Привод цепного транспортёра
Кинематический расчет привода цепного транспортера. Уточненный расчет валов. Расчет подшипников на долговечность, смазка редуктора. Проверка прочности шпоночного соединения. Расчёт соединения с натягом. Муфта комбинированная с разрушающимся элементом.
Рубрика | Производство и технологии |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 30.09.2010 |
Размер файла | 298,7 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
24
Московский ордена Ленина, ордена Октябрьской Революции
и ордена Трудового Красного Знамени
государственный технический университет им. Н.Э. Баумана
Кафедра "Детали машин"
Привод цепного транспортёра
Пояснительная записка
Содержание
- Кинематический расчет
- Предварительный расчет валов
- Уточнённый расчёт валов
- Расчёт подшипников на долговечность
- Выбор смазки редуктора
- Проверка прочности шпоночного соединения
- Расчёт соединения с натягом
- Подбор муфты
- Список используемой литературы
Кинематический расчет
1. Выбор электродвигателя.
Нахождение мощности на выходе.
РВЫХ = Т /10 3=63000,8/10 3=5.04кВт
1.2 Определение общего КПД привода.
общ = 3зуб 3подш муфты,
где: зуб - КПД зубчатой передачи;
подш - КПД подшипников;
муфты - КПД муфты.
муфты = 0,98; зуб = 0,97; подш = 0,99;
общ = 0,973 0,993 0,98 = 0,867.
1.3 Определение требуемой мощности электродвигателя.
1.4 Определение частоты вращения вала электродвигателя.
, nвх = nв u,
где: u = uбыстр uтих;
Из таблицы 1.2 [1] выбраны передаточные отношения тихоходной и быстроходной передачи:
uтих = (2,5…5,6); uбыстр =8
nвх = nв u = 48 (2,5…5,6) 8= 960…1445 об/мин.
Исходя из мощности, ориентировочных значений частот вращения, используя
табл.24.9 (уч. П.Ф. Дунаев, О.П. Леликов) выбран тип электродвигателя:
АИР 132S6/960 (dвала эл. =38мм)
1.5 Определение вращающего момента на тихоходном валу.
1.6 Определение действительного фактического передаточного числа.
Uд = Uред = 20.1
Предварительный расчет валов
Крутящий момент в поперечных сечениях валов
Быстроходного Tб= 50.8 Hм
Промежуточного Tпр= 210.46 Hм
Тихоходного Tт= 1002.8 Hм
Предварительные значения диаметров (мм) различных участков стальных валов редуктора определяют по формулам:
Для быстроходного:
Для промежуточного:
Для тихоходного:
Выбираем шариковые радиальные однорядные подшипники лёгкой серии.
Для быстроходного вала: 207 d=35мм, D=72мм, В=17мм, r=2мм;
Для промежуточного: 207 d=35мм, D=72мм, В=17мм, r=2мм;
Для тихоходного: 213 d=65мм, D=120мм, В=23мм, r=2,5мм;
Уточнённый расчёт валов
3.1 Расчёт быстроходного вала.
Ft=1848.3 Н; Fr=697.6 Н; Fa=507.7 Н; Т=50.8 Н·м
Находим реакции опор А и Б:
Реакции опор от действия консольной нагрузки
Нормальные и касательные напряжения при действии максимальных нагрузок:
; ;
-суммарный изгибающий момент, где -коэффициент перегрузки (для асинхронных двигателей =2,2);
-крутящий момент.
- осевая сила;
-момент сопротивления сечения вала;
-площадь поперечного сечения;
-момент сопротивления сечения вала;
Так как , то вал выдерживает заданную нагрузку.
3.2 Промежуточный вал (расчёт на статическую прочность).
Изгибающий момент от осевых сил:
Находим реакции опор А и Б:
Определяем нормальные и касательные напряжения при действии максимальных нагрузок:
-суммарный изгибающий момент, где - коэффициент перегрузки (для асинхронных двигателей =2,2).
- осевая сила;
-момент сопротивления сечения вала;
-площадь поперечного сечения;
-крутящий момент;
-момент сопротивления сечения вала;
Так как , то вал выдерживает заданную нагрузку.
3.3 Тихоходный вал (расчёт на статическую прочность).
Ft=8622 Н; Fr=3379.5 Н; Fa= 3446.2Н; Т=1002.75 Н·м
Fк=Сp·Д=5400·0,1=540 Н;
Находим реакции опор А и Б:
,
Определяем нормальные и касательные напряжения при действии максимальных нагрузок:
- суммарный изгибающий момент, где -коэффициент перегрузки (для асинхронных двигателей =2,2).
