Конструкция лазера ТЛ-1,5
Промышленный технологический быстропроточный лазер ТЛ-5М. Расчет приведенной напряженности электрического поля в рабочей камере лазера. Определение кинетических параметров плазмы. Расчет уточненного значения приведенной напряженности электрического поля.
Рубрика | Производство и технологии |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 14.12.2012 |
Размер файла | 310,9 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Содержание
Введение
Промышленный технологический быстропроточный лазер ТЛ-5М
Исходные данные для расчета
Расчет удельных параметров ГРК
Расчет уточненного значения приведенной напряженности электрического поля
Заключение
Список использованной литературы
Введение
Области применения лазеров в различных сферах человеческой деятельности ежегодно расширяются, быстро увеличивается число разрабатываемых и производимых типов лазеров разного назначения.
Для успешного применения ТЛ в народном хозяйстве их конструкции и параметры излучения должны удовлетворять, жестким требованиям, обусловленными как потребностями лазерной технологии, так и условиям эксплуатации на предприятии. ТЛ должен быть автоматизирован, безопасен, должен быть оснащен комплектом внешних устройств для использования его излучения.
Важнейшими узлами ТЛ, определяющими его энергетическую эффективность и компактность, являются его устройства накачки, источника питания и оптический резонатор.
Промышленный технологический быстропроточный лазер ТЛ-5М
Технологический быстропроточный СО2 - лазер непрерывного действия ТЛ-1.5(с замкнутой поперечной прокачкой рабочей смеси) предназначен для использования в качестве генератора мощного когерентного инфракрасного излучения в технологических комплексах по лазерной резке, сварке, наплавке, термоупрочнению и поверхносному легированию различных материалов. Широкий диапазон применения позволяет использовать технологический лазер ТЛ-1,5 в составе технологического оборудования на предприятиях различных отраслей промышленности. Лазер предназначен для работы во взрывобезопасных помещениях при отсутствии химически активных газов и паров, агрессивных по отношению к углеродистой стали, сплавам алюминия, изоляции электрических элементов. В деревообрабатывающей промышленности лазер ТЛ-1,5 преимущественно применяется для нанесения графических изображений на материал или их вырезки с высокой точностью.
Лазер ТЛ-,15 предназначен для применения в автоматизированных лазерных технологических комплексах для сварки и резки материалов больших толщин, а также поверхностной термообработки и наплавки.
Рис 1. Общий вид лазера ТЛ - 1,5.
Модель характеризуется следующими конструктивными и технологическими признаками.
1. Используется самостоятельный газовый разряд постоянного тока с эквипотенциальным анодом и плоским глубокосекционированным (как поперек, так и вдоль потока газа) катодом. Это позволило обеспечить приемлемый уровень удельного объемного энерговклада (2 Вт/см3) при использовании повышенного давления молекулярной компоненты рабочей смеси.
2. Возможно использование безгелиевой рабочей смеси СО2: Na: Н2О или наиболее дешевой смеси воздух: СО2.
3. Для прокачки газовой смеси в замкнутом контуре применяется высокооборотный электрокомпрессор осевого типа специальной разработки, в конструкции которого имеется встроенный электродвигатель.
4. Используется неустойчивый резонатор, генерирующий одномодовое излучение кольцевого поперечного сечения во всем диапазоне регулирования мощности. Это обеспечивает при коэффициенте качества излучения Kq = 0,2 ... 0,3 плотность мощности в пятне фокусировки до 107 Вт/см2, что достаточно для эффективной сварки и резки материалов больших толщин.
Конструкция ТЛ-5М (рис. 1, 2) выполнена в виде моноблока для повышения компактности, надежности, удобства в управлении. Верхняя часть лазера -- блок 1 генерации луча -- представляет собой герметичный газовый контур с разрядной камерой и резонатором, газоводами и теплообменниками. В нижней части лазера расположен блок электропитания 3, в котором размещены: источник питания, блок балластных нагрузок, блок откачки и система управления МП САУ с выносным пультом управления 2. Излучение выводится через выходное окно из монокристалла КСl.
Рис №2 Габаритный чертеж лазера ТЛ - 5М:1 - блок генерации луча; 2 - выносной пульт управления; 3 - блок электропитания.
Лазер состоит из следующих основных узлов и систем: газоразрядной камеры; оптического резонатора; системы прокачки и охлаждения; системы газообмена; источника питания; МП САУ.
