Зеркала из материалов с высокой отражательной способностью

Выбор подходящего материала для зеркала с учетом быстрой деградации поверхности. Изучение изменения отражательной способности зеркал при распылении на их поверхности ионов дейтериевой плазмы. Коэффициенты отражения на разных длинах волн после экспозиции.

Рубрика Производство и технологии
Вид реферат
Язык русский
Дата добавления 07.06.2011
Размер файла 553,2 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

1

Реферат

на тему: «Зеркала из материалов с высокой отражательной способностью»

Харьков 2011

Введение

Одна из наиболее меняющихся проблем в создании диагностической системы для ИТЕРа является выбор подходящего материала для зеркала. Быстрая деградация поверхности под действием излучения, бомбардировки быстрыми частицами, загрязнения являются механическими и тепловыми нагрузками на элементы оптической диагностики, находящейся в диверторной области.

Первоначально, при выборе материала зеркала, учитывается эрозия под действием бомбардировки. Далее, учитывается повышенное содержания примесей в диверторной плазме, и как следствие, загрязнение всех элементов системы оптической диагностики. Предполагаемая доза аморфной углеводородной (a-C:H) пленки, осаждаемой на первые зеркала оптической системы, будет равна 0,2 нм/мин. Углеводородная пленка прозрачна для красного и инфракрасного спектра, но она может пагубно сказаться на отражательной способности металлов с низким изначальным коэффициентом отражения. На металлы с высоким коэффициентом отражения, углеводородная пленка не повлияет столь сильно.

Для уменьшения негативного влияния загрязнения, планируется использовать зеркала из материалов с высоким коэффициентом отражения (Ag, Al) покрытых прозрачной оксидной пленкой (Al2O3, ZrO2). Предполагается, что покрытие защитит зеркала от распыления и блистеринга.

Экспериментальные исследования

Основная задача исследований - изучение изменения отражательной способности зеркал, при распылении их поверхностями ионами дейтериевой плазмы.

В ходе исследований, также, определялась скорость распыления поверхности. Данная характеристика зеркала легко определяется с помощью формулы:

,

где и S - площадь образца зеркала и плотность его материала.

При фиксированной плотности ионного тока j (А/см2) поток ионов на образец будет величиной постоянной, следовательно полученная доза Di:

Di = Nit,

где Ni- поток ионов на ед. площади, t - время экспозиции.

Таким образом, зная зависимость m(t), мы можем определить соответствие распыленной толщины h и полученной дозы Di.

Экспериментальная установка

Эксперименты по исследованию влияния атомов перезарядки на отражательную способность зеркал проводились на установке ДСМ-2.

Рис. 1. - Принципиальная схема установки ДСМ-2:

1 - Баллоны с дейтерием и водородом; 2 - редукторы;

3а - пьезонатекатель; 3b - игольчатый натекатель; 4 - откачной порт;

5 - водоохлаждаемые катушки магнитного поля; 6 - тефлоновое окно;

7 - ввод СВЧ - мощности; 8 - рабочая вакуумная камера;

9 - вакуумный клапан ДУ-50; 10 - шлюзовая камера с

дифференциальной откачкой; 11 - коаксиальный шток.

В ДСМ-2 используется простая схема, обеспечивающая бомбардировку образцов зеркал ионами с фиксированным или широким спектром по энергиям. Принципиальная схема установки представлена на рис. 1, а на рис 2 показана схема подачи напряжения на образец.

Рис. 2. - Схема подачи напряжения на образец

Установка представляет собой цилиндрическую камеру, изготовленную из нержавеющей стали, длиной 0,5 м и диаметром в центральной части 0,5 м. На торцах камеры расположены водоохлаждаемые магнитные катушки. Они включены последовательно так, что образуют зеркальную ловушку (пробкотрон) с магнитной индукцией 0,5 кГс в центре камеры и 2,25 кГс в области пробок.

Камера используется, как многомодовый резонатор для СВЧ - мощности, которая вводится в камеру через тефлоновое окно, посредством прямоугольного волновода от СВЧ-генератора типа «Хазар», (на основе магнетрона М-571, с частотой 2,375 ГГц). Мощность генератора может плавно меняться в диапазоне (2002500) Вт. Источником ионов в эксперименте служит плазма СВЧ разряда в условиях электронно-циклотронного резонанса (ЭЦР), на указанной частоте при вводимой СВЧ - мощности 200-400 Вт. Плотность плазмы составляет ne 1010 см -3, при электронной температуре Тe 5 эВ. В этих условиях температура ионов соответствует газу при комнатной температуре. Таким образом, установка, практически, представляет собой плазменный источник «холодных» ионов.

