Метрологическое обеспечение температурных измерений термоэлектрическим термометром
Общие сведения о термопреобразователях. Выбор датчика температуры по исходным данным; анализ и расчет погрешностей устройства. Характеристика современных измерительных приборов - аналоговых и цифровых милливольтметров, микропроцессоровых аппаратов.
Рубрика | Производство и технологии |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 08.03.2012 |
Размер файла | 440,8 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Введение
Научно-технический прогресс неразрывно связан с непрерывным совершенствованием измерительной техники. Это в полной мере относится и к термометрии, так и повышением точности в традиционных областях. По некоторым экспертным оценкам измерения температуры составляют около 30% всех измерении, выполняемых в народном хозяйстве, а число научных и технических публикаций на эту тему исчисляется многими тысячами в год.
Трудно назвать область техники или отрасль промышленности, где бы не требовалось измерять температуру твердых, жидких или газообразных тел. Наряду с этим следует отметить, что в каждой конкретной области выбор методов и средств измерения температуры определяется ее спецификой.
Термометрия - раздел технической физики, в котором изучаются методы и средства измерения температур, теоретические основы методов построения термодинамической и практических температурных шкал и созданные на этой основе эталоны и образцовые средства измерения температуры.
Температура - один из параметров вещества: газа, жидкости или твердого тела. Температура определяет тепловое состояние тела и направление теплопередачи. Температурные зависимости физических свойств веществ можно положить в основу методов измерения температуры и построения температурной шкалы. Температурная шкала - это ряд последовательных значений температуры, образуемый в соответствии с выбранным знаком, определяющем взаимосвязь термометрического параметра и температуры.
Для измерения температуры в самых различных условиях очень широко применяются термопары. Термопара остается основным прибором для измерения температуры в промышленности, в частности в металлургии и в нефтехимическом производстве. Прогресс в электронике способствовал в последнее время росту числа применений термометров сопротивления, так что термопары уже нельзя считать единственным и важнейшим прибором промышленного применения. Термопара позволяет найти разность температур между горячим и холодным спаями, если измерена разность напряжений между двумя опорными спаями. Эта разность напряжений возникает в температурном поле между горячим и холодным спаям. Разность напряжений идеально термопары зависит только от разности температур двух спаев, однако для реальной термопары приходится учитывать неоднородность свойств электродов, находящихся в температурном поле; она и является основным фактором, ограничивающим точность измерения температуры термопарами.
В промышленности очень широко применяются термопары в герметичном металлическом чехле. Такая конструкция необходима для стандартных термопар, которые могут быть повреждены механически или агрессивными веществами. Термопары из сплава платины с 13% родия, помещенные в чехол из сплава 10% родия с платиной, применяются в производстве стекла, а термопары из хромеля с алюмелем, помещенные в инконелевый чехол, - в авиационной промышленности.
В ядерной энергетике до температуры 1100єС применяются стандартные термопары вольфрам-рений, помещенные в молибденовый чехол. Выдвигаемые промышленностью требования повышения точности и долговременной стабильности термопар стимулировали ряд исследований физических и химических процессов, происходящих внутри герметичного чехла термопары. Такая конструкция часто называется термопарой с неорганической изоляцией.
В промышленности термопары широко применяются совместно с «удлинительными» и «компенсационными» проводами. Эти провода разработаны с целью снижения стоимости больших заводских устройств, в которых многие сотни термопар на заводе подключены к центральной системе обработки информации. Удлинительный или компенсационный кабель включается между системой обработки и той точкой вблизи конкретной машины или работающей печи, где температура начинает заметно отличаться от комнатной.
Применение термопар в ядерных реакторах сталкивается со многими трудностями, и пока нет достаточных оснований для создания термопар со сроком службы более 20 лет. Однако конструирование и технология производства термопар для реакторов быстро развивается.
1. Выбор термопреобразователя
1.1 Общие сведения о термопреобразователях
Термоэлектрический термометр - это термометр, содержащий термоэлектрический преобразователь, действие которого основано на использовании зависимости термоэлектродвижущей силы (ТЭДС) термопары от температуры, и устройств для измерения ТЭДС.