Газоразрядная камера (рис. 3) состоит из анода 3 и катодной платы 2. Размеры разрядной камеры: 100 см (поперек потока), 70 см (вдоль потока) и 6 см - расстояние анод - катод скорость потока на входе в разрядную камеру 100 м/с.
Рис №3. Газоразрядная камера лазера ТЛ - 5М: 1 - предыонизатор; 2 - катодная плата; 3 - анод.
Анод представляет собой медную пластинку с припаянным к ней с обратной стороны змеевиком охлаждения.
Катодная плата состоит из 17 катодных рядов, расположенных поперек потока, которые крепятся к боковым плитам разрядной камеры.
Для обеспечения поджига разряда перед первым по потоку катодным рядом установлен катод предыонизации 1, гальвонически соединенный с анодом.
Оптический резонатор в ТЛ-5М является телескопическим неустойчивым пятипроходным с одним усилительным проходом (рис. 5). Выходное излучение представляет собой кольцо с внешним диаметром 50 мм и внутренним 25 мм. Коэффициент пропускания резонатора 0,74, увеличение 1,96, длина оптической оси 6600 мм.
Рис 5. Оптическая схема резонатора лазера ТЛ - 5М: 1 - плоские поворотные зеркала; 2 - выводное зеркало; 3 - выпуклое зеркало; 4 - выходное окно; 5 - ось выходного излучения; 6 - глухое зеркало; 7 - апертурная диафрагма.
Конструкция резонатора представляет собой жесткую пространственную ферму, состоящую из передней и задней плит, стянутых четырьмя штангами из инвара. На плитах в соответствии с оптической схемой закреплены зеркала. Каждое из поворотных зеркал опирается на три юстировочных винта, установленных в плитах резонатора.
Глухое и выпуклое резонаторные зеркала 3, 6 крепятся в отдельных узлах, имеющих дистанционную подъюстировку, осуществляемую с помощью шаговых двигателей ШДА-2ФКА с редукторами.
Зеркала представляют собой диски диаметром 100мм и толщиной 15мм, изготовленные из кремния с защитными и отражающими покрытиями. Охлаждение зеркал осуществляется через тепловой контакт тыльной части зеркала с охладителями, к которым подведена охлаждающая вода.
Резонатор установлен внутри корпуса блока генерации луча на упругих амортизаторах, допускающих регулировку по высоте.
Система прокачки и охлаждения состоит из осевого компрессора ГО1-360, двух теплообменников (до и после разрядной камеры), канала разрядной камеры, конфузора и диффузора, плавно изменяющих сечение газодинамического тракта при переходе от разрядной камеры к теплообменникам. Теплообменники представляют собой пакеты оребренных труб, охлаждаемых проточной водой. Сечение потока на входе в теплообменник 0,6 м2, площадь ребер 36 м2 на каждый теплообменник. Первый теплообменник служит для отбора тепла у потока газа, нагретого в ГРК. Второй теплообменник служит для компенсации разогрева газа вследствие сжатия компрессором, а также как газодинамическое устройство для выравнивания потока на входе в ГРК.
Источник питания состоит из тиристорного регулятора, повышающего трансформатора мощностью 100 кВт, высоковольтного выпрямителя, собранного по схеме Ларионова, и сглаживающего
RС-фильтра. Напряжение источника питания регулируется в диапазоне 1,5 ... 4 кВ, сила тока, протекающего через ГРК, изменяется при этом от 0 до 25 А. Источник питания подключен к разрядной камере через блок балластных нагрузок, представляющий собой совокупность 289 охлаждаемых резисторов номиналом 5 кОм.
Микропроцессорная система управления (МП САУ) обеспечивает функционирование лазера в целом и выполняет следующие задачи:
1. автоматическое включение лазера и вывод его на режим;
2.стабилизация давления смеси газов в газодинамическом контуре лазера;
3. стабилизация силы тока разряда;
4. программное изменение мощности излучения в соответствии с требуемой технологической циклограммой;
5. поддержание требуемых динамических характеристик мощности излучения.
