Влияние основных легирующих элементов на свойства малоуглеродистых и низколегированных сталей
Классификация, свойства, применение, маркировка углеродистых и легированных сталей. Влияние углерода и примесей на их свойства. Термическая обработка сплава 30ХГСА. Измерение твёрдости методом Роквелла. Влияние легирующих элементов на рост зерна стали.
Рубрика | Производство и технологии |
Вид | дипломная работа |
Язык | русский |
Дата добавления | 09.07.2015 |
Размер файла | 761,3 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Реферат
Ключевые слова: сталь, свойства, примеси, структура, легирующие элементы, твердость, зерно.
Цель работы - проанализировать влияние основных легирующих элементов на свойства малоуглеродистых и низколегированных сталей.
Объектом исследования является микроструктура сталей с содержанием в них специально вводимых основных легирующих элементов.
Метод исследования и аппаратура - макроструктурный метод ? определение твердости материала по методу Бринелля и методу Виккерса, твердомер, микроскоп.
Степень внедрения - внедрение в учебный процесс.
Область применения - научно - исследовательская лаборатория.
Содержание
Реферат
Введение
1. Литературный обзор
1.1 Классификация и маркировка углеродистых и легированных сталей
1.1.1 Влияние углерода
1.1.2 Влияние примесей
1.1.3 Классификация сталей
1.1.4 Дефекты легированных сталей
1.2 Цементуемые стали
1.3 Улучшаемые стали
1.4 Высокопрочные стали
1.5 Пружинно-рессорные стали
1.6 Шарикоподшипниковые стали
1.7 Износостойкие стали
1.8 Строительные стали
1.9 Автоматные стали
2. Методика эксперимента
2.1 Отжиг I рода
2.2 Отжиг II рода
2.3 Закалка
2.4 Отпуск
2.5 Термическая обработка сплава 30ХГСА
2.6 Измерение твёрдости
2.6.1 Метод Роквелла
2.6.2 Порядок выполнения измерения
3. Результаты эксперимента и их обсуждение
3.1 Структура легированных сталей в нормализованном состоянии
3.2 Свойства и применение легированных сталей
3.3 Влияние основных легирующих элементов на свойства стали
3.4 Влияние легирующих элементов на рост зерна стали
3.5 Выводы
Заключение
Список литературы
Введение
На сегодняшний день в производстве часто используют стали, обеспечивающие значительную конструктивную прочность, а также сплавы, которые могут оставаться прочными при значительно повышенных температурах, и температурах, близких к абсолютному нулю, обладающих высокой стойкостью к коррозии в агрессивных для этих сплавов средах.
Конструкторы, выбирающие металл или сплав для детали (конструкции) придают значение не только одному или двум критериям, характеризующим свойства металла, но и его конструктивную прочность.
Конструктивной прочностью материала называют комплекс прочностных свойств, которые находятся в большой корреляции со основными свойствами данной детали или конструкции.
Прочностные и пластические свойства определяются по ГОСТам на образцах и имеют огромное значение, но при этом очень часто не могут характеризовать прочность материалов в подлинных условиях использования деталей и сооружений. Происходит это из-за значительного различия между обстоятельствами деформации образцов при механических испытаниях и реальными условиями эксплуатации деталей, конструкций и т.д.
Конструктивная прочность это комплексное понятие. По меньшей мере, следует учесть четыре критерия в условиях эксплуатации данной детали или конструкции:
- жесткость конструкции;
- прочность материала;
- надежность;
- долговечность материала.
Жесткость конструкции. Для большинства деталей или конструкций, испытывающих силовые напряжения, условиями, определяющими способность к работе, является местная или общая жесткость (устойчивость), определяемая формой конструкции, схемой напряжения и т. д., а также и свойствами металла или сплава. Показателем жесткости материала является модуль жесткости Е - структурно нечувствительная характеристика, зависимая только от самого материала.
Прочность - способность тела сопротивляться деформациям и разрушению. Прочность конструкционных материалов, используемых в технике, изменяется в очень широком диапазоне - от 100150 до 25003500 МПа.
Прочность детали или конструкции определяют не только свойствами самих материалов, но и степенью технологии и обстоятельствами использования или работы этой конструкции. О прочности конструкции не судят только по итогам испытания образцов, так как они не могут отражать всего разнообразия воздействий, которым подвергается сплав в процессе производства деталей, также их последующей работы в конструкциях. Часто во многих областях промышленности (авиационной, ракетной, космической и т.д.), выбирая металл для какой либо детали или конструкции, огромное значение уделяют удельной прочности, под которой понимают отношение предела прочности или иной характеристики механических свойств к плотности (например, в/, т/, где - плотность материала, г/см3). Из данных, приведенных в таблице 1, видно, что, алюминиевые сплавы, хотя и имеют меньшую абсолютную прочность, чем многие легированные стали, превосходят их по удельной прочности. Это означает, что при равной прочности, масса детали из алюминиевых сплавов меньше, чем масса детали из стали.
Таблица 1 ? Удельная прочность некоторых конструкционных материалов
Материал |
в, МПа |
, г/см3 |
в/*103г/см |
|
Углеродистая сталь |
450-1100 |
7,8 |
60-150 |
|
Легированная сталь 30 ХГСА |
1100-1400 |
7,8 |
150-190 |
|
Высокопрочные стали |
1800-2000 |
7,8 |
220-250 |
|
Магниевые сплавы МА2, МА8 |
220-280 |
1,8 |
120-150 |
|
Алюминиевые сплавы Д16, В95 |
420-600 |
2,8 |
160-210 |
|
Титановые сплавы |
1200-1400 |
4,5 |
260-400 |
Надежность это свойство деталей реализовывать свои функции, сохраняя при этом свои эксплуатационные показатели в заданных пределах в течение требуемого времени или требуемой выработки. Надежность детали или целой конструкции - это ещё и способность этой детали функционировать вне заданных условиях, к примеру, выдерживать ударные нагрузки т.д. Основным показателем надежности является и запас вязкости металла или сплава, который зависит от состава, температуры, условий нагружения, работы, поглощаемой при распространении трещины. Главной характеристикой, определяющей надежность работы детали, является сопротивление материала хрупкому разрушению.
Долговечностью называют возможность детали или конструкции сохранять работоспособность до предельного состояния, при котором деталь выходит из строя. Долговечность изделия зависит от условий работы. В основном это проявляется в сопротивлении к износу при работе и контактной прочности. Кроме этого, долговечность детали зависит от предела выносливости, который зависит от состояния поверхности изделия и коррозионной стойкости металла или сплава [1].
Рассмотрим влияние легирующих элементов на свойства металлов и сплавов на примере конструкционного улучшаемого сплава 30ХГСА.