Термопара - два проводника из разнородных материалов, соединенных на одном конце и образующих часть устройства, использующего термоэлектрический эффект для измерения температуры. Соединенные концы проводников называются «холодным» (соединительным) спаем, а свободные концы, подверженные изменению температуры - «рабочим» (измерительным) спаем.
Термопреобразователи (датчики температуры) предназначены для непрерывного измерения температуры различных рабочих сред (например, пар, газ, вода, сыпучие материалы, химические реагенты и т.п.), не агрессивных к материалу корпуса датчика.
Модели датчиков с резьбовым креплением выпускаются в стандартном исполнении с метрической резьбой. Возможно также их изготовление с трубной резьбой по спец. заказу.
Основные критерии правильного выбора термопреобразователя:
- соответствие измеряемых температур рабочим диапазонам измерений термопреобразователей;
- соответствие прочности корпуса датчика температуры условиям эксплуатации;
- правильный выбор длины погружаемой части датчика и длины соединительного кабеля;
- необходимость взрывозащищенного исполнения для работы на взрывопожароопасных;
- принцип действия термосопротивления основан на свойстве проводника изменять электрическое сопротивление с изменением температуры окружающей среды.
Термосопротивления отличаются материалом чувствительного элемента: ТСМ - медь, ТСП - платина. Термоэлектрические преобразователи типа ДТПL(ХК) и ДТПK(ХА) (датчики температуры - термопары).
Диапазон измеряемых температур по ГОСТ 8.585-2001, градусов Цельсия.
ТХА термопара хромель-алюмель (K) от -200 до 1200 (кратковременно до 1300).
ТХК термопара хромель-копель (L) от -200 до 600 (кратковременно до 800).
Термопара хромель-алюмель ХА(K) обладает наиболее близкой к прямой термоэлектрической характеристикой. Термоэлектроды изготовлены из сплавов на никелевой основе. Хромель (НХ9,5) содержит 9…10% Сг; 0,6…1,2% Со; алюмель (НМцАК) - 1,6…2.4% Al, 0,85…1,5% Si, 1,8…2,7% Mn, 0.6…1.2% Со. Алюмель светлее и слабо притягивается магнитом; этим он отличается от более темного в отожженном состоянии совершенно немагнитного хромеля.
Благодаря высокому содержанию никеля хромель и алюмель лучше других неблагородных металлов по стойкости к окислению. Учитывая почти линейную зависимость термо-ЭДС термопары хромель - алюмель от температуры в диапазоне 0…1000°С, ее часто применяют в терморегуляторах.
Термопара хромель-копель ХК(L) обладает большей термо-ЭДС, чем термопара ХА(K), но уступает по жаростойкости и линейности характеристики. Копель (МНМц 43-0,5) - серебристо-белый сплав на медной основе, содержит 42,5-44,0%(Ni+Со), 0,1-1,0% Mn. Даже в сухой атмосфере при комнатной температуре на его поверхности быстро образуется окисная пленка, в дальнейшем удовлетворительно предохраняющая сплав от дальнейшего окисления.
Номинальные статические характеристики термопар приведены в ГОСТ Р 8.585-2001.