Откачка рабочей камеры на высокий вакуум осуществляется турбомолекулярным насосом ТМН-500 и магниторазрядным насосом НОРД-250, включенными параллельно. Вакуум в рабочей камере перед напуском рабочего газа достигает 210-6 торр, в то время как давление рабочего газа во время экспозиции составляет (78)10-5 Торр. Непосредственно перед напуском водорода (дейтерия) НОРД отключается, вакуум снижается до (45)10-6 Торр, и поэтому примеси на момент начала экспозиции составляют около 56%. Давление в камере измерялось по ионизационной лампе ПМИ-2. Эксперименты проводились при давлении 2·10-510-3 Торр.

На рис. 3 представлена зависимость плотности плазмы ne и электронной температуры Te от давления в камере. Как видно из графика, температура электронов монотонно убывает с увеличением давления. Плотность электронов максимальна при давлении (78)·10-5 Торр, что является оптимальным режимом по давлению.

Рис. 3. - Зависимость плотности плазмы ne и электронной температуры

Te от давления рабочего газа (дейтерия)

На рис. 4 представлено радиальное распределение электронной температуры и плотности плазмы в области «пробки». Как видно, неоднородность плазмы не превышала ±10% в области ~10 см, это значит, что поток плазмы на тестируемый образец был однороден.

Рис. 4. - Радиальное распределение плотности плазмы и электронной

температуры в области «пробки»

Методика и проведение эксперимента

Перед экспериментом производится установка образца в держатель. Держатель с образцом помещается в шлюзовую камеру, которая откачивается форвакуумным насосом до давления 3-4 мВ по шкале вакуумметра ВИТ-1. Параллельно со шлюзовой камерой откачивается камера магнитной ловушки до давления 10-5 торр. После предварительной откачки шток с образцом вводится в камеру через скользящее уплотнение, так, что образец оказывается в потоке плазмы, вытекающем из магнитной ловушки вдоль силовых линий. Производится откачка камеры на высокий вакуум - (2-3)10-6 торр, одновременно с откачкой в камере зажигается СВЧ-разряд, с целью обезгаживания стенок камеры. Контроль и измерения вакуума ведутся с помощью вакуумметра ВИТ-1. По достижении необходимого вакуума, в камеру из баллона напускается дейтерий. Напуск производится при помощи пьезонатекателя до рабочего давления (7-8) 10-6 торр.

Затем в камере зажигается СВЧ ЭЦР разряд. Экспозиция проводилась с двумя разными энергиями потока ионов: низкая энергия (ускоряющее напряжение - 60 эВ) и высокая энергия (1 кэВ). Измерение напряжения и тока на образец производится с помощью вольтметра и миллиамперметра. После экспозиции образец извлекается из вакуумной камеры и взвешивается. Измерения массы производятся на равноплечих весах ВЛР-2 с точностью до 20 мкг. Из нескольких измерений вычисляется среднее значение Дm.

Эксперименты проводились с разными типами зеркал: а) зеркало на Si подложке с ZrO2 пленкой, б) зеркало на Si подложке с AgZr пленкой.

Данные эксперимента для зеркал SiAgZr

В эксперименте использовались три идентичных зеркала на которые подавались разные напряжения. Величина тока на образец составила j=2.65 мА/см2, рабочее давление PD=7.5x10-5 Торр. Проводилась серия экспозиций с разными временами. На рис. 5, 6, 7 представлены коэффициенты отражения на разных длинах волн после каждой экспозиции для трех зеркал.

Рис. 5. - Коэффициенты отражения для зеркала SiAgZr #1

Рис. 6. - Коэффициенты отражения для зеркала SiAgZr #2

Рис. 7. - Коэффициенты отражения для зеркала SiAgZr #3

Данные эксперимента для зеркал SiZrО2

зеркало отражательный дейтериевый волна экспозиция

В эксперименте использовались два идентичных зеркала на которые подавались разные напряжения. Величина тока на образец составила j=1,482 мА/см2, рабочее давление PD=7.5x10-5 Торр. Проводилась серия экспозиций с разными временами. На рис. 8, 9 представлены коэффициенты отражения на разных длинах волн после каждой экспозиции для двух зеркал.

