Расчет балки
Порядок составления расчетной схемы балки, уравнения моментов. Построение эпюры крутящих моментов. Нахождение силы из условия прочности швов при срезе, определение диаметра пальца. Вычисление общего КПД привода, его структура и ступени, недостатки.
Рубрика | Производство и технологии |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 25.02.2011 |
Размер файла | 978,5 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Размещено на http://www.allbest.ru/
Задача №1.
привод крутящий момент балка
Р = 13 кН, М = 9 кН·м,
l1 = 0,9 м, l2 = 1,1 м,
б = 30°.
RA - ? NA - ? RB - ?
Решение
Составим расчетную схему балки, опоры заменим реакциями опор (рис. 1).
Рис. 1
Составим уравнение моментов относительно точки А:
УМ(А) = RB·sinб·l2 - M - P(l1 + l2) = 0;
Составим уравнение моментов относительно точки B:
УМ(B) = - RA·l2 - M - P·l1 = 0;
Проверка:
УFY = RB·sinб + RA - P = 0;
63,6·sin30° - 18,8 - 13 = 0;
0 = 0 - реакции найдены верно.
Составим уравнение сил по оси х:
УFХ = NA - RB·cosб = 0;
NA = RB·cosб = 63,6·cos30° = 55,1 кH.
Реакции опорного шарнира: RA и NA.
Сила, нагружающая стержень по модулю равна RB и направлена в противоположную сторону.
Задача №2.
М1 = 440 Н·м, М2 = 200 Н·м,
М3 = 860 Н·м, [ф]кр = 100 МПа,
Ст3, круг, кольцо d0/d = 0,7
d кр - ? d0 - ? d - ?
Решение
Для заданного бруса построим эпюру крутящих моментов (рис. 2).
Заданный брус имеет три участка нагружения.
Возьмем произвольное сечение в пределах I участка и отбросим левую часть бруса.
Рис. 2
На оставленную часть бруса действуют моменты М1 и МZI. Следовательно:
МZI = М1 = 440 Н•м.
Взяв произвольное сечение в пределах II участка, и рассматривая равновесие оставленной части бруса получим:
МZII = М1 - M2 = 440 - 200 = 240 Н•м.
Взяв произвольное сечение в пределах III участка, и рассматривая равновесие оставленной части бруса получим:
МZIII = М1 - M2 + M3 = 440 - 200 +860 = 1100 Н•м.
По имеющимся данным строим эпюру крутящих моментов.
Условие прочности:
Отсюда:
Для круга:
Для кольца:
Массы брусьев.
Круг.
Кольцо.
Так как S2 < S1, то масса бруса с сечением в форме круга больше, чем с сечением в форме кольца.
Увеличим размер сечения в два раза.
Рассмотрим круг.
При увеличении размера сечения круга в 2 раза, нагрузку на брус можно увеличить в 8 раз.
Затраты материала увеличатся в 4 раза.
Аналогично получаются такие же результаты для сечения в форме кольца, так как формулы схожи.
Задача №3.
F = 21 кН, М = 13 кН·м,
l1 = 0,9 м, [д]изг = 150 МПа,
l2 = 0,5 м, l3 = 0,7 м,
Ст3, швеллер, прямоугольник
h/b = 3
швеллер - ? h - ? b - ?
Решение
Отбросив опоры, заменим их действие на балку реакциями RA и RВ. Определим значение RA и RВ.
УМА(Fi) = F·l1 + M - RВ (l1 + l2 + l3) = 0;
УМB(Fi) = - F·(l2 +l3) + M + RA (l1 + l2 + l3) = 0;
Проверка:
УFi = RB + RA - F = 0;
15,2 + 5,8 - 21 = 0;
0 = 0 - реакции найдены верно.
Балка имеет три участка нагружения.
Возьмем произвольное сечение в пределах I участка:
QyI = RA = 5,8 кН
МХI = RA•z
При z = 0; МХI(0) = 0.
При z = l1; МХI(0,9) = 5,8•0,9 = 5,2 кН•м.