Таблица 1. Химический состав термоэлектродного элемента
Обозначение типа термопары |
Термоэлектродный материал |
|||
Положительный |
Отрицательный |
|||
Вольфрам - рений/ ТВР |
А-1 А-2 А-3 |
Сплав вольфрам-рений |
||
ВР - (95% W+5% Re) |
BP-20 (80% W+20% Re) |
|||
Платино-родий /ТПР |
В |
Сплав платинородий |
||
ПР_30 (70% Pt+30% Rh) |
ПР-6 (94% Pt+6% Rh) |
|||
Платино-родий/ платиновые ТПП |
S R |
Сплав платинородий |
Платина |
|
ПР-10 (90% Pt+10% Rh) ПР-13 (87% Pt=13% Rh) |
ПлТ ПлТ |
|||
Никель-хром / никель - алюминиевые |
K |
Сплав хромель |
Сплав алюмель |
|
ТНХ 9.5 (90.5% Ni+9.5% Cr) |
HMuAK2-2-1 (94.5%+5.5% AL, Si, Mn, Co) |
|||
Никель - хром/ медь - никелевые ТХКн |
E |
Сплав хромель |
Сплав константан |
|
ТНХ 9.5 (90.5% Ni+9.5% Cr) |
(55% Cu+45% Ni, Mn, Fe) |
|||
Никель-хром/ медь - никелевые ТХК |
L |
Сплав хромель |
Сплав копель |
|
ТНХ 9.5 (90.5% Ni+9.5% Cr) |
(56% Cu=44% Ni) |
|||
Медь/медь - никелевые ТМК |
T |
Медь |
Сплав константан |
|
MI(Cu) |
(55% Cu+45% Ni, Mn, Fe) |
|||
Никель-хром-кремний/ никель - кремниевые ТНН |
N |
Сплав нихросил |
Сплав нисил |
|
(83,49-84,89)%Ni+(13,7-14,7)%Cr+(1,2-1,6)%Si+0.15% Fe+0.05% C==0.01% Mg |
(94.98-95.53)%Ni=0.02% Cr+(4.2-4.6)%Si+0.15% Fe+0.05% C+(0.05-0.2)% Mg |
|||
Железо-медь/ никелевые/ ТЖК |
J |
Железо |
Сплав константан |
|
(Fe) |
(55% Cu+45% Ni, Mn, Fe) |
|||
Медь/копеле-вые/ |
M |
Медь |
Сплав копель |
|
MI(Cu) |
(56% Cu=44% Ni) |
Табл. 2 Типы и метрологические характеристики ТЭП
ТХА, ТНН |
K, N |
3 |
От -250 до -167 Св. -167 до +40 |
0,015|t| 2,5 |
|
2 |
От-40 до 375 Св. 135 до 1300 |
2,5 0,0075 |
|||
1 |
От -40 до +375 Св. 375 до 1300 |
1,5 0,001t |
|||
ТМК |
T |
3 |
От-200 до -66 Св. -66 до +40 |
0,015|t| 1,0 |
|
2 |
От -40 до +135 Св.135 до 400 |
1,0 |
В рабочих диапазонах температур термопреобразователи имеют следующие уровни рабочего сигнала: ТХА и ТХК - термо-э.д.с. в пределах от -2,2 до 50 мВ.
1.2 Выбор термопреобразователя по исходным данным
КТХА - термопара ХК (хромель - капель) от 40° до 600°.
По каталогу выбираем преобразователь термоэлектрический КТХА (ХК) 01.03.
Он предназначен для измерения температуры жидких и газообразных химических неагрессивных сред, а также агрессивных не разрушающих материал оболочки темопарного кабеля. Рекомендуются для установки в защитные гильзы, а также на технологическом оборудовании сложной геометрии. Допускается изгибать рабочую часть термопреобазователя по длине для размещения горячего спая в требуемой зоне измерения.
Рабочие термоэлектрические преобразователи, конструктивная схема которых приведена на рисунке 1, характеризуются наличием монтажного кольца, приваренного лазерной сваркой к оболочке термопарного кабеля и подвижного резьбового штуцера, что существенно расширит область применения. Наружная часть термопреобразователя, от монтажного кольца до клеммой головки усилена стальной трубкой диаметром 10 мм.
Рисунок 1 - Конструктивная схема термоэлектрического преобразователя
Габаритные размеры монтажных элементов и их внешний вид могут определятся заказчиком исходя из условий эксплуатации термопреобразователя. Типовые конструкции монтажных элементов представляют собой кольца различных диаметров, шаровые или цилиндрические втулки с резьбовыми штуцерами стандартного типоразмерного ряда.
Технические характеристики термопреобразователя:
- Диапазон рабочих температур, °С:
от -40 до 1200С (кратковременно до 1300)
- Диапазон условных давлений:
0 - 4.0 МПа
- Класс допуска - II
Рабочий спай:
- Не изолирован от оболочки кабеля
- Материал оболочки термопарного кабеля сталь 12х18Н10Т.
- Показатель тепловой инерции С=40
Предел основной допускаемой погрешности термопреобразователя 2 класса допуска.
?tотп =2,5°С
Для подключения термопары к измерительному прибору выбираем кабель.