Начать рассказ о 30ХГСА следует с истории появления этой марки. Сплав был разработан коллективом советских ученых в ВИАМ (Всероссийский Институт Авиационных Материалов) в начале Великой Отечественной Войны. Главную роль в создании 30ХГСА сыграли И. И. Сидорин и Г.В. Акимов. Значение этого события трудно переоценить - ведь появление сплава было открытием в области создания металлов. Тем самым СССР обогнал конкурирующие США, как минимум, на несколько лет - у них в самолетостроении использовалась хромомолибденовая сталь, которая уступает стали 30ХГСА по многим характеристикам. Сейчас конструкционная сталь 30ХГСА применяется в различных областях (таких как машиностроение), изначально сплав 30ХГСА был создан для нужд авиации. В дальнейшем созданная нашими учеными конструкционная сталь 30ХГСА обеспечила преимущество советской авиации, и в определенной степени 30ХГСА способствовала победе в войне с Германией. В настоящее время 30ХГСА используется в мирных целях и испытывает неизменный интерес гражданских потребителей благодаря своим замечательным характеристикам. Сталь 30ХГСА имеет и другое, более благозвучное название - «хромансиль». Это тоже сокращение, образованное от названий легирующих эту сталь металлов (хром и Manganum - марганец, Silicium - кремний).
Если же говорить подробнее о легирующих элементах и о том, как они влияют на характеристики легированной стали, то касательно стали 30ХГСА можно упомянуть, что, например, хром повышает твердость и устойчивость 30ХГСА к коррозии, марганец также увеличивает твердость, и, кроме того, способствует устойчивости к ударным нагрузкам и износоустойчивости, а кремний повышает показатель ударной вязкости и температурный запас вязкости. Хромансиль 30ХГСА относится к классу так называемой конструкционной стали, а именно, к легированной конструкционной стали.
Конструкционная сталь применяется в различных областях машиностроения, а касательно легированной стали следует отметить, что она относится к специальным видам стали, так как превосходит обычную углеродистую сталь. Конструкционная сталь 30ХГСА применяется, например, в самолетостроении для создании деталей, которые предполагается использовать на ответственных участках, то есть там, где возможна высокая нагрузка и неблагоприятные условия: это крепежные детали, работающие при низких температурах, сварные конструкции, испытывающие знакопеременные нагрузки и так далее.
Помимо всего прочего, немаловажно и то обстоятельство, что конструкционная легированная сталь 30ХГСА представляет собой улучшаемую сталь, то есть 30ХГСА проходит улучшение - закалку и высокий отпуск при температуре 550-660 градусов Цельсия. Поэтому 30ХГСА используется в создании улучшаемых деталей. Помимо упомянутых выше авиационных деталей, в машиностроении это также лопатки компрессорных машин, эксплуатируемые при температуре до 400° С, различные валы, оси, различные корпуса обшивки и многое другое. В настоящее время 30ХГСА изготавливается в различных вариантах.
Химический состав сплава 30ХГСА - это кремний, марганец и хром, количеством примерно одного процента каждый. А содержание углерода в 30ХГСА равно ~ 0,30 процента, серы ? 0,025 %. В качестве примера можно привести химический состав сплава 30ХГСА для авиационных листов и труб - наличие углерода: 0,28--0,35%, хрома: 0,8 --1,10%, Марганца:0,8 --1,1%, кремния: 0,9 --1,2%.
Основные преимущества сплава 30ХГСА перед другими марками стали заключаются в высокой прочности, отличных показателях ударной вязкости, выносливости. Также 30ХГСА отличается хорошей свариваемостью. При всех своих примечательных свойствах сталь 30ХГСА стоит сравнительно недорого, так как не содержит дефицитных легирующих элементов.
1. Литературный обзор
1.1 Классификация и маркировка углеродистых и легированных сталей
Сплавы железа распространены в промышленности и производстве очень обширно. Основные из них это сталь и чугун, представляющие собой сплавы железа с углеродом. Несмотря на быстрое развитие производства и применения разных материалов, 92% используемых в мире конструкционных материалов составляют стали и чугуны. Для получения заданных свойств, в сталь и чугун вводят легирующие элементы. Стали должны обладать высокими технологическими свойствами: легко обрабатываться давлением, хорошо обрабатываться на металлорежущих станках и свариваться. Очень часто от них требуют высокой коррозионной стойкости и жаропрочности. Стали делят на углеродистые и легированные.
Углеродистая сталь - это важнейший материал для конструкций и деталей машин, который применяют в разных отраслях промышленности и производства. Углеродистые стали легче в производстве и существенно дешевле легированных. Свойства их определяются количеством углерода и содержанием находящихся в них примесей, которые взаимодействуют и с железом, и с углеродом [2].
1.1.1 Влияние углерода
Сталь после медленного охлаждения имеет структуру, состоящую из двух фаз - феррита и цементита. Содержание цементита увеличивается в стали прямо пропорционально количеству углерода. Твёрдые и хрупкие частицы цементита увеличивают сопротивление движению дислокаций, тем самым повышают сопротивление деформации, но уменьшают пластичность и вязкость. Из-за этого с увеличением количества в стали углерода, возрастают твёрдость, пределы прочности и уменьшаются относительное удлинение, относительное сужение и ударная вязкость. Увеличение содержания углерода облегчает переход стали в хладноломкое состояние, что негативно влияет на работоспособность деталей произведённых из данной стали. Как можно увидеть из графика, изображённого на рисунке 1.1.1, прочность возрастает только до 1 % углерода в стали, а при более высоком содержании С прочность начинает снижаться. Происходит это из-за образовавшихся по границам зерен в заэвтектоидных сталях сетки вторичного цементита, понижающую прочность стали. Кроме углерода, в стали есть и другие элементы - примеси. Наличие этих примесей определено разными причинами, в основном в процессе производства. Примеси делят на: постоянные, скрытые, случайные и специально введенные [3].
Рисунок 1.1.1. Зависимость свойств горячекатаной углеродистой стали от содержания углерода
1.1.2 Влияние примесей
Сталь это сплав с большим количеством компонентов. Она содержит ряд обязательных или неминуемых примесей, таких как Mn, Si, S, P, O, N, H и др., оказывающих влияние на свойства данной стали. Присутствие таких примесей говорит о трудности удаления этих части из стали при выплавки (P, S) или переходом их в сталь в процессе её раскисления (Mn, Si), попаданием из шахты - легированного металлического лома (Cr, Ni и др.). Такие же примеси, но в больших количествах, присутствуют и в чугунах.
Влияния кремния и марганца на свойства стали. Кремний, содержащийся в углеродистой стали как примесь, обычно не превышает количества 0,35 - 0,4%, а марганец количества 0,5 - 0,8%. Кремний и марганец попадают в сталь в процессе её раскисления при производстве. Они раскисляют сталь, т. е. соединяются с кислородом закиси железа FeO, в виде окислов и переходят в шлак. Эти процессы раскисления, как правило, улучшают свойства стали. Кремний, дегазируя сплав, повышает плотность металла.
