует сейсмическим свойствам ядра и обильно распространен во Вселенной, чтобы представить в ядре планеты приблизительно 35% ее массы. По современным данным, внешнее ядро представляет собой вращающиеся потоки расплавленного железа и никеля, хорошо проводящие электричество. Именно с ним связывают происхождение земного магнитного поля, считая, что, электрические токи, текущие в жидком ядре, создают глобальное магнитное поле. Слой мантии, находящийся в соприкосновении с внешним ядром, испытывает его влияние, поскольку температуры в ядре выше, чем в мантии. Местами этот слой порождает огромные, направленные к поверхности Земли тепломассопотоки - плюмы.

6 - внутренее твердое ядро не связано с мантией. Полагают, что его твердое состояние, несмотря на высокую температуру, обеспечивается гигантским давлением в центре Земли. Высказываются предположения о том, что в ядре помимо железоникелевых сплавов должны присутствовать и более легкие элементы, такие как кремний и сера, а возможно, кремний и кислород. Вопрос о состоянии ядра 3емли до сих пор остается дискуссионным. По мере удаления от поверхности увеличивается сжатие, которому подвергается вещество. Расчеты показывают, что в земном ядре давление может достигать 3 млн. атм. При зтом многие вещества как бы металлизируются - переходят в металлическое состояние. Существовала даже гипотеза, что ядро Земли состоит из металлического водорода.

Эндогенные геологические процессы

Магматизм

Магматизм - термин, объединяющий эффузивные (вулканизм) и интрузивные (плутонизм) процессы в развитии складчатых и платформенных областей. Под магматизмом понимают совокупность всех геологических процессов, движущей силой которых является магма и её производные.

Магматизм является проявлением глубинной активности Земли; он тесно связан с ее развитием, тепловой историей и тектонической эволюцией.

Вулканы - геологические образования на поверхности земной коры или коры другой планеты, где магма выходит на поверхность, образуя лаву, вулканические газы, камни и пирокластические потоки. Вулканы классифицируются по форме: щитовидные, стратовулканы, шлаковые конусы, купольные; активности: действующие, спящие, потухшие; местонахождению: наземные, подводные, подледниковые.

Современные действующие вулканы представляют собой яркое проявление эндогенных процессов, доступных непосредственному наблюдению, сыгравшее огромную роль в развитии геологической науки. Однако изучение вулканизма имеет не только познавательное значение. Действующие вулканы наряду с землетрясениями представляют собой грозную опасность для близко расположенных населенных пунктов.

Интрузивный магматизм - происходит, если магма не может выйти на поверхность. На глубине она застывает и внедряется между пластами горных пород, заполняя пустоты и полости. При этом возникают различные магматические тела причудливых форм, которые называют интрузиями.

Движение земной коры

Колебательные движения земной коры, медленные поднятия и опускания земной коры, происходящие повсеместно и непрерывно. Благодаря им земная кора никогда не остаётся в покое: она всегда разделена на участки, одни из которых поднимаются, другие прогибаются. Колебательные движения земной коры происходили на протяжении всех прошлых геологических периодов и продолжаются сейчас. Они определяют размещение и изменение очертаний суши и моря на поверхности Земли, лежат в основе образования и развития ее рельефа. В развитии волновых Колебательных движений земной коры наблюдаются различные режимы, из которых основные - геосинклинальный и платформенный. В геосинклиналях волновые Колебательные движения земной коры очень контрастны и имеют большую амплитуду: узкие (в несколько десятков км) зоны поднятия и прогибания тесно примыкают друг к другу и часто разделены глубинными разломами.

Предполагается связь Колебательных движениях земной коры с изменениями плотности материала в верхней мантии и в глубине земной коры и с его перемещениями. Поскольку современные колебательные движения отражают процессы, происходящие в глубинах Земли, при изучении причин таких движений приходится сталкиваться с большим разнообразием явлений. Это обстоятельство чрезвычайно затрудняет изучение таких движений.