Кабель термопарный многожильный в изоляции из стеклонити экранированный. КТМ СЭ (Рисунок 2) применяется в качестве компенсационного провода для термопреобразователей температуры термоэлектрических с НСХ типа ТХА(К) и ТХК(L).
Технические данные кабеля многожильного КТМ СЭ:
Сечение: S= 0,2 мм№
Диаметр: D= 3,5 мм
Диапазон температур: -50 до +220єС.
Погрешность вносимая соединительными проводами максимальная ?tсл= 1,5 єС.
1.3 Анализ и расчет погрешностей термопреобразователей
Погрешность термоэлектрических термометров складывается из погрешности термоэлектрических преобразователей и погрешности измерительных приборов.
Погрешность термопреобразователей состоит из: погрешности градуировки термоэлектрического преобразователя; погрешности вызванной термоэлектрической неоднородностью преобразователя; погрешности в следствии отклонения градуировачной характеристики стандартных рабочих термопреобразователей от стандартной статистической номинальной характеристики; погрешности, обусловленной изменением температуры свободных концов термоэлектрических преобразователей; погрешности возникшей из-за временной нестабильности термоэлектродов; погрешности обусловленной условиями измерения, например, теплоотводом по термопреобразователю, изменением условий теплообмена при установке термоэлектрического преобразователя на объект измерения за счет отличия коэффициентов черноты и т.п.
Погрешность градуировки (определение статической номинальной характеристики) термоэлектрического преобразователя определяются погрешностью средств поверки, например, термостата; образцового термометра, контролирующего температуру в термостате; потенциометра применяющемся при поверке.
Кроме того, к погрешности градуировки следует отнести погрешность интерполяции результатов определения статистической номинальной характеристики, значения нестабильности номинальной статической характеристики в период между поверками термоэлектрического преобразователя.
Погрешность измерения температуры термопреобразователем складывается из основной допускаемой погрешности и методической погрешности , обусловленными теплообменом между термопреобразователем и измеряемой средой.
Методические погрешности контактных термопреобразователей возникают за счет лучистого теплообмена между термопреобразователем и окружающими его телами, за счет отвода тепла теплопроводностью по арматуре и деталям термопреобразователя; за счет нагрева измерительным током чувствительного элемента термопреобразователя сопротивления его инерционности. По исходным данным температура среды постоянная, поэтому инерционностью можно пренебречь.
,
где, - погрешность, вызванная теплоотводом по термопреобразователю, оС
- погрешность за счет лучистого теплообмена, оС.
погрешность термопреобразователя сопротивления за счет нагрева измерительным током, для термопар равна нулю, оС.
Погрешность, вызванная лучистым теплообменом между термопреобразователем и стенками печи или воздухоотвода, определяется по формуле:
где, tт, tср, tст - соответственно температуры термопреобразователя, среды и стенки печи(воздуховода), оС;
Со - постоянная Стефана - Больцмана, равная 5,67 Вт/м2К4;
бк - коэффициент теплоотдачи конвекцией между термопреобразователем и измеряемой средой Вт/мК;
епр. - приведенный коэффициент черноты, характеризующий теплообмен излучением между термопреобразователем и стенками. Так как поверхность стен печи значительно больше чехла термопреобразователя, можно принять е равным коэффициенту черноты чехла термопреобразователя еТ.
Дtизл = = -0,3 К
Погрешность, вызванную отводом тепла теплопроводностью по защитной арматуре термопреобразователя, определяют по формуле:
,
где L - глубина погружения термопреобразователя, м;
д - толщина стенки чехла термопреобразователя, м;
л - коэффициент теплопроводности материала чехла термопреобразователя, Вт/мК;
оС
Погрешность мала, в дальнейших расчетах можно пренебречь.
Методические погрешности контактных термопреобразователей У?tм возникают за счет лучистого теплообмена между термопреобразователем и окружающими его телами; за счет отвода тепла теплопроводностью по арматуре и деталям термопреобразователя; за счет нагрева измерительным током чувствительного элемента термопреобразователя сопротивления его инерционности. По исходным данным температура среды постоянная, поэтому инерционностью можно пренебречь.