Возьмем произвольное сечение в пределах II участка:
QyII = RA - F = 5,8 - 21 = -15,2 кН
Рис. 3
МХII = RA•z - F (z - l1)
При z = l1 + l2; МХII(1,4) = 5,8•1,4 - 21•0,5 = -2,4 кН•м.
В точке, расположенной бесконечно близко справа от точки С:
МХII' = RA•z - F (z - l1) + M
МХII' (1,4) = 5,8•1,4 - 21•0,5 + 13 = 10,6 кН•м.
Возьмем произвольное сечение в пределах III участка:
QyIII = RA - F = 5,8 - 21 = -15,2 кН
МХIII = RA•z - F (z - l1) + M
В точке В: МХIII = 0.
По имеющимся данным строим эпюры поперечных сил и изгибающих моментов (рис. 3).
Условие прочности:
Отсюда:
Швеллер.
Берем швеллер №14а с WX = 77,8 см3, SX = 45,1 см3 = 4,51•10-5 м3.
Прямоугольник.
Так как SХ < S, то масса балки с сечением в форме прямоугольника больше, чем масса балки из швеллера.
Увеличим размеры прямоугольного сечения в два раза.
- затраты материала увеличатся в два раза.
- нагрузку можно увеличить в два раза.
- затраты материала увеличатся в два раза.
- нагрузку можно увеличить в четыре раза.
Задача №4
lф = 100 мм, [ф]ср = 80 МПа,
k = 6 мм, [ф]'ср = 100 МПа.
d - ?
Решение
Найдем силу F из условия прочности швов при срезе.
I схема.
F = 0,7·[ф]'ср ·k·2·lф = 0,7·100·106·0,006·2·0,1 = 84 кН
II схема.
F = 0,7·[ф]'ср ·k·4·lф = 0,7·100·106·0,006·4·0,1 = 168 кН
Условие прочности на срез:
Определим диаметр пальца из условия прочности при срезе.
I схема.
Берем d = 37 мм.
II схема.
Берем d = 37 мм.
Задача №5.
Рдв = 4 кВт, щдв = 158 рад/с, Z3 = 24, Z4 = 36, щвых = 38 рад/с, зц = 0,97, зк = 0,95,
а = 140 мм, ш = 0,5.
зобщ - ? Uобщ - ? Рi - ? Mi - ?
Решение
Общий КПД привода:
зобщ = зц · зк · зм · зп3
зц. - КПД зубчатой цилиндрической передачи;
зк. - КПД зубчатой конической передачи;
зм = 0,98 - КПД муфты;
зп = 0,98…0,99; принимаем зп = 0,98 - КПД пары подшипников качения.
зобщ = 0,97 · 0,95 · 0,98 · 0,983 = 0,85
Общее передаточное отношение привода:
Uобщ = щдв / щвых = 158 / 38 = 4,16
Передаточное отношение конической передачи:
Uк = Z4 / Z3= 36 / 24 = 1,5
Передаточное отношение цилиндрической передачи:
Uц = Uобщ / Uк = 4,16 / 1,5 = 2,77
Вал двигателя.
Рдв = 4 кВт;
щдв = 158 рад/с;
Тдв = Рдв / щдв = 4000 / 158 = 25,32 Н·м.
Быстроходный вал редуктора.
Р1 = Рдв · зм · зп = 4 · 0,98 · 0,98 = 3,84 кВт;
щ1 = щдв = 158 рад/с;
Т1 = Тдв · зм · зп = 25,32 · 0,98 · 0,98 = 24,32 Н·м.
Тихоходный вал редуктора.
Р2 = Р1 · зп · зц = 3,84 · 0,98 · 0,97 = 3,65 кВт;
щ2 = щ1 / Uц = 158 / 2,77 = 57,04 рад/с;
Т2 = Т1 · Uц · зц. · зп = 24,32 · 2,77 · 0,98 · 0,97 = 64,04 Н·м.
Выходной вал привода.
