Расчёт параметров изгиба однопролётной балки со свободно опертым и упруго защемленным концами

Дифференциальное уравнение изгиба призматической балки. Граничные условия для параметров изгиба. Характер изменения прогиба по длине, изгибающие моменты, действующие на балку в любом ее сечении. Значение перерезывающей силы в районе упругого защемления.

Рубрика Производство и технологии
Вид курсовая работа
Язык русский
Дата добавления 28.11.2009
Размер файла 71,2 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

14

Курсовая работа

Расчёт параметров изгиба однопролётной балки со свободно опёртым и упруго защемленным концами

Дано:

L = 6.8 м = 680 см.

q0 = 22.2 кгс/см

E = 210000 МПа

J = 5800 см4

? = 0.93

1. Дифференциальное уравнение изгиба призматической балки имеет следующий вид:

EJWIV (x) = q (x) (1)

После четырёхкратного интегрирования дифференциального уравнения изгиба балки (1) общий интеграл этого уравнения представляется выражением:

, (2)

в котором величины А, В, С, D являются постоянными интегрирования, определяемые исходя из граничных условий по концам рассматриваемой балки.

2. Граничные условия для параметров изгиба балки на её левом конце при значении х = 0 имеют вид:

W(0) = 0 (3)

WII (0) = 0 (4)

На правом конце балки при значении х = L граничные условия для параметров изгиба имеют вид:

W(L) = 0 (5)

(6)

3. В связи с тем, что в конкретном рассматриваемом примере на заданную однопролётную балку действует равномерно распределённая внешняя нагрузка интенсивностью q(x)= q0 = const, дифференциальное уравнение (1) изгиба призматической балки будет иметь вид:

EJWIV (x) = q 0, (7)

а выражение (2) для общего интеграла дифференциального уравнения (7) будет:

(8)

Для подчинения общего интеграла (8) дифференциального уравнения (7) граничным условиям (3), (4), (5). (6) необходимо предварительно получить выражения для первой и второй производных от общего интеграла (8), которые будут иметь соответственно вид:

(9)

(10)

Если подчинить выражение общего интеграла (8) граничному условию (3), то в результате получим, что

W(0) = D,

откуда следует, что величина D будет равна:

D = 0 (11)

Если воспользоваться граничным условием (4), то подставляя в выражение (10) значение х = 0, в результате получим, что

WII(0)=В,

откуда следует, что величина В будет равна:

В = 0 (12)

Подчиняя выражение общего интеграла (8) граничному условию (5), получим, что

(13)

Воспользовавшись выражениями (9) и (10), из граничного условия (6) получим следующую зависимость:

(14)

или

,

откуда после преобразований и приведения подобных членов, получается выражение вида

(15)

Выражения (14) и (15) в окончательном виде преобразуются к уравнениям относительно двух неизвестных величин А и С, которые образуют систему двух алгебраических уравнений:

(16)

Для решения системы уравнений (16) можно воспользоваться методом миноров.

(17)

значения неизвестных величин А и С будут определяться следующими формулами:

; (18)

, (19)

где:

Д0 - определитель системы уравнений (17), составляемый из коэффициентов при неизвестных величинах А и С:

ДА - определитель системы уравнений (17), составляемый из коэффициентов правой части С1 и С2 и коэффициентов при неизвестной величине С:

ДС - определитель системы уравнений (17), составляемый из коэффициентов при неизвестной величине А и из коэффициентов правой части С1 и С2:

Учитывая вышеприведенные формулы, получим следующие выражения:

,

которые после несложных преобразований примут вид:

Тогда, учитывая выражения (18) и (19), значения величин А и С будут определяться формулами:

(20)

(21)

в которых введены обозначения:

(22)

(23)

4. Общий интеграл (8) дифференциального уравнения (7), являющийся выражением, описывающим характер изменения прогиба W(x) по длине рассматриваемой однопролётной статически неопределимой балки, после подстановки значений величин А и С, запишется:

5. Общий интеграл приведенный к виду с безразмерными значениями переменного аргумента:

(24)

6. Значения изгибающих моментов M(x), действующих на балку в любом сечении по её длине, определяются второй производной по прогибу балки, которая учитывая полученную формулу (24) преобразуется к виду:

или к выражению, содержащему «безразмерную» переменную величину, равную отношению «х/L»:

(25)

На основании формулы (25) может быть построена эпюра значений изгибающих моментов M(x).

Для определения экстремального значения изгибающего момента в пролёте балки Mпр необходимо в первую очередь определить значение координаты (xпр) расположения этого изгибающего момента Mпр. Для определения значения координаты (xпр) необходимо получить выражение для первой производной от выражения (25):

(26)

Тогда значение координаты (xпр), где изгибающий момент будет иметь экстремальное значение Mпр, определится из условия:

или, учитывая выражение (26), из следующего уравнения:

,

откуда

(xпр) (27)

Тогда экстремальное значение Mпр будет равно:

(28)

Наибольшее значение изгибающий момент M(x), исходя из характера его распределения по длине балки, может иметь или в районе упругой заделки при х = L (значение Mоп) или при x = xпр (значение Mпр).