Кремний, который остался после раскисления в феррите, весьма увеличивает предел текучести. Это убавляет способность стали к вытяжке, и особенно холодной высадке. Из-за этого в стали, предназначенной для холодной штамповки и холодной высадке, содержание Si должно быть как можно наименьшим.
Марганец заметно поднимает прочность, практически не понижая пластичность и резко уменьшая красноломкость стали, т. е. хрупкость при высоких температурах, вызванную влиянием серы, что положительно влияет на работоспособность детали или конструкции произведённой из такой стали.
Влияние серы. Сера является негативной примесью в стали. С железом она образует химическое соединение FeS, которое не может раствориться в нём в твёрдом состоянии, но растворяется в жидком металле. Соединение FeS создаёт с железом легкоплавкую эвтектику с температурой плавления 9880С. Такая эвтектика может образоваться даже при малых содержаниях S. При повышении температуры до температур прокатки или ковки (1000 - 12000С) эвтектика расплавляется, нарушая связь между зёрнами металла, вследствие чего при деформации стали в местах расположения эвтектики возникают надрывы и трещины. Эти трещины весьма опасны, ведь в процессе работы деталь с примесью серы может разрушиться.
Присутствие в стали марганца, обладающего высоким сродством с серой, и образующего с ней тугоплавкое соединение MnS, практически исключает явление красноломкости. Содержание серы в сталях допускается не более 0,06 %.
Влияние фосфора. Фосфор - это негативная примесь, содержание его в стали допускается не более 0,025 - 0,045%. Фосфор растворяется в феррите и этим самым искривляет кристаллическую решётку и повышает пределы прочности и текучести, но уменьшает пластичность и вязкость. Понижение вязкости тем существеннее, чем больше в сплаве углерода. Фосфор значительно увеличивает порог хладноломкости стали или сплава и уменьшает работу развития трещины.
Вредное влияние фосфора усугубляется тем, что P обладает значительным стремлением к ликвации. По этой причине в промежуточных слоях слитка разные области сильно обогащаются P и характеризуются резко сниженной вязкостью. Нынешние методы производства сталей и сплавов не гарантируют полного очищения металла от P.
Влияние азота, кислорода и водорода. N и O находятся в стали в виде хрупких неметаллических включений, в виде твёрдого раствора. Также могут присутствовать в свободном виде, располагаясь в дефектных частях металла или сплава. Примеси внедрения (N, O), скапливаясь в объёмах по границам зёрен и образуя выделения нитридов и оксидов, повышают порог хладноломкости и как правило понижают сопротивление хрупкому разрушению.
Водород, растворяясь в стали, негативно сказывается на её свойствах, например, приводит к охрупчиванию. Впитанный, при выплавки стали H не только приводит к охрупчиванию стали, но и к образованию в катаных заготовках и крупных поковках флокенов. Флокены - это тонкие трещины овальной или округлой формы, имеющие в изломе вид пятен - хлопьев серебристого цвета. Флокены ухудшают свойства стали. Такой металл, имеющий флокены, ни в коем случае нельзя использовать в промышленности.
Специальные примеси. Такие примеси намеренно внедряют в сталь для приобретения заданных характеристик. Эти элементы называют легирующими, а стали - легированными [4].
Содержание легирующих элементов в сплавах может меняться в очень обширных границах. Сталь считается легированной Cr или Ni, если содержание этих элементов составляет 1 % или более. При содержании V, Mo, Ti, Nb и других элементов более 0,1 - 0,5 % стали считают легированными этими элементами. Сталь также является легированной, если в ней содержатся только элементы, характерные для углеродистой стали, например Mg или Si, а их количество должно превышать 1%. В конструкционных сталях легирование реализовывают с целью улучшения механических свойств - прочности, пластичности и т.д. Кроме всего прочего, при введении в сталь легирующих элементов меняются физические, химические и другие ее свойства.
К сожалению, легирующие элементы значительно поднимают стоимость стали, а некоторые из них к тому же являются редкими металлами, поэтому добавление их в сталь должно быть строго обосновано.
На данный момент создано много классификаций, позволяющих систематизировать стали, что упрощает поиск стали нужной марки с учётом её свойств.
Стали разделяют по химическому составу, способу производства, по структуре в отожженном или нормализованном состоянии, по качеству, а так же по назначению [5].
1.1.3 Классификация сталей
По содержанию химических элементов стали делят на две большие группы, это группа углеродистых и группа легированных сталей. Легированные стали в зависимости от количества элементов легирования различают как 3-компонентные, содержащие кроме Fe и C один какой-либо легирующий элемент, 4-компонентные и т.д. Чаще применяемой является систематизация с указанием самих легирующих элементов, например, стали хромистые, стали хромоникелевые, стали хромоникельмолибденовые и т.д.
По степени легирования стали условно можно также разделить на низколегированные, содержащие в общем 2,5 - 5% легирующих элементов, среднелегированные - до 10% и высоколегированные - более10 %.
В зависимости от уровня раскисленности при производстве стали могут быть спокойными, полуспокойными, кипящими. Спокойные, полуспокойные и кипящие стали при одном и том же количестве C имеют почти одинаковую прочность. Основное их отличие заключается в пластичности, обусловленной содержанием Si. Содержание Si в спокойной стали - 0,15 - 0,35%, в полуспокойной - 0,05 - 0,15%, а в кипящей < 0,05% [6].
В процессе уменьшения количества Si в феррите кипящих сталей, они становятся мягкими, из-за этого явления кипящая сталь хорошо штампуется в холодном состоянии. Но в результате большого содержания газов, особенно N, кипящие стали часто склонны к деформационному старению. Наряду с этим, большое содержание O в такой стали повышает порог хладноломкости, кипящие стали становятся хрупкими даже при -10°С, в то время как спокойные стали, которые содержат такое же количество углерода, могут эксплуатироваться даже при -40С. Такие стали более склонны к зональной ликвации. Это довольно дешевые стали, но качество металла низкое, так что их используют только для изготовления неответственных деталей.
По структуре отожженного состояния стали можно разделить на доэвтектоидные, эвтектоидные и заэвтектоидные. Легированные стали, кроме всего прочего, бывают ферритного, аустенитного и ледебуритного классов. К ферритному классу относят стали, в которых при небольшом содержании C имеется большое количество ферритообразующих легирующих элементов, таких как Cr. К ледебуритному классу относятся те стали, у которых большое содержание C и карбидообразующих элементов. В результате этого в их структура имеет первичные карбиды - это и есть легированный ледебурит.
По структуре после медленного охлаждения на воздухе легированные стали делятся на 3 основных класса: перлитный, мартенситный и аустенитный, эти классы изображены на рисунке 1.1.3. Легирующие элементы приумножают устойчивость аустенита в перлитной области и уменьшают температуру мартенситного превращения. Поэтому при одной и той же скорости охлаждения до комнатных температур, но при разном содержании легирующих элементов и C получаются неодинаковые структуры.
Рисунок 1.1.3. Диаграммы изотермического распада аустенита трех классов стали.