Исходные данные для расчета
технологический быстропроточный лазер кинетический
Номинальный ток через ГРК I =25 A
Выходная мощность источника питания Р =90000Вт
Электрооптический КПД з=14,5%
Параметры рабочей смеси:
СоставN2 : He : СО2 = 10 : 10: 1
Давление7 кПа
Габаритные размеры:
Высота межэлектродного промежутка, см6
Длина анода, см100
Скорость газа, м/с100
Ширина анода, мм40
Катод секционированный, 17 секций
Расчет удельных параметров ГРК
Рабочая смесь: N2:He:CO2=10:10:1
Давление смеси Pсм=7 кПа
Атмосферное давление примем равное Pатм=105 Па
Из табличных данных получаем значения плотности и изобарной теплоемкости компонентов рабочей смеси
Таблица 1.
СО2 |
N2 |
He |
||
Плотность, с, кг/см3 |
1,98 |
1,25 |
0,16 |
|
Теплоемкость, Ср, дж/кгК |
824 |
1041 |
5192 |
1.Определение парциального давления компонентов рабочей смеси
2.Определение плотности рабочей смеси
3.Определение теплоемкости рабочей смеси
, где
Тогда,
4.Определение концентрации молекул
Из уравнения давления идеального газа получим формулу:
5. Определения мощности газоразрядной камеры
Зная рабочий ток газоразрядной камеры, и мощность источника питания, можно вычислить напряжение Uка
Тогда мощность газоразрядной камеры:
6. Электрооптический КПД берем из справочника з=14,5%
7. Определение напряженности электрического поля
8. Определение приведенной напряженности электрического поля.
Т.к. в рабочей камере горит самостоятельный разряд то значение приведенной напряженности не должно выходить из диапазона: (2-7)10-20Вм2, именно такие значения приведенной напряженности характерны для самостоятельного разряда.
Полученное значение приведенной напряженности входит в диапазон допустимых значений, что может свидетельствовать о правильности расчетов на этой стадии.
9. Определение массового расхода газа.
,
где S- площадь поперечного сечения газоразрядного промежутка. S=Lh
10. Определение удельного энерговклада.
11. Опеделение нагрева рабочей камеры.
Для стабильной работы камеры, и защиты ее от перегрева, вводим условие:
Твых=ДТ+Т0<700K
Твых=377,15+300=677,15К<700К, таким температурное условие выполнено.
Расчет уточненного значения приведенной напряженности электрического поля
Для расчета уточненного значения приведенной напряженности электрического поля, воспользуемся табличными данными значений коэффициентов А, В, и коэффициента подвижности частиц м.
Компонента |
А, (мПа)-1 |
В, (В/мПа) |
м (м2 Па)/(В с) |
|
CO2 |
15 |
350 |
1.18*104 |
|
N2 |
9 |
257 |
104 |
|
He |
2.2 |
25.6 |
3.8*103 |
1. Расчет вспомогательных величин.
ДCO2= 1 доля CO2 в рабочей смеси
ДN2= 10 доля N2 в рабочей смеси
ДHе=10 доля Hе в рабочей смеси
ДУ= ДCO2+ ДN2+ ДHе =1+10+10=21
Тогда рассчитаем коэффициенты А, В, и коэффициент подвижности частиц м для всей смеси газов.
Определение величины приэлектродного падения потенциала.
ДU=ДUk+ДUа
где Асм, Всм - коэффициенты, определенные из дополнительного расчёта;
- коэффициент вторичной электронной эмиссии , для медного катода принимаем
ДU=265,32+132,66=397,98В
3. Определение протяженности области прикатодного и прианодного падения потенциала:
Расчёт подвижности электронов и ионов:
Определение длины положительного столба
Определение приведённой напряжённости электрического поля
K=1 для лазеров с диффузионным охлаждением
K=1,5 для БПЛ
Если перевести в [ВЧсм2],то получим
Определение кинетических параметров плазмы.
Определение плотности тока в плазме
где lс=1 м; Нс=0,4 м-ширина и длина анодной плиты.
Определение скорости дрейфа электронов
Определение концентрации электронов
Определение степени ионизации в рабочей камере
Заключение
Промышленный технологический быстропроточный лазер ТЛ-1,5 характеризуется следующими конструктивными и технологическими признаками:
используется самостоятельный газовый разряд постоянного тока с эквипотенциальным анодом и плоским глубоко секционированным катодом. Это позволяет обеспечить приемлемый уровень удельного объема энерговклада при использовании повышенного давления молекулярной компоненты рабочей смеси;
возможность использования безгелевой смеси СО2:N2:Н2О или более дешевой смеси воздух:СО2;
используется неустойчивый резонатор, генерирующий одномодовое излучение кольцевого поперечного сечения во всем диапазоне регулирования мощности. Это обеспечивает при коэффициенте качества излучения К=0,2…0,3 плотность мощности в пятне фокусировки до 107 Вт/см2 , что достаточно для эффективной сварки и резки материалов больших толщин.