где ?tто - погрешность, вызванная теплоотводом
?tнт - погрешность термопреобразователя сопротивления за счет нагрева измерительным током, для термопар равна нулю, ?С.
Погрешность измерения температуры термопреобразователем ?tтп складывается из основной допускаемой погрешности ?tотп и методической погрешности У?tм, обусловленными теплообменом между термопреобразователем и измеряемой средой.
?tтп=
[2,5]<[4]
Неравенство выполнено, следовательно термопара выбрана верно.
2. Выбор измерительного прибора
2.1 Обзор современных измерительных приборов для работы с термопреобразователями (термоэлектрическими)
Термоэлектрические термопреобразователи работают в комплекте с аналоговыми и цифровыми милливольтметрами, приборами следящего уравновешивания и микропроцессовыми приборами.
Аналоговые приборы
Принцип действия аналоговых приборов (Таблица 3) основан на уравновешивании напряжения теомопреобразователя, падением напряжения на реохорде с помощью электромеханического следящего устройства.
Достоинства:
1. широко применяются для измерения сигнализации, регулирования и управления техническими процессами в различных отраслях промышленности.
2. простота конструкции, удобства эксплуатации и ремонта.
Недостатки:
Большие габариты и вес, не высокое быстродействие, не высокая чувствительность.
Таблица 3 Типы и МХ современных аналоговых приборов
Наименование |
Тип |
Кл. точн. |
Кол-во каналов |
Наличие регистрации |
Сопряж. с ЭВМ |
|
1 |
2 |
3 |
4 |
5 |
6 |
|
Показывающий аналоговый прибор |
А-543 А-100 А-100Н |
±0,5 |
3 1,2 |
лента 100 мм лента 100 мм |
____ |
|
Показывающий аналоговый прибор |
КП1Т |
±0,5 |
1 |
_______ |
____ |
|
Одноканальный прибор с круговой шкалой |
ДИСК-250 |
±0,5 |
1 |
Диаграмма круговая 250 мм |
____ |
Цифровые приборы.
Принцип действия цифровых приборов (Таблица 4) основан на методе интегрирования с помощью времяимпульсного преобразования.
Таблица 4. Типы и МХ современных цифровых приборов
Наименование |
Тип |
Класс точности осн. погрешность |
Кол-во каналов |
Наличие регистрации |
Сопряжение с ЭВМ |
|
Многоканальный регистратор |
МЕТРАН-900 |
+0,1% |
12 |
Видеограф. |
Интерфейс RS-232 RS-485 |
|
Показ. И регистрирующий цифровой прибор |
Технограф-160 |
0,25% 0,5% |
12 |
Лента диаграмма 160 мм |
RS-232 RS-485 |
|
Измерительный 2 канальный прибор |
2ТРМО |
0,5% |
2 |
__ |
___ |
|
Многоканальный регистратор |
Альфалог 100 м |
+0,5% |
346 |
Лента 100 мм |
RS-232 RS-485 |
|
Измерительный регулятор одноканальный |
ТРМ-1 |
+0,5% |
1 |
__ |
___ |
|
Цифровой регистратор |
Ш9329 Ш9329А |
0,5% 0,1% |
6 |
RS-232 RS-485 |
Достоинства:
1. высокая точность.
2. высокая чувствительность и быстродействие
3. универсальность.
4. многоканальность.
5. малая потребляемая мощность.
Недостатки.
1 дорогостоящий
2. сложность конструкции
3. сложность настройки и ремонта.
2.2 Обоснование и выбор измерительного прибора
термопреобразователь датчик погрешность аналоговый
Для выбора предела измерения и класса точности измерительного прибора следует рассчитать погрешность комплекта термометра состоящего из термопреобразователя, соединительных проводов и измерительного прибора.
Считая что предельно допускаемые погрешности термопреобразователя, прибора и вносимые соединительными проводами независимы и их значения соответствуют одинаковым доверительным вероятностям при однотипных законах распределения, рассчитываем предельное значение основной погрешности комплекта термометра по формуле:
,
где - погрешность, вносимая удлинительными проводами термоэлектрического преобразователя, для термопреобразователя сопротивления принимается равной нулю, ;
- предел основной допускаемой погрешности измерительного прибора, ;
Для определения предельно допускаемой погрешности прибора примем погрешность комплектно равным погрешности по исходным данным.