Содержание вредных примесей - S и P является главной составляющей классификации стали по качеству. Углеродистую сталь делят на сталь обыкновенного качества, сталь качественную конструкционную и сталь высококачественную. Углеродистые стали общего назначения (ГОСТ 380-71) содержат повышенное количество S - до 0,05%, а Р - до 0,04% - 0,07%.
Марки сталей обозначаются буквами и цифрами: буквы Cт означают "сталь" цифры от 0 до 6 - условный № марки, например: Cт0, Cт2...Cт6.
Сталь делят на 3 группы: A, Б и B, в марках указывают только группы Б и В, например Ст2кп - сталь 2, группы А, кипящая; БСт3кп - сталь 3, группы Б, кипящая) и т.д.
Химический состав стали под группой А не регламентируется, его только свидетельствуют в сертификатах металлургических заводов. Стали этой группы как правило заказчики применяют в состоянии поставки, поэтому их поставляют по механическим свойствам в, т, и . С увеличением № стали, её прочность растет, а пластичность уменьшается.
Стали группы Б поставляют по химическому составу, так как эти стали в дальнейшем обычно подвергают различной обработке (ковке, сварке, термической обработке) с целью получения нужного заказчику комплекса механических свойств.
Стали группы В поставляют по химическому составу и механическим свойствам - по нормам для сталей групп А и Б.
Углеродистая сталь обыкновенного качества - это, как правило, недорогая и распространённая сталь, часто удовлетворяющая запросам по механическим свойствам, предъявляемым к металлу или сплаву. Её производство составляет около 80% - 85% всего потребления углеродистых сталей.
Качественные стали. В качественных сталях наибольшее содержание негативных примесей, таких как S и P, составляет не более 0,04% каждого элемента. Качественная сталь минимально загрязнена неметаллическими внедрениями и обладает меньшим содержанием газов, растворённых в металле. В случае, когда количество C одинаково и в качественных, и в обыкновенных сталях, качественные стали имеют большую пластичность и вязкость. Марки сталей обозначают цифрами, указывающими среднее количество C в сотых долях %, границы по C - 0,07 - 0,08% для одной марки стали. Степень раскисленности обозначается буквами - пс, кп (спокойные, качественные стали маркируют без индекса). Например, сталь 20кп (0,20% С, кипящая), сталь 35пс (0,35% С, полуспокойная), сталь 40 (0,40% С, спокойная) и т.д. Качественные углеродистые стали поставляют заказчику в разном состоянии: без Т. О., после нормализации, различной степени пластической деформации и т.д.
В сталях высокого качества стараются получить минимально возможное содержание S и P (S 0,035% и Р 0,035%). Но из-за того что при этом стоимость стали значительно повышается, конструкционные углеродистые стали не часто производят высококачественными. Для обозначения высокого качества стали в конце марки стали ставят букву А. Легированные стали производят только качественными, но и так же не редко высококачественными. Для обозначения марок легированных сталей в России принята система букв и цифр.
Легирующие элементы обозначают следующими буквами: хром - Х, никель - Н, молибден - М, вольфрам - В, кобальт - К, титан - Т, азот - А, марганец - Г, медь - Д, ванадий - Ф, кремний - С, фосфор - П, алюминий - Ю, бор - Р, ниобий - Б, цирконий - Ц.
В марках конструкционных сплавов вначале стоят две цифры, обозначающие содержание C в сотых долях %. Количество легирующего элемента, содержащегося в стали, если оно превышает 1 %, ставится после соответствующей буквы в целых единицах. Например, сталь марки 35ХГСА содержит около 0,35% С; 1% Сг; 1% Мn; 1% Si. Высококачественными производят исключительно легированные стали и сплавы, такие сплавы содержат не более 0,015% S и 0,025% P. К ним предъявляют повышенные запросы и по содержанию других примесей, так как из таких сплавов изготавливают ответственные детали. [7].
По применению стали делятся на 3 основные группы: конструкционные, инструментальные и с особыми свойствами. В основу классификации первой и второй группы можно положить содержание C. Стали с содержанием углерода до 0,25%, используют как стали для производства котлов, для строительства и для изготовления деталей машин и конструкций, подвергаемых цементации. Не высокое количество C в котельных и строительных сталях объясняется тем, что детали и конструкции из таких сталей соединяют сваркой, а C плохо поддаётся свариваемости [8].
Для частей конструкций, испытывающих постоянные ударные нагрузки, используют стали и сплавы с содержанием углерода 0,36 - 0,50%. Такие стали или сплавы подвергают обработке температурой - закалке с последующим высокотемпературным отпуском.
Для изготовления пружин и рессор в машиностроительной отрасли применяют стали, с количеством углерода 0,50 - 0,70%. Такие стали тоже используют только после соответствующей термической обработки.
Из стали с 0,7 - 1,5% углерода производят ударный и режущий инструмент.
Углеродистые стали также маркируют У7, У8..., У13, где буква У обозначает углеродистую сталь, число показывает количество C в десятых долях %, например сталь У11 содержит 1,1% углерода. Такие стали не так часто производят высококачественными и тогда к их марке в конце добавляют букву А, например У10А или УЗА и т.д. Химический состав и механические свойства углеродистых инструментальных сталей приведены в ГОСТ 1435-74 [9].
У инструментальных легированных сталей количество C тоже обозначают в десятых долях %, к примеру, в стали 9ХС содержание углерода 0,9%; содержание хрома 1% и содержание кремния 1,4%. Если в стали содержание C больше 1%, то цифры не указывают - ХВГ, ХГ и т.д.
Стали и сплавы с особыми свойствами.
К сталям и сплавам с особыми свойствами относят коррозионностойкие и кислотоупорные; жаропрочные и жаростойкие стали и сплавы и стали с особыми магнитными свойствами.
1.1.4 Дефекты легированных сталей
Наряду с дефектами, характерными для углеродистых сталей, в легированных сталях выражаются и характерные только для легированных сталей дефекты: дендритная ликвация, флокены и отпускная хрупкость II рода.
Дендритная ликвация. Наличие элементов легирования поднимает температурный интервал кристаллизации. Также и диффузионные процессы в легированных сталях протекают медленнее. В результате повышается стремление этих сталей к дендритной ликвации и полосчатости в структуре. Ликвидируется дендритная ликвация диффузионным отжигом.
Флокены. Как уже отмечалось флокены - газы, оказывающие различное влияние на свойства сталей, их присутствие нежелательно, так как свойства сталей ухудшаются. Например, возникают трещины, которые можно выявить при макротравлении. На изломах такие трещины имеют вид блестящих круглых или овальных пятен, являющихся их поверхностью. Определено, что эти трещины могут образовываться при быстром охлаждении металла или сплава от 200С после ковки, а также прокатки, из-за присутствия в металле H. Этот водород растворяется в жидком металле при выплавке. Выделяясь из твёрдого раствора в стали в процессе деформирования, водород порождает сильные внутренние напряжения. Именно эти напряжения приводят к образованию флокенов. Флокены очень часто появляются в конструкционных сталях, которые содержат Cr и Ni. Для предотвращения образования флокенов, после горячей пластической деформации металл при температурах 210 - 260С медленно охлаждают или подвергают выдержке при этих температурах. Это дает возможность водороду удалиться из стали не вызывая трещин [10].