Землетрясения - подземные толчки и колебания поверхности Земли, вызванные естественными причинами (главным образом тектоническими процессами) или искусственными процессами (взрывы, заполнение водохранилищ, обрушением подземных полостей горных выработок). Небольшие толчки могут вызывать также подъём лавы при вулканических извержениях. Причиной землетрясения является быстрое смещение участка земной коры как целого в момент пластической (хрупкой) деформации упруго напряжённых пород в очаге землетрясения. Большинство очагов землетрясений возникает близ поверхности Земли.

Тектонические нарушения земной коры.

Под складчатыми тектоническими нарушениями пластов гор-ных пород подразумеваются изгибы слоев без нарушения их сплошности. Складки различаются по размерам, причем мелкие нередко осложняют крупные, по форме, по происхождению.

Складчатые и разрывные деформации (нарушения) пластов земной коры на фоне общего тектонического поднятия территории приводят к образованию гор. Поэтому складчатые и разрывные движения объединяют под общим названием орогенических (от греч. ого - гора, genos - рождение), т.е. движений, создающих горы (орогены).

При горообразовании темпы поднятия всегда интенсивнее про-цессов разрушения и сноса материала.

Складчатые и разрывные тектонические движения сопровожда-ются, особенно в горах, магматизмом, метаморфизмом горных пород и землетрясениями.

Метаморфизм.

Метаморфизм - процесс твердофазного минерального и структурного изменения горных пород под воздействием температуры и давления в присутствии флюида.

Выделяют изохимический метаморфизм - при котором химический состав породы меняется несущественно, и не изохимический метаморфизм (метасоматоз) для которого характерно заметное изменение химического состава породы, в результате переноса компонентов флюидом.

По размеру ареалов распространения метаморфических пород, их структурному положению и причинам метаморфизма выделяются:

· Региональный метаморфизм который затрагивает значительные объемы земной коры, и распространен на больших площадях.

· Метаморфизм сверхвысоких давлений

· Контактовый метаморфизм приурочен к магматическим интрузиям и происходит от тепла остывающей магмы.

· Динамометаморфизм происходит в зонах разломов, связан со значительной деформацией пород.

· Импактный метаморфизм происходит при ударе метеорита о поверхность планеты.

· Автометаморфизм

Основными факторами метаморфизма являются температура, давление и флюид.

С ростом температуры происходят метаморфические реакции с разложением водосодержащих фаз (хлориты, слюды, амфиболы). С ростом давления происходят реакции с уменьшением объема фаз. При температурах более 600 С начинается частичное плавление некоторых пород, образуются расплавы, которые уходят на верхние горизонты, оставляя тугоплавкий остаток - рестит.

Флюидом называются летучие компоненты метаморфических систем. Это первую очередь вода и углекислый газ. Реже роль могут играть кислород, водород, углеводороды, соединения галогенов и некоторые другие. В присутствии флюида область устойчивости многих фаз (особенно содержащих эти летучие компоненты) изменяются. В их присутствии плавление горных пород начинается при значительно более низких температурах.

Основные закономерности развития земной коры.

Историческая геология - наука о геологической истории нашей планеты. Она рассказывает о самых существенных событиях, которые происходили на Земле: об особенностях формирования горных пород в различные периоды геологической истории, об органическом мире и его изменениях, о тектонических движениях и магматизме, об изменениях очертаний материков и океанов, о непрерывно менявшейся физико-географической обстановке, климате и о многих других событиях в длительной и сложной геологической истории Земли. Повествуя о геологическом прошлом, историческая геология помогает делать вывод о закономерностях развития Земли, о структуре земной коры и о размещении в ней полезных ископаемых.

Много задач решает историческая геология, главными из них являются следующие: определение возраста горных пород, восстановление физико-географических условий прошлых эпох, восстановление движений земной коры и истории развития ее структуры, установление закономерностей геологического развития Земли и земной коры в особенности. Эти задачи решаются при помощи различных методов, основные из них описаны ниже.