,
Значение начала tн и конца tк шкалы измерительного прибора следует выбирать так, чтобы измеряемая температура среды лежала последней третьей части диапазона измерений. Учитывая, что диапазон измерения прибора (tк - tн) равен нормирующему значению, рассчитайте предел основной допускаемой погрешности измерительного прибора по формуле:
,
(tк - tн) = /к · 100,
(tк - tн) = 2,7/0,5 · 100 = 540
Выбираем прибор типа Диск -250 класса точности 0,5 с диапазоном измерения от 0 до 400 0С
,
= оС
оС
Не превышает исходных данных 4, прибор выбран правильно.
Прибор Диск-250 широко применяются для измерения, регистрации, сигнализации температуры, давления, расхода, уровня и других параметров в системах регулирования и управления техпроцессами в энергетике, металлургии, химической, нефтехимической, нефтеперерабатывающей, пищевой и других отраслях промышленности.
Принцип действия основан на уравновешивании напряжения с термопреобразователя падением напряжения на реохорде с помощью электромеханического следящего устройства.
Д-датчик
ВхУ - входное устройство
УВС - Усилитель входного сигнала (ПУ-предварительный усилитель; Ок-оконечный усилитель)
УР-усилитель сигнала реохорда
Р - реохорд
ДВ-балансирующий двигатель
УН-усилитель небаланса
ВУ1-ВУ4-выходные устройства
ИП-источник питания
Устройство и работа прибора
Сигнал с датчика Д поступает во входное устройство ВхУ, где усиливается и настраивается по нижнему пределу измерения. Во входном устройстве подключена медная катушка R6 для автоматического ведения поправок на tс.к. Затем сигнал поступает в УВС, который состоит из предварительного усилителя ПУ, где напряжение усиливается в диапазоне 0,04В и оконечного усилителя ОкУ, где сигнал настраивается от -0,5 до +8,5В и поступает на усилитель небаланса УН. На УН подается сигнал с реохорда Р, усиленный усилителем реохорда УР диапазона от 0,5 до 8,5В. Сигналы сравниваются УН, их разность усиленная подается на реверсивный двигатель ДВ. Двигатель механически (тросиком) связан с реохордом перемещает его подвижный контакт вправо или влево, изменяя напряжение на реохорде до тех пор пока не уравняет с напряжением с термопары. При этом двигатель остановится и стрелка покажет измеряемую температуру.
Технические и метрологические характеристики.
Количество входов 1 или 2 независимых канала
Входные сигналы: напряжения - (0-1), (0-10), (-10-0+10) В; тока - (0-5), (0-20), (4-20) мА.
Основная погрешность по показаниям: +0,5%
Быстродействие: 1; 2,5; 5 или 10 с.
Скорость перемещения диаграммы - 20, 40, 80, 160, 320, 640, 1280 или 2560 мм/г.
Входные устройства сигнализации: два двухпозиционных устройства две независимые установки, контакты, реле 220В.
Длина шкалы и ширина диаграммной ленты (1000,1) мм.
Рабочее положение шкал приборов - вертикальное
Прибор имеет индикацию «прибор включен»
Питание силовой цепи приборов осуществляется от сети переменного тока напряжением (220-33+22), частотой (501) Гц.
Мощность, потребляемая силовой цепью прибора при номинальном напряжении питания не превышает 18В*А.
Основная погрешность по регистрации 1,0
Вариация показаний не превышает абсолютного значения предела основной погрешности по показаниям.
Из технического описания прибора нормальной является температура окружающей среды: =(20±2)оС. При отклонении температуры от нормальной изменение погрешности прибора не превышает значений, определяемых формулой:
где, - приведенная погрешность,
Kt - коэффициент пропорциональности, , К=0,015
Абсолютная дополнительная погрешность за счет влияния температуры окружающего воздуха в градусах Цельсия равна:
,
Поверка расчета:
,
3,6 oC < 4 oC.
Неравенство выполнено, следовательно, прибор выбран правильно.