1.2 Цементуемые стали
Некоторые детали, такие как коленвалы, распредвалы в автомобильных двигателях, работают в условиях износа поверхности, а так же испытывают при этом динамические нагрузки. Эти детали приходится изготавливать из низкоуглеродистых сталей, содержащих углерод в количестве 0,10 - 0,30%, после подвергая их цементации.
Детали небольших размеров, применяемых в неответственных частях конструкций, применяют стали 10, 15, 20, а для деталей сложной формы, которые периодически сильно нагружаются, а так же крупных изделий, применяют низколегированные стали с малым содержанием C. Легирующими элементами в таких сталях, подвергаемых цементации являются Cr, Ni и др.
Детали с небольшим сечением и несложной формой, которые работают при повышенных удельных нагрузках (втулки, оси, кулачковые муфты, поршневые пальцы), производят из сталей легированных Cr количеством примерно 1%, например 15Х, 20Х. При содержании Cr до 1,5% в слое цементации возрастает количество углерода и образуется легированный цементит (Fе, Сг)3С, при этом углубляется эвтектоидный слой, а после обработки температурой возрастает и глубина закаленного слоя. Дополнительное легирование этих сталей V в размере 0,1 - 0,2%, например сталь 15ХФ, содействует приобретению более мелкого зерна, что увеличивает пластичность и вязкость.
Для производства цементуемых изделий средних размеров, испытывающих на себе при работе высокие удельные нагрузки, используют стали, в состав которых входит Ni, например, стали: 20ХН, 12ХНЗА. Немного уменьшая глубину слоя цементации, никель так же повышает глубину закаленного слоя, мешает росту зерна и образованию грубой цементитной сетки. Ni положительно воздействует и на свойства стали даже в сердцевине изделия. Из-за дефицитности Ni эти стали заменяют другими легированными сталями или заменяют Ni другими легирующими элементами, схожими с никелем. К сталям заменителям относятся хромомарганцевые стали с малым количеством титана, примерно 0,006-0,12 %, например, стали 18ХГТ, 30ХГТ. В стали, подвергаемые цементации, Ti добавляют только для измельчения зерна. При большем содержании титан уменьшает глубину закаленного слоя цементации, а так же уменьшает прокаливаемость.
Высоколегированные цементуемые стали, такие как 12Х2Н4, 18Х2Н4В, применяют для производства деталей больших сечений. Такие стали являются максимально высокопрочными по сравнению с другими цементуемыми сталями [11].
Для увеличения прочности цементуемых сталей их легируют бором, в количестве 0,002 - 0,005%, например 15ХР, 20ХГР и др. Сталь 20ХГНР в целях экономии Ni применяют вместо стали 12ХНЗА. Но следует учесть, что B, хотя и увеличивает прокаливаемость, но способствует росту зерна при нагреве. Для понижения чувствительности сталей к перегреву их дополнительно легируют титаном или цирконием. Часто детали, произведённые из высоколегированных цементуемых сталей, цементируют на небольшую глубину.
1.3 Улучшаемые стали
Улучшаемые стали - это конструкционные стали с среднем содержанием углерода, в количестве 0,3 - 05%. Эти стали подвергают закалке и последующему высокотемпературному отпуску. После термической обработки стали получают структуру сорбита, которая хорошо воспринимает периодические ударные нагрузки. Углеродистые улучшаемые стали с содержанием углерода от 0,35 - 0,5%, обладают низкой прокаливаемостью, всего до 10 мм, из-за этого механические свойства с увеличением сечения детали снижаются. Для мелких деталей после термообработки получают механические свойства: в от 600 до 700 МПа и КСU от 0,4 до 0,5 МДж/м2. Если от деталей, таких как валы, оси, шпиндели и др., требуют более высокой твердости поверхности, то после закалки проводят отпуск на твердость НRС 40 - 50. Для получения значительной твердости поверхности деталей, например шестерней, коленчатых валов, поршневых пальцев и т.д., используют закалку токами высокой частоты.
Для приобретения значительных механических свойств в деталях с сечениями больше 25 - 30 мм, используют легированные стали, обладающие большей прокаливаемостью, более мелким зерном, и меньшей критической скоростью закалки, отсюда, следовательно, меньшие закалочные напряжения и выше устойчивость против отпуска. Основное преимущество таких сталей перед углеродистыми конструкционными сталями это оптимальный комплекс механических свойств: выше прочность при сохранении вязкости и пластичности, а так же ниже порог хладноломкости. Большинство легированных конструкционных сталей причисляется к перлитному классу.
При производстве легированных сталей очень часто придают значение стоимости легирующих элементов и их дефицитность.
Основными легирующими элементами в конструкционных сталях является: Cr, содержание которого обычно составляет от 0,8 до 1,1%; Mn в сталях до 1,5%; Si от 0,9 до 1,2%; Mo от 0,15 до 0,45%; Ni от 1 до 4,5%. Общая сумма легирующих элементов не должна превышать 3 - 5%.
Выше перечисленные элементы, кроме Ni, увеличивают прочность стали, но понижают её пластичность и вязкость. Ni является исключением, он проявляет особенно положительное влияние на свойства стали, увеличивая её прочность, не понижая пластичность и вязкость. Также Ni снижает порог хладноломкости. Стали, которые содержат Ni, особенно ценны как конструкционный материал.
Наряду с названными элементами, в конструкционные стали для деталей машин или конструкций вводят около 0,1% ванадия, титана, ниобия и циркония. Эти элементы вводят для измельчения зерна. Введение бора в количестве 0,002 - 0,003% увеличивает прокаливаемость стали.
Улучшаемые стали условно делят на несколько групп. Часто используют стали, легированные хромом, особенно это стали под марками 40Х, 45Х. Для повышения прокаливаемости в эти сплавы нередко добавляют B, например сталь 40ХР. Увеличение прокаливаемости в деталях с сечением до 40 мм достигается также добавлением в хромистые стали около 1% марганца, например стали: 30ХГ, 40ХГ, 40ХГР и др. Для уменьшения склонности хромистых сталей к отпускной хрупкости II рода вводят 0,15 - 0,25% молибдена.
Хромомарганцевые стали, такие как 20ХГС, 25ХГС, 30ХГС, называемые хромансиль, легированы Cr, Si и Mn, они дешевле в производстве, так как не содержат дефицитных легирующих элементов. Эти стали имеют хорошую свариваемость и прочность, к примеру, сталь 30ХГС после термообработки имеет в = 1650 МПа при КСU = 0,4 МДж/м2. Недостаток таких сталей - это склонность к отпускной хрупкости II рода и к обезуглероживанию поверхности при нагреве.
