Новые высокопрочные и сверхпрочные материалы с высокой пластичностью на основе железа
Описание способов достижения высокой конструктивной прочности железного изделия. Основные формы осуществления мартенситного превращения. Описание относительных температур для различных видов стали. Характеристика стальных изделий с высокой пластичностью.
Рубрика | Производство и технологии |
Вид | реферат |
Язык | русский |
Дата добавления | 14.12.2008 |
Размер файла | 19,8 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
НОВЫЕ ВЫСОКОПРОЧНЫЕ И СВЕРХПРОЧНЫЕ МАТЕРИАЛЫ С ВЫСОКОЙ ПЛАСТИЧНОСТЬЮ НА ОСНОВЕ ЖЕЛЕЗА.
Высокая конструктивная прочность изделия достигается только тогда, когда оно изготовлено из материала, обладающего большой прочностью и высоким сопротивлением хрупкому разрушению. Этим требованиям в значительной степени отвечают без углеродистые ( ?0.03 % С ) мартенситно-стареющие стали, углерод и азот в составе которых - вредные примеси, снижающие пластичность и вязкость стали . Эти стали упрочняются закалкой и последующим старением .
Следует вспомнить, что мартенсит является упорядоченным пересыщенным твердым раствором внедрения углерода в б - Fe: содержание углерода в мартенсите может быть таким же, как и в исходном аустените, т. е. может достигнуть 2,14 %.
Мартенситное превращение происходит только в том случае, если быстрым охлаждением аустенит переохлаждён до низких температур, при которых диффузионные процессы становятся невозможными. Мартенситное превращение носит бездиффузионный характер, т. е. не сопровождается диффузионным перераспределением атомов углерода и железа в решетке аустенита.
Мартенситное превращение осуществляется путем сдвига и не сопровождается изменением состава твердого раствора. Сдвиговой механизм превращения отличается закономерным кооперативным направленным смещением атомов в процессе перестройки решетки. Отдельные атомы смещаются друг относительно друга на расстояния, не превышающие межатомные.
Пока на границе мартенсита и аустенита существует сопряженность решеток (когерентность), скорость образования и роста кристаллов мартенсита очень высока (~ 1000 м/с).
Вследствие разности удельных объемов мартенсита и аустенита увеличиваются упругие напряжения в области когерентного сопряжения, что, в конечном счете, приводит к пластической деформации и образованию межфазной границы с неупорядоченным расположением атомов.
При переохлаждении аустенита до температуры, соответствующей точке МН (МS в иностранной литературе) аустенит превращается в мартенсит. Таким образом, МH - температура начала мартенситного превращения. Если непрерывное охлаждение стали прекратить, то превращение остановится. Чем ниже охладить аустенит, тем больше образуется мартенсита.
По достижения определенной для каждой стали температуры (MK) превращение аустенита в мартенсит прекращается. Эту температуру окончания мартенситного превращения обозначают MK. Положение MH и MK не зависит от скорости охлаждения, а обусловлено химическим составом аустенита : чем больше в аустените углерода, тем ниже MH и MK . Все легированные элементы, растворенные в аустените, за исключением Co и Al , понижают MH и MK (рис.1).
Если задержать на некоторое время охлаждение при температуре, лежащей ниже температуры, соответствующей MH, например 20єC , то, аустенит, сохранившийся не превращенным при охлаждении до этой температуры, становится устойчивым (Аост). Это явление стабилизации проявляется более сильно в интервале температур MH…MK и зависит от температуры, при которой задержалось охлаждение. Температура, ниже которой проявляется этот эффект стабилизации, обозначается MС.
1.1Мартенситно - стареющие стали.
Мартенситно - стареющие стали представляют собой сплавы Fe с Ni (8-20 % масс.), а часто и с Co . Для протекания процесса старения в мартенсите, сплавы дополнительно легируют Ti , Al , Mo , и другими элементами. Высокая прочность мартенситно- стареющих сталей обязана образованию твёрдого раствора Fe и легирующих элементов ( Ni , Co , Mo , Al и другие ), мартенситному превращению, сопровождающаяся фазовым наклепом и, главным образом, старению мартенсита, при котором происходит образование сегрегаций , метастабильных и стабильных фаз типа Fe3 Mo , Ni3 Mo , Ni3 Ti , Ni Al и других . Высокое сопротивление хрупкому разрушению объясняется пластичностью и вязкостью без углеродистого мартенсита (“мартенсит замещения “) .