2.3 Анализ погрешностей измерительного прибора
Основные источники погрешности автоматических мостов.
Погрешность автоматических мостов складывается из погрешности измерения и записи, подразделяется на основную и дополнительную.
Основная погрешность имеет место при нормальных условиях работы моста. Дополнительные погрешности вызваны влиянием внешних факторов при отклонении условий работы прибора от нормальных.
Источниками дополнительных погрешностей мостов, например, являются: отклонение температуры окружающей среды от нормальной, приводящее к изменению параметров электрической цепи моста и механических повреждений подвижных частей; отклонение моста от его рабочего положения, в каком либо направлении; влияния внешнего электрического и магнитного поля, нарушающего работу измерительной схемы, следящего устройства и т.д.; изменение частоты питающей сети и напряжения питания.
Источниками основной погрешности автоматических мостов являются: погрешность измерительных схем, в том числе: погрешность из-за неравномерности намотки реохордов, неодинаковых диаметров и сопротивления по всей длине проволоки; эта погрешность достигает в ряде случаев 0,13-0,15% сопротивления реохордного устройства; погрешность, вызываемая нестабильностью элементов измерительной схемы (реохорда, катушек, сопротивлений и т.д.); погрешность из-за вибрации деталей и элементов моста, особенно во входных трансформаторах; погрешность отсчета и записи показаний, в том числе, погрешность изготовления шкал, установки шкалы; погрешность отклонения указателя моста от необходимой формы и т.п.; погрешность записи, обусловленная несовпадением отметок шкалы с соответствующими делениями сетки диаграммной ленты; изменением размеров бумаги при изменении влажности окружающего воздуха; неточностью механизма перемещения бумаги; запаздываниям записывающего устройства, вызываемым инерцией следящей системы потенциометра.
Вариация показаний автоматических мостов - наибольшая разность показаний при прямом и обратном перемещениях показывающего устройства при одном и том же значении измеряемой величине и постоянных окружающих условиях.
Вариацию показаний ?в определяют как разность отсчетов измеряемой величины при возрастающих и убывающих значениях по формуле
где R1, R2 - сопротивление на образцовом магазине при возрастающем и убывающем значениях измеряемой величины, Ом;
Rн, Rк, - табличные значения сопротивления, соответствующие началу и концу шкалы моста, Ом.
Вариация показаний выражается в процентах от пределов измерений прибора и не должна превышать 0,2% для приборов класса 0,25 и половины абсолютного значения допускаемой основной погрешности - для приборов остальных классов.
Суммарная инструментальная погрешность термометров сопротивления слагается из погрешности термопреобразователя сопротивления и измерительного прибора
где ?гр - погрешность градуировки термопреобразователя сопротивления, К;
?I - погрешность нагрева термопреобразователя измерительным током, К;
?м - погрешность автоматического моста, К.
3. Поверка термоэлектрического термометра
3.1 Выбор метода поверки термопреобразователя
Метода поверки выбираем по государственной поверочной схеме для средств измерений температур ГОСТ 8.558-93.
Настоящий стандарт распространяется на государственную поверочную схему для средств измерений температуры и установить порядок передачи размера единицы температуры Кельвина (К) [градуса Цельсия (С)], от первичного эталона эталона единицы температуры при помощи вторичных эталонов и образцовых средств измерений. рабочим средствам измерений с указанием погрешностей и основных методов поверки. Поверочная схема состоит из трех частей:
Часть 1 Контактные термометры в диапазоне 0,8303К
Часть 2 Контактные термометры в диапазоне 02500
Часть 3 Радиационные термометры
3.2 Выбор эталонных средств и расчет точности поверки термопреобразователя
Эталонные средства выбираем по ГОСТ 8.338 - 2002. «Преобразователи термоэлектрические. Методика проверки». При проведении поверки используют следующие средства измерений:
- эталонные 2 разряда платинородий-платиновые ТП типа ПРО в диапазоне температуры от 300 до 1200оС.