Чем больше размер детали, чем сложнее ее конфигурация и выше напряжения, возникающие в этом изделии в процессе работы, тем с большим количеством Ni применяют сталь для изготовления такой детали. Пример таких марок сталей: 40ХНМ, 30ХН2МФ, 38ХНЗМФ и т.д.
Такие элементы как Mo и W вводят в состав сталей также для уменьшения склонности этих сталей к отпускной хрупкости. На рисунке 1.3 приведена диаграмма, позволяющая найти нужную марку стали, в зависимости от заданных прочности и размеров сечения.
Рисунок 1.3. Диаграмма для выбора марок конструкционной стали в зависимости от заданной прочности и размера сечения детали: 1 - 30ХН3М; 2 - 30ХН3; 3 - 34ХМА; 4 - 33ХСА; 5 - 30Н3; 6 - 35ХА; 7 - 35СГ; 8 - сталь 30
1.4 Высокопрочные стали
С каждым годом растет потребность в материалах, обладающих высокой прочностью и вместе с этим необходимыми пластичностью и вязкостью. В обычных конструкционных сталях предел прочности в как правило, получают не более 1100-1200 МПа, так как при большей прочности сталь практически становится хрупкой.
Стали, в которых подбором химического состава и оптимальной термической обработки получают в=18002000 МПа, называют высокопрочными.
Высокопрочное состояние может быть получено несколькими способами. Один из таких способов-легирование среднеуглеродистых сталей (0,4-0,5 % С) хромом, вольфрамом, молибденом, кремнием и ванадием. Эти элементы затрудняют разупрочняющие процессы при нагреве до 200-300 С. При этом получают мелкое зерно, что в свою очередь понижает порог хладноломкости, увеличивает сопротивление хрупкому разрушению. Например, сталь, содержащая 0,4 % С; 5 % Сг; 1 % Мо и 0,5 % V, после закалки в масле и низкотемпературного отпуска при 200 С имеет в=2000 МПа при =10 %, =40 % и КСU=0,3 МДж/м2.
Стали 30ХГСНА, 40ХГСНЗВА, 30Х2ГСНЗВМ и т.п. после термической обработки на структуру нижнего бейнита (закалка и низкий отпуск или изотермическая закалка) приобретают высокую прочность-такая обработка сообщает сталям меньшую чувствительность к надрезам. Прочность в=16001850 МПа при 1512 % и КСU=0,40,2 МДж/м2.
Высокая прочность легированных конструкционных сталей может быть получена и за счет применения термомеханической обработки (ТМО). Так, сталь 30ХГСА, 40ХН, 40ХНМА, 38ХНЗМА после НТМО имеют временное сопротивление разрыву до 2800 МПа, относительное удлинение и ударная вязкость увеличиваются в 1,5-2 раза по сравнению с обычной термической обработкой. Объясняется это тем, что частичное выделение углерода из аустенита при деформации облегчает подвижность дислокаций внутри кристаллов мартенсита, что и способствует повышению пластичности (охрупчивание при закалке сталей объясняется именно малой подвижностью дислокаций в мартенсите при значительном содержании в нем углерода) [12].
Мартенситностареющие (Марэйджинг) стали. Эти стали сочетают высокие прочностные свойства с хорошей пластичностью и вязкостью. Достигается это легированием специальной термической обработкой. Их достоинства-высокая технологическая пластичность при обработке давлением в широком интервале температур; отсутствие трещинообразования при охлаждении с любыми скоростями после обработки давлением; хорошая свариваемость. Недостатком этих сталей является их склонность к ликвации.
Мартенситностареющие стали относятся к высоколегированным сталям. Основным легирующим элементом является никель (10-26 %). Кроме того, различаясь по составу, разные марки этих сталей содержат 7-9 % Со; 4,5-5 % Мо; 5-11 % Сг; 0,1-0,35 Аl; 0,15-1,6 % Тi; иногда ~0,3-0,5% Nb; 0,2 % Si, Mn; ~0,01 % S, Р каждого. Титан и алюминий вводят для образования интерметаллидов.
В мартенситностареющих сталях стремятся получить минимальное количество углерода (0,03 %), так как углерод, образуя с легирующими элементами карбиды, способствует охрупчиванию сталей; Кроме того, при этом понижается содержание легирующих элементов в твердом растворе. Термическая обработка таких сталей заключается в закалке с 800-860 С, охлаждении на воздухе и затем отпуске-старении.
Высокая стоимость легирующих элементов, а также дефицитность никеля и кобальта ограничивают широкое применение таких сталей. Поэтому появились так называемые «экономнолегированные» мартенситностареющие стали: Н8Х6МТЮ, 10Н4Г4Х2МЮ, Н12М2Л2ТЮ, Н8ГЗМ4 и др.
Мартенситностареющие стали используют для изготовления шасси самолетов, оболочек космических летательных аппаратов, прецизионных хирургических инструментов и штампов и т.д. Используют эти стали и для криогенной техники, так как и при отрицательных температурах они обладают высокой прочностью в сочетании с достаточной пластичностью.
Таблица 1.3 ? Состав и механические свойства мартенситностареющих сталей
Сталь |
Содержание легирующих элементов |
Механические свойства |
||||||
Ni |
Co |
Mo |
Ti |
в, МПа |
КСU, Дж/м2 |
|||
Н18К9М5Т |
18 |
9 |
5 |
0,9 |
2100 |
50 |
0,5 |
|
Н18К8М3 |
18 |
8 |
3 |
0,2 |
1400 |
65 |
0,8 |
|
Н12К15М10 |
12 |
15 |
10 |
- |
2500 |
30 |
0,3 |
|
Н18К12М5Т |
18 |
12 |
5 |
1,5 |
2400 |
30 |
0,2 |
|
Н10Х11М2Т |
10 |
- |
2 |
0,9 |
1600 |
50 |
0,5 |
Примечание. Во всех сталях содержится: <0,03 % C; 0,01 % S; 0,01 % P; 0,05 - 0,20 % Al.
1.5 Пружинно-рессорные стали
Основное требование к материалам, используемым для изготовления пружин, рессор, торсионных валиков и т.д.-сохранение в течение длительного времени упругих свойств. Пружинные стали должны иметь высокий предел упругости (уп), высокое сопротивление разрушению (Sk) и усталости при пониженной пластичности.
Термически упрочняемые пружинно-рессорные стали обычно содержат 0,5-0,7 % С. Для менее ответственных пружин и пружин с мелким сечением витков применяют углеродистые стали по ГОСТ 1050-74. Для пружин более ответственного назначения и при большем сечении витков применяют легированные пружинные стали (ГОСТ 14959-79). Чаще всего пружинные стали легируют кремнием. Задерживая распад мартенсита при отпуске и упрочняя феррит, кремний создает высокое значение предела упругости. Кремнемарганцовистые и хромомарганцовистые стали (55СГ2, 50ХГ и др.) имеют хорошую прокаливаемость, и их применяют для изготовления пружин из прутков диаметром до 25 мм. Крупные наиболее ответственные пружины изготовляют из сталей 65С2ВА, 60С2ХФА.