Значение Mоп определим из выражения (25), подставляя в последнее значение координаты х = L:

(29)

7. Коэффициент опорной пары ? определяется отношением значения изгибающего момента, действующего в районе упругой заделки Mоп, к значению изгибающего момента в этом районе при условии абсолютно жёсткого защемления Mжз:

? (30)

Значение изгибающего момента Mжз в районе упругой заделки в предположении его абсолютно жёсткого защемления определится из формулы (29), если в последней предположить, что коэффициент податливости заделки or равен нулю:

, (31)

тогда на основании формул (29), (30), (31) получим выражение, определяющее значение коэффициента опорной пары ? упруго защемлённого конца рассматриваемой статически неопределимой однопролётной балки:

? (32)

Из формулы (32) может быть установлена зависимость коэффициента податливости упругой заделки or через значения коэффициента опорной пары ?:

(33)

Использование формулы (33) позволяет выразить значения коэффициентов АI и СI при постоянных интегрирования А и С, определяемых формулами (22) и (23), выражениями, содержащими только значения коэффициентов опорной пары ?:

(34)

(35)

Тогда экстремальное значения изгибающего момента в пролёте балки Mпр и значения опорного изгибающего момента в районе упругого защемления Mоп будут определяться соответственно следующими выражениями через значения коэффициентов опорной пары ?:

(36)

(37)

А значение координаты (xпр) расположения экстремального значения изгибающего момента в пролёте балки Mпр в соответствии с формулой (27) определится выражением:

(38)

8. Значения перерезывающих сил N (x), действующих на балку в любом сечении по её длине, определяются известной зависимостью Журавского:

,

которая, учитывая формулу (25), для рассматриваемой однопролётной статически неопределимой балки преобразуется к виду:

(39)

Из формулы (39) следует, что перерезывающие силы распределяются по длине балки по линейному закону, то есть по прямой линии, поэтому для построения эпюры перерезывающих сил достаточно определить значения перерезывающей силы в двух крайних точках, а именно в начале координат:

(40)

и в районе упругой заделки (при x = L):

(41)

Откуда видно, что выполняется следующее очевидное соотношение

9. Расчет значений параметров изгиба однопролетной балки со свободно опертым и упруго защемленным концами.

В этом случае, исходя из формул (34) и (35)

;

,

а координата (xпр) расположения экстремального значения изгибающего момента в пролёте балки Mпр в соответствии с формулой (27) будет равна:

или в безразмерном относительном виде:

0.383

Экстремальное значение изгибающего момента в пролёте балки Mпр и значение опорного изгибающего момента в районе упругого защемления Mоп в соответствии с формулами (25) и (29) будут равны:

Mпр =M(260,8) - 755359 кг*с*см

1194621 кг*с*см

Определим значение перерезывающей силы в начале координат (на левой опоре) на основании формулы (40):

N(0) = - 5791 H.

На основании формулы (41) определим значение перерезывающей силы в районе упругого защемления балки (на правой опоре):

N(L) = 9305 H.

Отметим, что перерезывающая сила N в районе действия экстремального значения изгибающего момента Mпр в пролёте балки имеет нулевое значение:

,00 Н.


Подобные документы

  • Решение задачи на нахождение параметров изгиба однопролетной балки со свободно опертым и упруго-защемленными концами. Определение значения изгибающих моментов, действующих на балку в любом сечении по её длине и экстремального значения изгибающего момента.

    курсовая работа [74,9 K], добавлен 02.12.2009

  • Экспериментальное определение максимальных прогибов и напряжений при косом изгибе балки и их сравнение с аналогичными расчетными значениями. Схема экспериментальной установки для исследования косого изгиба балки. Оценка прочности и жесткости балки.

    лабораторная работа [176,9 K], добавлен 06.10.2010

  • Дифференциальное уравнение изгиба абсолютно жестких пластин судового корпуса. Перемещения пластины и значения изгибающих моментов. Цилиндрическая жесткость пластины. Влияние цепных напряжений на изгиб пластин. Определение напряжений изгиба пластины.

    курсовая работа [502,8 K], добавлен 28.11.2009

  • Рассмотрение использования двутавровой балки в широких пролетах промышленных объектов. Описание конструкции сварной подкрановой балки со свободно опертыми концами. Расчёт эквивалентного напряжения в сечении, поясных швов. Конструирование опорных узлов.

    курсовая работа [1,5 M], добавлен 29.04.2015

  • Определение суммарных величин изгибающих моментов от сосредоточенных сил и равномерно распределенной нагрузки. Построение линий влияния поперечной силы в сечениях. Проверка сечения балки по условиям прочности. Обеспечение местной устойчивости балки.

    курсовая работа [1,4 M], добавлен 25.10.2014

  • Определение эйлеровых напряжений пластин судового корпуса. Изгибающие моменты и перерезывающие силы на тихой воде и при ударе волн в борта. Волновые изгибающие моменты перерезывающей силы. Расчет эквивалентного бруса в первом приближении сухогруза.

    практическая работа [78,9 K], добавлен 10.12.2009

  • Расчет зубчатых пар редуктора на контактную выносливость и на выносливость по напряжениям изгиба. Расчет параметров цилиндрических зубчатых пар редуктора и проверка принятых размеров на выносливость по контактным напряжениям и напряжениям изгиба.

    курсовая работа [245,6 K], добавлен 27.01.2016

  • Силы, вызывающие вибрацию корпуса судна и его конструкций. Нагрузки, вызванные неточностями изготовления механизмов, валопроводов, винтов. Местная и общая вибрация корабля. Свободные колебания однопролётной свободно опёртой балки и гибких пластин.

    курсовая работа [5,5 M], добавлен 28.11.2009

  • Определение расчётных нагрузок, действующих на балку, расчётных усилий, построение эпюр. Подбор сечения балки. Проверка прочности, жёсткости и выносливости балки. Расчёт сварных соединений. Момент инерции сечения условной опорной стойки относительно оси.

    курсовая работа [121,4 K], добавлен 11.04.2012

  • Совместное действие изгиба с кручением. Определение внутренних усилий при кручении с изгибом. Расчет валов кругового (кольцевого) поперечного сечения на кручение с изгибом. Определение размера брусьев прямоугольного сечения на кручение с изгибом.

    курсовая работа [592,6 K], добавлен 11.09.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.