- осевая сила;
-момент сопротивления сечения вала;
-площадь поперечного сечения;
,
-крутящий момент;
-момент сопротивления сечения вала;
Так как , то вал выдерживает заданную нагрузку.
Расчёт на сопротивление усталости: Вычислим коэффициент запаса прочности S для опасного сечения О.О.
,
[S] =1.5-2.5-допустимое значение коэф. Запаса прочности.
Напряжения в опасных сечениях
;
;
-коэффициенты снижения
предела выносливости;
-эффективные коэффициенты концентрации напряжений;
-коэффициенты влияния абсолютных размеров поперечного сечения;
-коэффициенты влияния качества поверхности;
-коэффициент влияния поверхностного упрочнения;
;
3.4 Приводной вал (расчёт на статическую прочность).
Находим реакции опор А и Б:
Определяем нормальные и касательные напряжения при действии максимальных нагрузок:
; ;
-суммарный изгибающий момент, где -коэффициент перегрузки (для асинхронных двигателей =2,2).
- осевая сила;
-момент сопротивления сечения вала;
-площадь поперечного сечения;
-крутящий момент;
-момент сопротивления сечения вала;
Так как , то вал выдерживает заданную нагрузку.
Расчет сварного соединения:
Вид сварки: выбираем сварку ручную электродами повышенного качества.
Данный способ соединений применен в конструкции приводного вала, в частности сварных звездочек. В данном случае примененяются специальные втулки к которым привариваются звездочки, образуя единую конструкцию, что обеспечивает нам удобство сборки узла и простоту точения самого приводного вала при его изготовлении.
Имеем тавровое соединение угловыми швами.
Соединение рассчитывается по касательным напряжениям, опасное сечение находится по биссектрисе прямого угла.
= (Тз/2) /Wк ['],
где ['] - допускаемое напряжение при статической нагрузке для сварных швов. Определяется в долях от допускаемого напряжения растяжения соединяемых деталей;
Тз - вращающий момент на звездочке, Тз = 443,72 Нм;
Wк - момент сопротивления при кручении.
Для полого круглого сечения
Wк = (*D2*0,7*k) /4,к - катет сварного шва, он находится в пределах 0,5*d k d,
d - толщина меньшей из свариваемых заготовок, d = 8 мм;
к = 5мм;
Wк = 3,14*662*0,7*5/4 =14368,6 мм3;
Так как сварка ручная электродами повышенного качества, то
['] = 0,65* [] р,
[] р = т / S,
где S - коэффициент безопасности.
S = 1,35…1,6
В качестве материала используем сталь 3:
т = 220 МПа, S = 1,4.
Тогда [] р =220/1,4 = 157,14 МПа,
['] = 0,65*157,14 = 102,14 МПа.
= (443,75*103/2) /14368,6 = 15,44 МПа.
Получили, что = 15,44 МПа ['] = 102,14 МПа.
Расчёт подшипников на долговечность
Быстроходный вал: Подшипники шариковые однорядные лёгкой серии
207: d=35мм, D=72мм, В=17мм, Сor=13.7 кН, Сr=25.5 кН.
V=1.0 - при вращении внутреннего кольца подшипника
Данный подшипник годен, т.к расчётный ресурс больше требуемого.
Промежуточный вал: Подшипники шариковые однорядные лёгкой серии
207: d=35мм, D=72мм, В=17мм, Сor=13.7 кН, Сr=25.5 кН
V=1.0 - при вращении внутреннего кольца подшипника
Данный подшипник годен, т.к расчётный ресурс больше требуемого.
Тихоходный вал: Подшипники шариковые однорядные лёгкой серии
213: d=65мм, D=120мм, В=23мм, Сor=34 кН, Сr=56.0 кН.
V=1.0 - при вращении внутреннего кольца подшипника
Данный подшипник годен, т.к расчётный ресурс больше требуемого.
Приводной вал: Подшипники радиальные сферические двухрядные
1213: d=65мм, D=120мм, В=23мм, Сor=17.3 кН, Сr=31 кН.
V=1.0 - при вращении внутреннего кольца подшипника
Данный подшипник годен, т.к расчётный ресурс больше требуемого.