В результате выполненной курсовой работы произведен расчет приведенной напряженности электрического поля, кинетических параметров разряда и потерь мощности отводимой к электродам.
Основные параметры
Кинетические параметры: скорость дрейфа
концентрация электронов
Список использованной литературы
1. Технологические лазеры: Справочник: в 2 т., т. 1: Расчет, проектирование и эксплуатация/ Абильсиитов Г.А., Голубев В.С., Гонтарь В.Г. и др.; Под общ. ред. Абильсиитова Г.А.. - М.: Машиностроение, 1991. - 432 с.: ил.
2. Голубев В.С., Лебедев Ф.В. Инженерные основы создания технологических лазеров, т. 2, 1987, М: Высшая школа. - 176 с.
3. Журавлев О.А., Шепеленко А.А. Газовй разряд в СО2 - лазерах. - Куйбышев: КуАИ, 1988. - 59 с.
Размещено на Allbest.ru
Подобные документы
Достижения науки и техники XX века. Предсказание Эйнштейном в 1916 г. существования вынужденного излучения - физического базиса действия любого лазера. Широкое применение лазера во всех отраслях науки и техники. Развитие лазерной техники в России.
реферат [21,3 K], добавлен 08.03.2011Исследование характеристик свариваемых материалов и технологических параметров сварки. Расчет температурного поля, размеров зон термического влияния с помощью персонального компьютера. Построение изотерм температурного поля и кривых термического поля.
курсовая работа [245,4 K], добавлен 10.11.2013Конструкция полупроводникового лазера на твердом теле. Достоинства полупроводникового лазера. Применение твердотельных лазеров для резания швейных материалов и двухъярусных цепных горизонтально-замкнутых конвейеров для хранения готовых изделий на складах.
контрольная работа [3,7 M], добавлен 17.11.2010Принцип действия и техническая характеристика водонагревателя электрического НЭ-1А. Расчет производительности аппарата. Тепловой баланс аппарата. Основные технические показатели работы водонагревателя. Расчет кинематического коэффициента теплоотдачи.
курсовая работа [108,3 K], добавлен 17.06.2011Исследование зависимостей напряженности магнитного поля от параметров конструктивных элементов. Разработка конструкции магнитожидкостного уплотнения для поворотного вращающегося контактного устройства. Количество, форма и геометрические параметры зубцов.
дипломная работа [4,8 M], добавлен 09.11.2016Расчет на прочность конструктивных элементов колонны и геометрических характеристик опасных сечений. Определение коэффициента скоростного напора ветра и равнодействующей силы ветрового напора на отдельных участках колонны. Расчет приведенной нагрузки.
курсовая работа [1,1 M], добавлен 11.11.2022Назначение, классификация и конструкция сушилок, обоснование выбора метода и тепловой расчет процесса сушки. Определение параметров воздуха в сушильной камере. Расчет и выбор основного и вспомогательного оборудования, калориферной установки, вентилятора.
курсовая работа [755,4 K], добавлен 05.07.2010Кинематический анализ и синтез рычажного механизма по коэффициенту неравномерности. Построение планов положений механизма. Определение приведенной силы сопротивления. Определение момента инерции маховика. Силовой расчет диады и кривошипа, простой ступени.
курсовая работа [377,2 K], добавлен 02.06.2015Анализ традиционных методов резки изделий из стекла: механическая, гидроабразивная. Приемы лазерной резки, их сравнение: скремблирование, термораскалывание. Принципы выбора лазера и его обоснование. Щелевой СО2 – лазер и волоконный, их главные функции.
курсовая работа [896,7 K], добавлен 14.05.2015Принцип действия, основные характеристики и элементы конструкции синхронного вертикального двигателя, область применения. Расчет электромагнитного ядра явнополюсного синхронного двигателя, его оптимизация по минимуму приведенной стоимости и резервов.
курсовая работа [4,7 M], добавлен 16.04.2011