Широкое применение в технике получила высокопрочная мартенситно-стареющая сталь Н18К9 М5Т ( ?0,03%С, ~18%Ni, ~9%Co, ~5%Mo, ~0,6%Ti).
Сталь закаливают на воздухе от 820-850єС. После закалки, сталь состоит из безуглеродистого массивного (реечного) мартенсита, имеющего наряду с низкой прочностью хорошие пластичность и вязкость: у0.2 = 950…1100 МПа; ув = 1100…1200Мпа; д = 18…20%; ш = 70…80%; и KCU = 2,0…2,5 МДж/м2. Таким образом, характерной особенностью безуглеродистого мартенсита являются высокое значение пластичности и вязкости. В закаленном состоянии мартенситно-стареющие стали, легко обрабатываются резанием, хорошо свариваются.
Старение при 480-520єС повышает прочность мартенситно-стареющих сталей, но понижает пластичность и вязкость. Механические свойства после старения:
у0.2 = 1800…2000 Мпа; ув = 1900…2100 Мпа; д = 8…12%; ш = 40…60%; KCU = 0,4…0,6 МДж/м2; HRС = 52.
Кроме стали Н18К8М5Т нашли применение менее легированные мартенситно-стареющие стали: Н12К9М3Г2, Н10Х11М2Т и т.д.
Мартенситно-стареющие стали после закалки и старения имеют удельную вязкость того же порядка что и другие высокопрочные стали (KCU = 0,35…0,6 МДж/м2). Однако порог хладноломкости у мартенситно-стареющих сталей на 60…80K ниже, а работа распространения трещины КСТ значительно выше, чем у углеродистых высокопрочных сталей (0,25…0,3 МДж/м2 вместо 0,06…0,08 МДж/м2). Вязкость разрушения у мартенситно-стареющих сталей при ув = 1800…2000 Мпа составляет 50…70 Мпа·м в степени (1/2), тогда как у углеродосодержащих легированных сталей при том же значении у0.2 = 20…30 Мпа·м1/2.
Мартенситно-стареющие стали, имеют высокий предел упругости, поэтому могут применяться для изготовления пружин. При низких температурах прочностные свойства, как обычно, возростают, но при сохранении повышенной пластичности и вязкости, что позволяет их использовать при низких температурах. Эти стали с 11-12% Cr относятся к коррозионно-стойким. Их применяют в авиационной промышленности, в ракетной технике, судостроении, приборостроении для упругих элементов, в криогенной технике и т.д. Но эти стали дорогостоящие.
1.2. Высокопрочные стали с высокой пластичностью.
Метастабильные высокопрочные аустенитные стали называют ТRIP - сталями (TRIP - от начальных букв слов Transformation Induced Plasticity) или ПНП - сталями (пластичность, наведенная превращением). Эти стали содержат 8…14% Cr, 8…32% Ni, 0,5…2,5%Mn, 2…6%Mo, до 2% Si. Пример марочного состава: 30Х9Н8М4Г2С2, 25Н25М4Г1. Отличительной особенностью сталей является то, что после аустенизации при 980…1200єС температуры мартенситного превращения МН и МД (начало образования мартенсита деформации), находятся ниже 20єС, т.е. стали имеют аустенитную структуру.
Для придания стали высоких механических свойств после аустенизации ее подвергают 80%-ной деформации (прокатка, волочение, гидроэкструзия и т.д.) при 250…550єС (ниже температуры рекристаллизации). При деформации аустенит претерпевает наклеп и обедняется углеродом, что приводит к повышению точек МН и МД. При этом точка МД становится выше 20єС. При охлаждении, следовательно, аустенит становится метастабильным и при его дальнейшем деформировании происходит мартенситное превращение. Поэтому при испытании на растяжение участки аустенита, где локализуется деформация, претерпевают мартенситное превращение, что приводит к местному упрочнению, и деформация сосредотачивается в соседних (неупрочненных) объемах аустенита. Следовательно, превращение аустенита в мартенсит исключает возможность образования “шейки”, что объясняет высокую пластичность ПНП-сталей.