Р3 = Р2 · зп · зк = 3,65 · 0,98 · 0,95 = 3,4 кВт;
щвых = 38 рад/с;
Т3 = Т2 · Uк · зк. · зп = 64,04 · 1,5 · 0,98 · 0,95 = 89,43 Н·м.
Данный привод имеет две ступени. Первая ступень - косозубый цилиндрический редуктор. Вторая ступень - открытая коническая передача. Электродвигатель соединен с быстроходным валом редуктора муфтой. Основные технические характеристики привода:
· КПД - 0,85;
· Общее передаточное число - 4,16;
· Вращающий момент на выходном валу - 89,43 Н·м;
· Угловая скорость выходного вала - 38 рад/с.
Цилиндрические колеса, у которых зубья расположены по винтовым линиям на делительном диаметре, называют косозубыми. При работе такой передачи зубья входят в зацепление не сразу по всей длине, как в прямозубой, а постепенно; передаваемая нагрузка распределяется на несколько зубьев. В результате по сравнению с прямозубой повышается нагрузочная способность, увеличивается плавность работы передачи и уменьшается шум. В целом, косозубые колёса применяются в механизмах, требующих передачи большого крутящего момента на высоких скоростях, либо имеющих жёсткие ограничения по шумности.
Недостатками косозубых колёс можно считать следующие факторы:
При работе косозубого колеса возникает механическая сила, направленная вдоль оси, что вызывает необходимость применения для установки вала упорных подшипников;
Увеличение площади трения зубьев (что вызывает дополнительные потери мощности на нагрев), которое компенсируется применением специальных смазок.
Основные формулы для расчета косозубой передачи приведены ниже.
Конические зубчатые колеса применяют в передачах, у которых оси валов пересекаются под некоторым углом. Наиболее распространены передачи с углом 90°.
Аналогами начальных и делительных цилиндров цилиндрических передач в конических передачах являются начальные и делительные конусы с углами д1 и д2.
При коэффициентах смещения инструмента х1 + х2 = 0 начальные и делительные конусы совпадают. Конусы, образующие которых перпендикулярны образующим елительных конусов, называют дополнительными конусами. Сечение зубьев дополнительным конусом называют торцовым сечением. Различают внешнее, внутреннее и среднее торцовые сечения.
Основными габаритными размерами для конических передач являются de2 и Re, а нагрузка характеризуется моментом Т2 на ведомом валу. Основные зависимости:
,
,
,
d'm1 = d'e1(R'e - 0,5b')/R'e,
m'nm = m'tmcosвn,
dm1 = mtmz1, dm2 = mtmz2.
Из различных типов конических колес с непрямыми зубьями на практике получили распространение колеса с косыми или тангенциальными зубьями и колеса с круговыми зубьями. Преимущественное применение получили колеса с круговыми зубьями. Они менее чувствительны к нарушению точности взаимного расположения колес, их изготовление проще.
Конические передачи применяются при пересекающихся валах. Конические передачи дорогие. Выгодны не прямозубые, а косозубые колеса, так как они позволяют уменьшить габариты и массу.
Выполним геометрический расчет передачи редуктора.
Модуль зацепления:
m = (0,01-0,02) б = 1,4 - 2,8 мм, принимаем m = 2 мм.
Ширина колеса:
b2 = ш · б = 0,5 · 140 = 70 мм
b1 = b2 + 5 = 70 + 5 = 75 мм - ширина шестерни.
Минимальный угол наклона зубьев:
вmin = arcsin = arcsin = 5,7°
При в = вmin сумма чисел зубьев zc = z1 + z2 = (2б/m) cos вmin = (2 · 140/2) cos 5,7°= 139,3
Округляем до целого: zc = 139
Угол наклона зубьев:
в = arccos = arccos = 6,85°,
при нем zc = (2 · 140/2) cos 6,85° = 139
Число зубьев шестерни:
z1 = zc / (Uц + 1) = 139 / (2,77 + 1) ? 37
z2 = 139 - 37 = 102 - колеса.