Выбор смазки редуктора
Для уменьшения потерь мощности на трение и снижения интенсивности износа трущихся поверхностей, а также для предохранения их от заедания, задиров, коррозии и лучшего отвода теплоты трущиеся поверхности деталей должны иметь надежную смазку.
В настоящее время в машиностроении для смазывания передач широко применяют картерную систему. В корпус редуктора или коробки передач
заливают масло так, чтобы венцы колес были в него погружены. При их вращении масло увлекается зубьями, разбрызгивается, попадает на внутренние стенки корпуса, откуда стекает в нижнюю его часть. Внутри корпуса образуется взвесь частиц масла в воздухе, которая покрывает поверхность расположенных внутри корпуса деталей.
Картерную смазку применяют при окружной скорости зубчатых колес и червяков от 0,3 до 12,5 м/с. При более высоких скоростях масло сбрасывается с зубьев центробежной силой и зацепление работает при недостаточной смазке. Кроме того, заметно увеличиваются потери мощности на перемешивание масла и повышается его температура.
Выбор смазочного материала основан на опыте эксплуатации машин. Принцип назначения сорта масла следующий: чем выше окружная скорость колеса, тем меньше должна быть вязкость масла, чем выше контактные давления в зубьях, тем большей вязкостью должно обладать масло. Поэтому требуемую вязкость масла определяют в зависимости от контактного напряжения и окружной скорости колес. Предварительно определяют окружную скорость, затем по скорости и контактным напряжениям находят требуемую кинематическую вязкость и марку масла.
По табл.11.1 и 11.2 (П.Ф. Дунаев, О.П. Леликов) выбираем масло
И-Г-А-32 ТУ38-1001451-78.
В соосных редукторах при расположении валов в горизонтальной плоскости в масло погружают колеса быстроходной и тихоходной ступеней. Если глубина погружения колеса окажется чрезмерной, то снижают уровень масла и устанавливают специальное смазочное колесо.
Hmax=120мм, Hmin=70мм.
Проверка прочности шпоночного соединения
Все шпонки редуктора призматические со скругленными торцами, размеры длины, ширины, высоты, соответствуют ГОСТ 23360-80. Материал шпонок - сталь 45 нормализованная. Все шпонки проверяются на смятие из условия прочности по формуле:
Допускаемое напряжение смятия [см] =200МПа
Быстроходный вал: 50.8 Н·м;
Выходной конец вала =Ш35мм; b·h·l =6·6·42;
Промежуточный вал: 210.5 Н·м;
Диаметр вала: Ш42мм; b·h·l =12·8·40;
Тихоходный вал: 1002.75 Н·м;
Выходной конец вала: Ш63мм; b·h·l =16·10·78;
Расчёт соединения с натягом
Т=1002Н·м; Fa=3446.2Н; Ft=8622Н;
Вал-Ст45,
Шестерня-Ст40X,
1 Условие работоспособности
к - коэффициент по сцеплению;
-
необходимое давление для обеспечения работоспособности;
,
Это давление будет создаваться натягом, который мы рассчитываем по формуле Ламе:
µ=0,3
Стандартную посадку подбираем по измеренному натягу, который будет отличаться от расчётного на величину
Проверим посадку по условию прочности:
посадка пригодна.
Подбор муфты
Муфта комбинированная (упругая и предохранительная) с разрушающимся элементом.
Предохранительная муфта отличается компактностью и высокой точностью срабатывания. Обычно применяется в тех случаях, когда по роду работы машины перегрузки могут возникнуть лишь случайно. Может работать только при строгой соосности валов. В качестве разрушающегося элемента обычно используют штифты, выполняемые из стали или из хрупких материалов (серый чугун, бронза). В момент срабатывания штифт разрушается и предохранительная муфта разъединяет кинематическую цепь. Для удобства эксплуатации муфты в гнезде ставят комплект втулок вместе со штифтом. В этом случае сопряжение втулок с полумуфтами H7/js6, штифта с втулками H7/k6. Одну из полумуфт устанавливают при посадке Н7/f7, предусматривая по торцам минимальный зазор 0.05…0.10 мм. Чтобы торцы втулок не задевали друг за друга, следует предусматривать зазор на 0.05…0.10 мм больший, чем между торцами полумуфт.
Муфта упругая втулочно-пальцевая по ГОСТ 21424-75.