Рис. 8. - Коэффициенты отражения для зеркала SiZrО2 #1

Перед экспозицией образец был взвешен m0 = 0.132940 г ± 20 мкг. После серии экспозиций вес образца изменился ?m = 40 мкг, что соответствует распыленному слою толщиной 57,5 нм.

Рис. 9. - Коэффициенты отражения для зеркала SiZrО2 #2

Перед экспозицией образец был взвешен m0 = 0,133670 г ± 20 мкг. После серии экспозиций вес образца изменился ?m = 10 мкг ± 20 мкг, что соответствует распыленному слою толщиной 43 нм.

Вывод

Зеркала из материалов с высокой отражательной способностью, покрытые оксидными пленками, могут в дальнейшем использоваться в системе оптической диагностики в области диверторной плазмы. Из экспериментальных результатов видно, что при бомбардировке зеркал с пленочным покрытием ионами малой энергии, которая будет использоваться для чистки камеры, толщина пленки существенно не меняется.

Размещено на Allbest.ru


Подобные документы

  • Конфигурации Доплеровских лидаров для обеспечения вихревой безопасности. Анализ методов детектирования и выбор метода. Метод изготовления и юстировки главного зеркала телескопа. Сборка неподвижных зеркал. Экономическая сущность затрат на производство.

    дипломная работа [3,0 M], добавлен 12.10.2013

  • Разработка программного обеспечения операторской ЭВМ в среде SCADA-системы. Построение структурной схемы сбора информации, функциональной схемы размещения оборудования. Обзор системы контроля технологических параметров отражательной печи по переплавке.

    курсовая работа [3,6 M], добавлен 18.06.2012

  • Разработка методики автоматизированного проектирования процесса изготовления привода верхнего зеркала. Создание трехмерных геометрических моделей сборочных единиц. Использование трёхмерных моделей для расчёта изделий методами имитационного моделирования.

    дипломная работа [2,3 M], добавлен 09.11.2016

  • Проектирование конструкции внутренней поверхности канала ствола, выбор материала. Маршрут технологического процесса изготовления детали. Метод получения внутренней поверхности детали (с помощью холодного радиального обжатия). Способ получения нарезов.

    курсовая работа [1,1 M], добавлен 05.01.2015

  • Значение подготовки поверхности окрашиваемых материалов для получения качественных покрытий. Способы подготовки поверхности перед окраской. Структура многослойных покрытий и процессы пленкообразования. Классификация и хранение лакокрасочных материалов.

    реферат [31,4 K], добавлен 11.10.2013

  • Химические и физико-химические методы модифицирования поверхности алмазных материалов. Разработка процесса модификации поверхности наноалмазов детонационного синтеза с целью их гидрофобизации и совместимости с индустриальными и автомобильными маслами.

    дипломная работа [1,6 M], добавлен 17.12.2012

  • Характеристика материала изготовления клина задвижки. Выбор способа восстановления поверхности (наплавка), контроль качества. Описание установки EFCO-CW1000. Выбор материалов. Последовательность операций сборки. Источник питания (Total Arc 3000).

    курсовая работа [1,4 M], добавлен 28.05.2016

  • Показатели качества, физико-механические и химические свойства поверхностного слоя деталей машин. Обзор методов оценки фрактальной размерности профиля инженерной поверхности. Моделирование поверхности при решении контактных задач с учетом шероховатости.

    контрольная работа [3,6 M], добавлен 23.12.2015

  • Эллипсометрический метод - один из самых точных и чувствительных методов контроля поверхностей и тонкослойных структур. Анализ изменения эллипса поляризации пучка поляризованного света при его отражении от исследуемого объекта. Описание установки.

    лабораторная работа [507,8 K], добавлен 31.10.2012

  • Снижение массы шатуна. Анализ условия работы распылителя. Технические требования на изготовление распылителей. Биение запирающей поверхности относительно оси цилиндрической поверхности. Действия гидравлических нагрузок. Параметр шероховатости поверхности.

    презентация [149,2 K], добавлен 08.12.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.