Рисунок 1.4 ? Схема изменения прочности пружинных сталей в зависимости от температуры отпуска
Режим термической обработки назначают в зависимости от состава стали и условий работы пружин. Наиболее высокая упругая прочность достигается в результате среднего отпуска на тростит. При этом отношение уп/в становится близким к единице (рис. 1.4).
Для повышения выносливости пружин и рессор широко применяют дробеструйную обработку.
1.6 Шарикоподшипниковые стали
Детали шарикоподшипников (кольца, шарики, ролики) в процессе работы испытывают высокие удельные переменные нагрузки. Поэтому стали, используемые для их изготовления, должны иметь высокую прочность, износостойкость и высокий предел выносливости. Кроме того, к шарикоподшипниковым сталям предъявляют высокие требования по содержанию неметаллических включений (сульфидных, оксидных), макро- и микрополостей, ликвации, размеру и расположению карбидных включений. Это обусловлено характером работы шарикоподшипников. Указанные дефекты являются концентраторами напряжений, особенно если они находятся в поверхностных слоях деталей. Кроме того, при работе подшипников возможно выкрашивание неметаллических включений, что резко снижает долговечность подшипника.
Для изготовления шариковых и роликовых подшипников применяют высокоуглеродистую сталь, легированную хромом (табл. 1.4).
Таблица 1.4 ? Химический состав, %, шарикоподшипниковой стали
Сталь |
C |
Cr |
Mn |
Si |
|
ШХ6 |
1,05-1,15 |
0,4-0,7 |
0,20-0,40 |
0,17-0,37 |
|
ШХ9 |
1,05-1,10 |
0,9-1,2 |
0,20-0,40 |
0,17-0,37 |
|
ШХ15 |
0,95-1,05 |
- |
0,20-0,40 |
0,17-0,37 |
|
ШХ15СГ |
0,95-1,05 |
- |
0,90-1,20 |
0,40-0,65 |
Примечание - Во всех сталях содержится < 0,02 % S; < 0,027 P.
Маркировку ШХ следует расшифровывать как шарикоподшипниковую хромистую. Цифра показывает среднее содержание хрома в десятых долях процента.
Шарики и ролики небольших диаметров изготавливают из стали ШХ9. Из стали ШХ15-шарики диаметром больше 22,5 мм, ролики диаметром 15-30 мм, а также кольца всех размеров; ролики диаметром более 30 мм и кольца с толщиной стенки: более 15 мм-из стали ШХ15СГ.
Для изготовления деталей крупногабаритных подшипников, работающих при больших ударных нагрузках (например, подшипников прокатных станов), применяют цементуемую сталь 20Х2Н4А. При этом проводят глубокую цементацию, получая цементованный слой глубиной 5-10 мм.
1.7 Износостойкие стали
Износ деталей машин и аппаратов является сложным процессом. Типовыми случаями являются обычное трение скольжения и абразивный износ. В первом случае металл наклепывается с поверхности, поэтому износостойкость существенно зависит от способности металла наклепываться. Во втором случае, когда частицы металла вырываются с поверхности, износостойкость определяется твердостью и сопротивлением отрыву. Износостойкость может быть повышена химико-термической обработкой.
Графитизированные стали содержат повышенное количество углерода (до 1,75 %) и до 1,6 % Si. Кремний вводят как графитизирующий элемент. Часть углерода в этих сталях после графитизирующего отжига (напоминающего отжиг для получения ковкого чугуна) выделяется в виде графита. После термической обработки структура стали состоит из зернистого перлита с некоторым количеством мелких округлых включений графита. При неабразивном износе графит играет роль смазки, предотвращая сухое трение и схватывание. Кроме того, эти стали обладают антивибрационными свойствами [13].
Графитизированную сталь применяют для изготовления штампов, матриц, коленчатых валов, шаров, лопастей, дробеструйных аппаратов и т.д.
Высокомарганцовистые стали содержат около 1 % С и 12-13 % Мn, обозначают их так: сталь Г13Л (1,2 % С; 13 % Мn; ?0,5 % Si) и сталь Г13Л (1,2 % С; 12 % Мn и 1 % Si). Буква Л означает, что сталь литая. Такая сталь имеет структуру аустенита с избыточными карбидами (Fe, Мn)3С. Выделяясь по границам, карбиды снижают вязкость и прочность стали. Поэтому обычно изделия подвергают закалке с 1050 - 1100 С в воде, получая структуру однородного марганцовистого аустенита (в=800 ?1000 МПа; =40 ?50 %; НВ=200 ?250). Характерной особенностью марганцовистого аустенита является его повышенная склонность к наклепу. При деформации на 60-70 % твердость стали Г13 увеличивается до НВ 500 (рис. 1.5), что объясняется большими искажениями кристаллической решетки, дроблением блоков мозаики и даже образованием структуры мартенсита в поверхностных слоях.
Рисунок 1.5 ? Влияние степени деформации на твердость стали Г13(1) и углеродистой стали 40 (2)
Сталь Гадфильда широко используют для изготовления деталей, испытывающих в процессе эксплуатации ударные нагрузки и износ одновременно. Вследствие большой вязкости аустенита эта сталь плохо обрабатывается режущим инструментом, изделия из нее изготавливаются главным образом литьем.
Из стали Г13 делают крестовины железнодорожных и трамвайных путей, зубья ковшей землечерпательных машин, траки гусеничных машин, щеки дробилок и др.
1.8 Строительные стали
Так как детали строительных конструкций соединяют сваркой, то основным требованием к строительным сталям является хорошая свариваемость. Поэтому строительные стали содержат до 0,25 % С. При более высоком содержании углерода в зонах, нагретых при сварке до температур выше критических, возможно образование структуры мартенсита. В этом случае наблюдается объемный эффект, что способствует образованию холодных трещин в зонах около сварных швов. Кроме того, углерод, расширяя интервал кристаллизации металла шва, способствует образованию горячих трещин в металле шва.
В качестве строительных сталей используют главным образом углеродистые стали обыкновенного качества марок Ст3, Ст4, имеющие т=200270 МПа.
Прочность строительных сталей повышается в результате легирования. Поскольку строительную сталь используют в больших количествах, то целесообразно вводить в ее состав дешевые легирующие элементы. Такими элементами являются марганец и кремний. Низколегированная строительная сталь содержит до 1,75 % Мn и до 0,7 % Si. Предел текучести увеличивается до 360380 МПа.
Низколегированные строительные стали, кроме улучшения механических свойств, имеют еще одно преимущество - пониженную критическую температуру перехода в хрупкое состояние. Эти стали могут работать до -40 С, а стали 10ХСНЛ и 15ХСНД, легированные дополнительно никелем и медью, и до -60 С.