Определение возраста горных пород - без установления возраста горных пород невозможно восстановить геологическую историю, нельзя правильно составить геологическую карту и по-научному вести поиски и разведку полезных ископаемых.

Большинство горных пород, слагающих земную кору, состоит из слоев. Определением возраста слоев, установлением последовательности их формирования, сопоставлением и прослеживанием одновозрастных слоев на больших расстояниях занимается стратиграфия.

Существуют два понятия о геологическом возрасте горных пород: относительный возраст и абсолютный возраст. Относительный - это возраст одних горных пород по отношению к другим (одни старше, другие моложе); абсолютный - это возраст в единицах летосчисления (обычно - миллионы, десятки и сотни миллионов лет).

Все методы определения относительного возраста объединяются в две группы: методы палеонтологические и непалеонтологические. Основную роль играют палеонтологические методы. Они являются универсальными, так как позволяют решать все задачи, поставленные перед стратиграфией.

Гидрология и годрометрия. Распределение воды на земном шаре

Тип воды

 Объем воды (куб.миля)*

 % от мировых запасов воды

 Вода пресных озер

30000

0,009

 Соленые озера и внутренние моря

25000

0,008 

 Реки и ручьи

300 

0,0001

 Всего поверхностных вод

55300

0,017

 Влажность почвы

16000

0,005

 Подземные воды (до 1мили в глубину)

1000000

0,31 

 Глубокозалегающие воды (от 1мили в глубину)

1000000 

0,31

 Всего внутренних вод

2016000

0,625

 Ледниковые образования

7000000 

2,15 

Атмосфера

3100

0,001

Океаны

317000000

97,2

Общее количество 

326000000 

100 

На Земле практически везде есть вода, только в одних местах ее больше, а в других меньше. Почти вся вода находится в океанах, и только около 3% ее приходится на слой, начинающийся с глубины примерно 5 км ниже поверхности земной коры и заканчивающийся на высоте примерно 10 км над поверхностью Земли. Именно эти 3% относятся к пресным водам (35,8 млн км3), а доступны всего 0,3%. Теоретически водные ресурсы неисчерпаемы, так как при рациональном использовании они непрерывно возобновляются в процессе влагооборота. Но потребление воды растет такими темпами, что во многих странах ощущается ее недостаток. Большую опасность несет и загрязнение воды.

Строение молекулы воды, ее химические и физические свойства.

Водам (оксид водорода) - прозрачная жидкость, не имеющая цвета (в малом объеме запаха и вкуса. Химическая формула: Н2O. В твёрдом состоянии называется льдом или снегом, а в газообразном - водяным паром. Около 71 % поверхности Земли покрыто водой (океаны, моря, озёра, реки, лёд на полюсах). Является хорошим сильнополярным растворителем. В природных условиях всегда содержит растворённые вещества (соли, газы). Вода имеет ключевое значение в создании и поддержании жизни на Земле, в химическом строении живых организмов, в формировании климата и погоды.

Физические свойства.

· При таянии льда его плотность увеличивается (с 0,9 до 1 г/смі). Почти у всех остальных веществ при плавлении плотность уменьшается.

· При нагревании от 0 °C до 4 °C (точнее, 3,98 °C) вода сжимается. Соответственно, при остывании - плотность падает. Благодаря этому могут жить рыбы в замерзающих водоёмах: когда температура падает ниже 4 °C, более холодная вода как менее плотная остаётся на поверхности и замерзает, а подо льдом сохраняется положительная температура.

· Высокая температура и удельная теплота плавления (0 °C и 333,55 кДж/кг), температура кипения (100 °C) и удельная теплота парообразования (2250 КДж/кг [1]), по сравнению с соединениями водорода с похожим молекулярным весом.

· Высокая теплоёмкость жидкой воды.

· Высокая вязкость.

· Высокое поверхностное натяжение.

· Отрицательный электрический потенциал поверхности воды.