Передаточное число:
Uф = 102 / 37 = 2,76, отклонение ДU = 0,02U - допустимо.
Диаметры делительных окружностей:
d1 = m z1 /cos в = 2 · 37 / cos 6,85° = 74,5 мм - шестерни;
d2 = m z2 /cos в = 2 · 102 / cos 6,85° = 205,5 мм - колеса.
Торцевой (окружной) модуль:
mt = m /cos в = 2 / cos 6,85° = 2,014
Диаметры вершин зубьев:
dа1 = d1 + 2m = 74,5 + 2 · 2 = 78,5 мм;
dа2 = d2 + 2m = 205,5 + 2 · 2 = 209,5 мм.
Диаметры впадин зубьев:
df1 = d1 - 2,5m = 74,5 - 2,5 · 2 = 69,5 мм;
df2 = d2 - 2,5m = 205,5 - 2,5 · 2 = 200,5 мм.
Размещено на Allbest.ru
Подобные документы
Действие внешних сил в опорах. Построение эпюры крутящих моментов по длине вала. Значения допускаемого напряжения на кручение. Условия прочности вала. Определение полярных моментов инерции. Расчет передаточного отношения рядной зубчатой передачи.
контрольная работа [342,1 K], добавлен 29.11.2013Определение суммарных величин изгибающих моментов от сосредоточенных сил и равномерно распределенной нагрузки. Построение линий влияния поперечной силы в сечениях. Проверка сечения балки по условиям прочности. Обеспечение местной устойчивости балки.
курсовая работа [1,4 M], добавлен 25.10.2014Расчет закрепленного вверху стального стержня, построение эпюры продольных усилий, перемещений поперечных сечений бруса. Выбор стальной балки двутаврового поперечного сечения. Построение эпюры крутящих, изгибающих моментов в двух плоскостях для вала.
контрольная работа [1,1 M], добавлен 06.08.2013Нахождение наибольшего напряжения в сечении круглого бруса и определение величины перемещения сечения. Построение эпюр крутящих моментов по длине вала. Подбор стальной балки по условиям прочности. Определение коэффициента полезного действия передачи.
контрольная работа [520,8 K], добавлен 04.01.2014Определение расчетных значений изгибающих и поперечных моментов балки, высоты из условия прочности и экономичности. Расчет поперечного сечения (инерции, геометрических характеристик). Обеспечение общей устойчивости балки. Расчет сварных соединений и опор.
курсовая работа [1023,2 K], добавлен 17.03.2016Расчеты значения продольной силы и нормального напряжения для ступенчатого стального бруса. Центральные моменты инерции сечения. Построение эпюры поперечных сил и изгибающих моментов от расчетной нагрузки. Определение несущей способности деревянной балки.
контрольная работа [1,8 M], добавлен 01.02.2011Эпюры внутренних усилий. Составление уравнения равновесия и определение опорных реакций. Определение внутренних усилий и построение эпюр. Расчетная схема балки. Значения поперечных сил в сечениях. Определение значений моментов по характерным точкам.
контрольная работа [35,9 K], добавлен 21.11.2010Построение эпюры нормальных сил. Уравнение равновесия в виде суммы проекций на ось бруса. Определение площади поперечного сечения. Построение эпюры крутящих моментов. Расчет диаметра бруса. Максимальные касательные напряжения. Углы закручивания.
курсовая работа [1,0 M], добавлен 25.01.2015Определение нагрузки и расчетных усилий, воспринимаемых балками настила до и после реконструкции здания. Подбор сечения балки настила. Усиление балки увеличением сечения. Расчет поясных швов и опорного узла. Проверка прочности и жесткости усиленной балки.
контрольная работа [49,2 K], добавлен 20.01.2015Постановка задачи расчета вала. Определение силы реакций в подшипниках, эпюры на сжатых волокнах. Построение эпюры крутящих моментов. Определение суммарных реакций в подшипниках, их грузоподъемности по наиболее нагруженной опоре и его долговечности.
курсовая работа [111,3 K], добавлен 26.01.2010