1.9 Автоматные стали
Для неответственных деталей, производимых в большом количестве на станках-автоматах (болты, гайки, винты, втулки и т.д.), используют так называемые автоматные стали (ГОСТ 1414-75). В таких сталях допускается повышенное содержание серы и фосфора, поэтому они обладают меньшей вязкостью, благодаря чему стружка образуется короткая и ломкая, а поверхность обработанных сталей получается чистой и ровной. При изготовлении деталей из автоматных сталей можно допускать большие скорости резания [14].
Добавки свинца (0,25 %) улучшают обрабатываемость резанием (АС11, АС40). Автоматные стали подвергают диффузионному отжигу, при температуре 1100-1150 С для устранения ликвации серы, тем самым исключается возможность красноломкости. Для повышения прочности автоматные стали иногда нагартовывают холодной протяжкой. В последнее время автоматные стали, кроме свинца, легируют и другими элементами: марганцем, хромом, никелем (А40Г, АС20ХГНМ и др.).
Таблица 1.5 ? Химический состав, %, автоматных сталей
Марка стали |
C |
Mn |
S |
P |
|
А12 |
0,08-0,16 |
0,60-0,90 |
0,08-0,20 |
0,08-0,15 |
|
А20 |
0,15-0,25 |
0,60-0,90 |
0,08-0,15 |
0,06 |
|
А30 |
0,25-0,35 |
0,70-1,00 |
0,08-0,15 |
0,06 |
|
А40Г |
0,35-0,45 |
1,2-1,55 |
0,18-0,30 |
0,05 |
Примечание - Во всех сталях содержится 0,15-0,35 % Si.
2. Методика эксперимента
Более 10 миллионов тон стали в год подвергается термической обработке, это составляет примерно 8 - 10 процентов от всей выплавляемой стали в нашей стране. В одной только машиностроительной отрасли количество термической переработки стали составляет 40% . Список деталей подвергаемых обработке огромен - от комплектующих приборов, деталей машин, до габаритных элементов различного оборудования.
Главными видами термообработки, меняющими свойства и структуру стали являются отжиг, нормализация, закалка и отпуск. Рассмотрим каждый вид Т. О. в отдельности.
2.1 Отжиг первого рода
Данная разновидность отжига в зависимости от условий температурной выдержки убирает физическую или химическую разнородность, сформированную предыдущими обработками. Главной особенностью данного отжига является то, что ликвидация разнородности происходит свободно, не завися от протекания в сплавах фазовых превращений, поэтому отжиг первого рода можно совершать при температурах больших или меньших температур фазовых превращений.
Диффузионный отжиг. Этот вид отжига используют для слитков легированной стали для понижения дендритной или внутрикристаллитной ликвации. Ликвация увеличивается склонность стали, обрабатываемой давлением, к хрупкому разрушению, к анизотропии свойств и возникновению дефектов: слоистый излом, флокены и др. Производят диффузионный отжиг, ещё его называют гомогенизация, нагревая сталь до 1100 - 12000С, так как при данной температуре более полно протекают диффузионные процессы, выравнивающие состав стали по объёму. Вся длительность гомогенизации больших слитков стали доходит до 40 - 90 часов. Для меньших садок время выдержки сокращается до 5 - 15 часов. После отжига слитки подвергают нагреву до 660 - 6800С, в течение 1 - 15 часов для удаления поверхностных дефектов.
Рекристаллизационный отжиг. Этот вид отжига производят, нагревая холоднодеформированную сталь выше температуры рекристаллизации. Далее выдерживают при заданной температуре и охлаждают. Рекристаллизацию производят до или после холодной обработки давлением и для снятия наклёпа между операциями. Температурный режим отжига для стали с 0,08 - 0,2%С составляет 670 - 7000С, высокоуглеродистой легированной стали - 7300С. Продолжительность нагрева от 30 до 90 минут.
Подобные документы
Закаливаемость и прокаливаемость стали. Характеристика конструкционных сталей. Влияние легирующих элементов на их технологические свойства. Термическая обработка сплавов ХВГ, У8, У13 и их структуры после нее. Выбор вида и режима термообработки детали.
курсовая работа [4,9 M], добавлен 12.01.2014Общая характеристика легированных сталей и их специфические свойства: износостойкость, жаропрочность, прокаливаемость в крупных сечениях, кислотостойкость. Распределение легирующих элементов в сталях, зависимость механических свойств от их содержания.
контрольная работа [1,1 M], добавлен 17.08.2009Принципы обозначения стандартных марок легированных сталей, их механические свойства. Влияние вредных примесей, величины зерна на свойства. Виды закалки, структура сплава после нее. Понятие свариваемости стали. Коррозионные повреждения нержавеющей стали.
курсовая работа [5,1 M], добавлен 18.03.2010Классификация инструментальных сталей. Влияние легирующих элементов на структуру и свойства штамповых сталей. Химический состав стали 4Х5МФ1С. Влияние температуры закалки на структуру и твердость материала. Оценка аустенитного зерна и износостойкости.
дипломная работа [492,5 K], добавлен 19.02.2011Процесс легирования стали и сплавов - повышение предела текучести, ударной вязкости, прокаливаемости, снижение скорости закалки и отпуска. Влияние присадок легирующих элементов на механические, физические и химические свойства инструментальной стали.
курсовая работа [375,9 K], добавлен 08.08.2013Роль легирующих элементов в формировании свойств стали. Анализ и структура хромоникелевых сталей. Роль и влияние никеля на сопротивление коррозии. Коррозионные свойства хромоникелевых сталей. Характеристика ряда хромоникелевых сталей сложных систем.
реферат [446,2 K], добавлен 09.02.2011Процентное содержание углерода и железа в сплаве чугуна. Классификация стали по химическому составу, назначению, качеству и степени раскисления. Примеры маркировки сталей. Расшифровка марок стали. Обозначение легирующих элементов, входящих в состав стали.
презентация [1,0 M], добавлен 19.05.2015Повышение механических свойств стали путем введения в нее легирующих элементов. Классификация стали в зависимости от химического состава. Особенности сварки углеродистых и легированных сталей. Причины возникновения трещин. Типы применяемых электродов.
курсовая работа [33,2 K], добавлен 06.04.2012Влияние легирующих элементов на свойства стали. Состав, свойства и методы термической обработки хромистых сталей с повышенной прочностью и стойкостью против коррозии в агрессивных и окислительных средах. Технологии закалки окалиностойких сильхромов.
реферат [226,9 K], добавлен 22.12.2015Схема строения стального слитка. Влияние углерода и легирующих элементов на положение мартенситных точек. Достоинства углеродистых качественных сталей. Назначение синтетических защитных покрытий подвижного состава. Процесс закалки быстрорежущих сталей.
контрольная работа [1,6 M], добавлен 29.03.2010