Все эти особенности связаны с наличием водородных связей. Из-за большой разности электроотрицательностей атомов водорода и кислорода электронные облака сильно смещены в сторону кислорода. По причине этого, а также того, что ион водорода (протон) не имеет внутренних электронных слоев и обладает малыми размерами, он может проникать в электронную оболочку отрицательно поляризованного атома соседней молекулы. Благодаря этому, каждый атом кислорода притягивается к атомам водорода других молекул и наоборот. Определенную роль играет протонное обменное взаимодействие между молекулами и внутри молекул воды. Каждая молекула воды может участвовать максимум в четырёх водородных связях: 2 атома водорода - каждый в одной, а атом кислорода - в двух; в таком состоянии молекулы находятся в кристалле льда. При таянии льда часть связей рвётся, что позволяет уложить молекулы воды плотнее; при нагревании воды связи продолжают рваться, и плотность её растёт, но при температуре выше 4 °С этот эффект становится слабее, чем тепловое расширение. При испарении рвутся все оставшиеся связи. Разрыв связей требует много энергии, отсюда высокая температура и удельная теплота плавления и кипения и высокая теплоёмкость. Вязкость воды обусловлена тем, что водородные связи мешают молекулам воды двигаться с разными скоростями.

Химические свойства

Вода является наиболее распространённым растворителем на Земле, во многом определяющим характер земной химии, как науки. Большая часть химии, при её зарождении как науки, начиналась именно как химия водных растворов веществ. Её иногда рассматривают, как амфолит - и кислоту и основание одновременно (катион H+ анион OH-). В отсутствие посторонних веществ в воде одинакова концентрация гидроксид-ионов и ионов водорода (или ионов гидроксония), pKa ? ок. 16. Сама по себе вода относительно инертна в обычных условиях, но её сильно полярные молекулы сольватируют ионы и молекулы, образуют гидраты и кристаллогидраты. Сольволиз, и в частности гидролиз, происходит в живой и неживой природе, и широко используется в химической промышленности.

Подземные воды

Подземмные вомды - воды, находящиеся в толще горных пород верхней части земной коры в жидком, твёрдом и газообразном состоянии. По условиям залегания подземные воды подразделяются на:

· почвенные;

· грунтомвые;

· межпластовые.

· артезианские

· минеральные

Почвенные воды заполняют часть промежутков между частицами почвы; они могут быть свободными (гравитационными), перемещающимися под влиянием силы тяжести, или связанными, удерживаемыми молекулярными силами.

Грунтомвые воды образуют водоносный горизонт на первом от поверхности водоупорном слое. В связи с неглубоким залеганием от поверхности уровень грунтовых вод испытывает значительные колебания по сезонам года: он то повышается после выпадения осадков или таяния снега, то понижается в засушливое время. В суровые зимы грунтовые воды могут промерзать. Эти воды в большей мере подвержены загрязнению.

Межпластовые воды - нижележащие водоносные горизонты, заключенные между двумя водоупорными слоями. В отличие от грунтовых, уровень межпластовых вод более постоянен и меньше изменяется во времени. Межпластовые воды более чистые, чем грунтовые. Напорные межпластовые воды полностью заполняют водоносный горизонт и находятся под давлением. Напором обладают все воды, заключенные в слоях, залегающих в вогнутых тектонических структурах.

По условиям движения в водоносных слоях различают подземные воды, циркулирующие в рыхлых (песчаных, гравийных и галечниковых) слоях и в трещиноватых скальных породах.

В зависимости от характера пустот водовмещающих пород подземные воды делятся на:

· поровые - в песках, галечниках и др. обломочных породах;

· трещинные (жильные) - в скальных породах (гранитах, песчаниках);

· карстовые (трещинно-карстовые) - в растворимых породах (известняках, доломитах, гипсах и др.).

Происхождение подземных вод.