Отличается простотой конструкции и удобством монтажа и демонтажа. Обычно применяется в передачах от электродвигателя с малыми крутящими моментами. Упругими элементами здесь служат гофрированные резиновые втулки. Из-за сравнительно небольшой толщины втулок муфты обладают малой податливостью и применяются в основном для компенсации несоосности валов в небольших пределах (3 мм; 0.10…0,15 мм; 0,6/100 мм/мм).
Материал полумуфт - чугун СЧ20.
Материал пальцев - сталь 45.
Для проверки прочности рассчитывают пальцы на изгиб, а резину - по напряжениям смятия на поверхности соприкасания втулок с пальцами. При этом полагают, что все пальцы нагружены одинаково, а напряжения смятия распределены равномерно по длине втулки:
где z - число пальцев, z = 8. Рекомендуют принимать = 1,8...2 МПа.
Тогда
Пальцы муфты изготовляют из стали 45 и рассчитывают на изгиб:
Допускаемые напряжения изгиба , где - предел текучести материала пальцев, МПа. Зазор между полумуфтами С=6мм
Список используемой литературы
1. М.Н. Иванов. Детали машин. М.: "Машиностроение", 1991.
2. П.Ф. Дунаев, О.П. Леликов - Конструирование узлов и деталей машин.
3. М.: "Высшая школа", 1985.
4. Д.Н. Решетов - Детали машин. Атлас конструкций в двух частях. М.: "Машиностроение", 1992.
Подобные документы
Анализ передаточного механизма и эскизное проектирование редуктора. Уточнённый расчёт валов. Проверка подшипников на долговечность. Расчет сварного соединения и выбор смазки редуктора. Проверка прочности шпоночного соединения и подбор необходимой муфты.
курсовая работа [1,2 M], добавлен 15.08.2011Выбор электродвигателя и кинематический расчет привода цепного транспортера конически-цилиндрического редуктора. Расчет тихоходной ступени; предварительный расчет валов. Конструктивные размеры шестерен и колес корпуса; проверка прочности, компоновка.
курсовая работа [4,4 M], добавлен 16.05.2013Разработка привода цепного транспортёра, кинематический расчет; выбор электродвигателя. Эскизное проектирование редуктора, приводного вала, упруго-компенсирующей муфты. Расчёт валов, соединений, подбор и конструирование корпусов и крышек подшипников.
курсовая работа [168,8 K], добавлен 15.08.2011Кинематический и энергетический расчет привода цепного конвейера. Расчет редуктора. Проектный расчет валов, расчет на усталостную и статическую прочность. Выбор подшипников качения. Расчет открытой зубчатой передачи. Шпоночные соединения. Выбор муфт.
курсовая работа [146,3 K], добавлен 01.09.2010При проектировании привода цепного транспортёра необходимо выбрать электродвигатель, материал, подшипники, шпоночные соединения. Определение мощности, крутящего момента и частоты вращения каждого вала привода и диаметров валов. Смазка зубчатых зацеплений.
курсовая работа [242,1 K], добавлен 15.01.2009Кинематический расчеты привода и выбор электродвигателя. Предварительный расчет диаметров валов. Смазка зацеплений и подшипников. Расчет цепной передачи. Расчет валов на изгиб и кручение. Проверка опасного сечения тихоходного вала на долговечность.
курсовая работа [770,1 K], добавлен 23.10.2011Кинематический расчет привода и выбор электродвигателя. Определение параметров закрытой и клиноременной передач, элементов корпуса. Эскизная компоновка и расчет валов. Вычисление шпоночного соединения и подшипников качения. Выбор муфты и смазки редуктора.
курсовая работа [772,0 K], добавлен 18.03.2014Кинематический, силовой и проектный расчет привода цепного транспортера; тихоходной и быстроходной ступеней редуктора, валов, цепной передачи, шпонок, муфты. Подбор подшипников качения. Выбор условий смазки. Описание конструкции сварной рамы привода.
курсовая работа [939,6 K], добавлен 29.07.2010Расчет закрытой зубчатой передачи. Предварительный расчет валов. Расчет плоскоременной передачи. Подбор и проверка подшипников. Уточненный расчет валов. Проверка шпоночных соединений. Конструктивные элементы корпуса. Смазка редуктора, выбор посадок.
курсовая работа [199,7 K], добавлен 06.07.2013Проект привода цепного транспортера. Выбор электродвигателя и кинематический расчет. Частота вращения тяговой звездочки и валов. Выбор материалов шестерен и колес и определение допускаемых напряжений. Расчет третьей ступени редуктора, окружная скорость.
курсовая работа [1,2 M], добавлен 29.07.2010