Механические свойства ПНП-сталей:
у0.2 = 1400…1500 Мпа; ув = 1500…1700 Мпа; д = 50…60%.
Характерным для этой группы сталей является высокое значение вязкости разрушения и предела выносливости у-1. При одинаковой или близкой прочности ПНП-стали пластичнее, а при равной пластичности имеют более высокий предел текучести, чем мартенситно-стареющие стали или легированные высокопрочные стали.
Широкому применению ПНП-сталей препятствует их высокая легированность, необходимость использования мощного оборудования для деформации при сравнительно низких температурах, трудность сварки, анизотропия свойств деформированного металла и т.д.
Эти стали, используют для изготовления высоконагруженных деталей: проволоки, тросов, крепежных деталей и др.
Подобные документы
Определение понятия металлов как простых веществ, обладающих характерными свойствами: высокой электро- и теплопроводностью, отрицательным температурным коэффициентом, способностью отражать электромагнитные волны, высокой прочностью и пластичностью.
контрольная работа [428,6 K], добавлен 26.10.2011Характеристика пластического деформирования (дробеструйная обработка) и поверхностной закалки (сильный нагрев верхнего слоя и резкое охлаждение для получения высокой твердости и прочности детали при вязкой сердцевине) как методов упрочнения стали.
лабораторная работа [199,5 K], добавлен 15.04.2010Изготовление форм плоской офсетной печати, высокой печати на основе фотополимерных композиций. Разновидности форм глубокой печати. Изготовление форм для специальных видов печати. Влияние способов изготовления на требования к обработке информации.
реферат [1,8 M], добавлен 09.02.2009Различные режимы термомеханической обработки стали. Поверхностное упрочнение стальных деталей. Закалка токами высокой частоты. Газопламенная закалка и старение металла. Обработка стали холодом. Упрочнение металла методом пластической деформации.
презентация [546,9 K], добавлен 14.10.2013Основные данные станка специализированного токарного многоцелевого высокой точности, необходимые для расчета наладки. Техническая характеристика устройства УЧПУ "2Р32". Выбор инструмента и расчет режимов резания. Управляющая программа на обработку детали.
курсовая работа [617,9 K], добавлен 03.03.2015Структура тростит+мартенсит, полученная при непрерывном охлаждении стали У8. Кривая охлаждения, нанесенная на диаграмму изотермического превращения аустенита данной структуры. Интервалы температур превращений и описание характера превращения.
контрольная работа [223,4 K], добавлен 07.12.2007Марочный химический состав стали по ГОСТ. Превращения переохлажденного аустенита в изотермических условиях и при непрерывном охлаждении. Определение критической скорости закалки и температуры начала мартенситного превращения. Режимы термической обработки.
курсовая работа [4,4 M], добавлен 13.02.2013Понятие высокой технологичности изделия в процессе его проектирования. Форма и классификация пластмассовых продуктов по степени сложности, их основные конструктивные элементы. Простановка размеров на чертежах и клеевые соединения деталей между собой.
контрольная работа [62,7 K], добавлен 23.01.2011Исследование микроструктуры и механических свойств низколегированной стали 08Г2СМБ. Параметры, ответственные за формирование конструктивной прочности: напряжение трения решетки, твердорастворное, дислокационное, дисперсионное и зернограничное упрочнение.
практическая работа [83,8 K], добавлен 23.01.2016Распад аустенита, закономерности превращения. Пластинчатый и реечный мартенсит. Характерные особенности мартенситного превращения. Влияние состава стали на положение критических точек. Промежуточное превращение в стали. Критическая скоростью закалки.
лекция [115,7 K], добавлен 14.10.2013