Подземные воды формируются в основном из вод атмосферных осадков, выпадающих на земную поверхность и просачивающихся (инфильтрующих) в землю на некоторую глубину, и из вод из болот, рек, озер и водохранилищ, также просачивающихся в землю.

Подземные воды в земной коре распределены в двух этажах. Нижний этаж, сложенный плотными магматическими и метаморфическими породами, содержит ограниченное количество воды. Основная масса воды находится в верхнем слое осадочных пород. В нем по характеру водообмена с поверхностными водами выделяют три зоны: зону свободного водообмена (верхнюю), зону замедленного водообмена (среднюю) и зону весьма замедленного водообмена (нижнюю).

Классификация подземных вод и условия их залегания.

По условиям залегания выделяют три типа подземных вод: верховодку, грунтовые и напорные, или артезианские.

Верховодкой называются подземные воды, залегающие вблизи поверхности земли и отличающиеся непостоянством распространения и дебита. Обычно верховодка приурочена к линзам водоупорных или слабо проницаемых горных пород, перекрываемых водопроницаемыми толщами. Верховодка занимает ограниченные территории, это явление - временное, и происходит оно в период достаточного увлажнения; в засушливое время гола верховодка исчезает. Верховодка приурочена к первому от поверхности земли водоупорному пласту. В тех случаях, когда водоупорный пласт залегает вблизи поверхности или выходит на поверхность, в дождливые сезоны развивается заболачивание.

К верховодке нередко относят почвенные воды, или воды почвенного слоя. Почвенные воды представлены почти связанной водой. Капельно-жидкая вода в почвах присутствует только в период избыточного увлажнения.

Грунтовые воды. Грунтовыми называются воды, залегающие на первом водоупорном горизонте ниже верховодки. Обычно они приурочены к выдержанному водонепроницаемому пласту и характеризуются более или менее постоянным дебитом. Грунтовые воды могут накапливаться как в рыхлых пористых породах, так и в твёрдых трещиноватых коллекторах. Уровень грунтовых вод представляет собой неровную поверхность, повторяющую, как правило, неровности рельефа в сглаженной форме: на возвышенностях он ниже, в пониженных местах - выше. Грунтовые воды перемещаются в сторону понижения рельефа.

Уровень грунтовых вод подвержен постоянным колебаниям. Как отмечалось выше, на него влияют различные факторы: количество и качество выпадающих осадков, климат, рельеф, наличие растительного покрова, хозяйственная деятельность человека и многое другое.

Грунтовые воды, накапливающиеся в аллювиальных отложениях - один из источников водоснабжения. Они используются как питьевая вода, для полива. Выходы подземных вод на поверхность называются родниками, или ключами.

Напорные, или артезианские воды. Напорными называют такие воды, которые находятся в водоносном слое, заключенном между водоупорными слоями, и испытывают гидростатическое давление, обусловленное разностью уровней в месте питания и выхода воды на поверхность. Область питания у артезианских вод обычно лежит выше области стока воды и выше выхода напрных вод на поверхность Земли. Если в центре такой чаши, или мульды, заложить артезианскую скважину, то вода из нее будет вытекать в виде фонтана по закону сообщающихся сосудов.

Размеры артезианских бассейнов бывают весьма значительными - до сотен и даже тысячи километров. Области питания таких бассейнов зачастую значительно удалены от мест извлечения воды. Так, воду, выпавшую в виде осадков на территории Германии и Польши, получают в артезианских скважинах, пробуренных в Москве; в некоторых оазисах Сахары получают воду, выпавшую в виде осадков над Европой.

Артезианские воды характеризуются постоянством дебита и хорошим качеством, что немаловажно для её практического использования.

Питание грунтовых вод.

Поскольку определяющие природные факторы испытывают многолетние, сезонные и суточные колебания, соответствующие колебания испытывает и уровень грунтовых вод. Многолетние колебания уровня грунтовых вод обусловлены колебаниями атмосферных осадков и испарения. Сезонные колебания имеют чёткий зональный характер. На территории СНГ выделяют три провинции по режиму грунтовых вод:

Провинция кратковременного летнего питания. В основном зона вечной мерзлоты. Грунтовые воды в жидком состоянии лишь в летне-осеннее время. Максимальный уровень связан с талым и дождевым питанием и обычно приходится на июнь-июль, реже на август-сентябрь (при обильных дождях).

Провинция сезонного, преимущественно весеннего и осеннего питания. Охватывает большую часть территории СНГ. Характеризуются зимним промерзанием зоны аэрации и максимальным уровнем грунтовых вод весной (питание талыми водами) и летом - осенью (питание дождевыми водами). Минимальный уровень наблюдается в предвесеннее время. Чем толще зона аэрации и чем менее водопроницаемы слагающие её грунты, тем в более поздние сроки наблюдается максимум грунтовых вод.

Провинция круглогодичного, преимущественно зимневесенего питания. Южные и западные районы СНГ, где зона аэрации обычно не промерзает. Mаксимальные уровни грунтовых вод наблюдаются в феврале - апреле, минимальные - в летне-осеннее время.


Подобные документы

  • Изучение структуры, текстуры и форм залегания осадочных горных пород. Классификация метаморфических горных пород. Эндогенные геологические процессы. Тектонические движения земной коры. Формы тектонических дислокаций. Химическое и физическое выветривание.

    контрольная работа [316,0 K], добавлен 13.10.2013

  • Создание модели внутреннего строения Земли как одно из самых больших достижений науки XX столетия. Химический состав и строение земной коры. Характеристика состава мантии. Современные представления о внутреннем строении Земли. Состав ядра Земли.

    реферат [22,2 K], добавлен 17.03.2010

  • Вещественный состав Земной коры: главные типы химических соединений, пространственное распределение минеральных видов. Распространенность металлов в земной коре. Геологические процессы, минералообразование, возникновение месторождений полезных ископаемых.

    презентация [873,9 K], добавлен 19.10.2014

  • Внутреннее строение и история геологического развития Земли, формирование недр, химический состав. Отличие Земли от других планет земной группы. Концепции развития геосферных оболочек и тектоника литосферных плит. Структура и химсостав атмосферы.

    курсовая работа [1,5 M], добавлен 29.04.2011

  • Земля в мировом пространстве, положение Земли в Солнечной системе. Форма, размеры и строение Земли, ее геологическое строение, физические свойства и химический состав. Строение земной коры, тепловой режим планеты. Представление о происхождении Земли.

    реферат [796,3 K], добавлен 13.10.2013

  • Геология как наука о Земле, изучающая строение, состав и историю развития, закономерности и процессы формирования и развития земной коры, а также этапы развития органической жизни на Земле. Главнейшие разделы геологии, вклад в науку русских ученых.

    презентация [139,3 K], добавлен 23.01.2016

  • Описательная характеристика этапов формирования земной коры и изучение её минералогического и петрографического составов. Особенности строения горных пород и природа движения земной коры. Складкообразование, разрывы и столкновения континентальных плит.

    курсовая работа [3,2 M], добавлен 30.08.2013

  • Понятие тектоносферы и ее отличие от более глубоких оболочек Земли. Строение и состав земной коры, особенности гранитогнейсового слоя. Строение и состав верхней мантии, понятие сейсмического волновода. Закономерности в строении и развитии тектоносферы.

    реферат [36,6 K], добавлен 31.07.2010

  • Астеносфера как пластичная оболочка Земли, ее состав, строение, условия формирования и роль в геологических процессах. Схемы изостатического равновесия земной коры. Тектонические движения. Влияние астеносферных течений на формирование окраинных морей.

    контрольная работа [6,2 M], добавлен 28.03.2012

  • Образование Земли согласно современным космологическим представлениям. Модель строения, основные свойства и их параметры, характеризующие все части Земли. Строение и мощность континентальной, океанской, субконтинентальной и субокеанской земной коры.

    реферат [144,7 K], добавлен 22.04.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.