Поверочная установка типа УТТ-6ВМА (Рисунок 5) в состав которой входит: компоратор напряжения типа Р 3003 К.Л.Т. 0,0005 с пределом измерений от 0 до 11 В; Горизонтальные трубчатые печи от 300 до 1200оС; ртутные стеклянные термометры с ценой деления 0,1оС и с пределом измерений от 10 до 35оС по ГОСТ 28498; Удлиняющие провода по ГОСТ 1790 типов ТХК(L); теплоизоляционные сосуды обеспечивающие задающую температуру в течение заданную температуру в течении 14 и с предельным отклонением 0,1.
Средства поверки выбраны верно, если средства измерения сопротивления или ТЭДС термопреобразователя, эталонные термометры и аппаратура для воспроизведения температур обеспечивают такую точность измерений, при которой абсолютная погрешность поверки пов не будет превышать 1/3 предела допускаемой погрешности термопреобразователя tотп, при каждой поверяемой температуре. Значения поверяемых температур выбираются по нормативно технической документации /8,9/ в соответствии с диапазоном преобразователя.
Расчет погрешности поверки пов для термоэлектрических преобразователей проводят по формуле:
,
где предельно допустимая погрешность эталонного термометра или термопреобразователя, .
предельно допустимая погрешность воспроизведения температуры в термостате или печи,
предельно допустимая погрешность прибора, измеряющего ТЭДС термопреобразователя в температурном эквиваленте,
предельно допустимая погрешность поддержания температуры свободных концов термопреобразователя, .
погрешность от влияния паразитных ТЭДС в измерительных целях установки, в температурном эквиваленте,
Для термопары ППО 2 разряда
±0.40 |
300 |
|
0.47 |
400 |
|
0.54 |
500 |
для печи МТП5
Предел основной допускаемой погрешности измерения ТЭДС определяется согласно техническому описанию по формуле:
?n = ± (5U + 1), мкВ,
где U - измеряемое напряжение, В.
22.843=22.843B
B
B
Определим погрешность прибора Р3003 в температурном эквиваленте.
где ?n - предельно допускаемая погрешность измерительного прибора, В.
St - чувствительность термопреобразователя при рассчитываемой температуре поверки.
Для термоэлектрического преобразователя чувствительность определяется по формуле
,
где - приращение ТЭДС термопреобразователя, взятое по /10/ при изменении температуры на один градус Цельсия.
мВ=0.085В
=0.088мВ=0.088
Расчет погрешности поверки термопреобразователя сопротивления проводится по формуле:
,
где ?tк - предельно допустимая погрешность измерительной катушки сопротивления в температурном эквиваленте, ?С.
Из технического описания установки погрешность от паразитных ЭДС возникающие в измерительных целях установки не должна превышать 0.5 микровольта. Определили в температурном экволенте.
=-
=7.6
=1.1
=
Погрешность поверке термопреобразователя: .
Таблица 5
Тип преобразователя |
Температура проверки |
||||
ТХА 9312 |
300 |
0.460 |
2.5 |
0.84 |
|
400 |
0.539 |
2.7 |
0.90 |
||
500 |
±0.610 |
3.2 |
1.07 |
0.460.84
0.540.90
0.611.07
Не равенство выполняется при всех температурах проверки, следовательно, эталоны средства для проверки термопары выбрано правильно.
3. Выбор метода и эталонных средств для поверки измерительного прибора
Методы и средства поверки выбираем по методической инструкции МИ 456-84;
1. Установка для поверки электрической прочности изоляции, напряжение до 850 В, мощность на стороне высокого напряжения 0.25 квА
2. Мегоаметр кп. 2.5 с напряжением 100 В и 500 В.
3. Лупа измерительная ЛИЗ - 10 с ценой деления 0,1 км.
4. Колибратор измеритель стандартных сигналов КИСС - 03
5. Электрические часы синхронные (максимальная погрешность 2 минуты за сутки).
При поверке приборов, работающих с термоэлектрическими термопреобразователями, погрешность поверки рассчитывается по формуле:
,
где ?пов.пот. - погрешность поверки потенциометра, мВ.
?мн - предел основной допускаемой погрешности эталонного потенциометра, мВ.
gмн - цена младшей декады образцового потенциометра, мВ.
?кт - погрешность устройства температурной компенсации соответствующей НСХ термопреобразователя, мВ.
?ц - погрешность измерительной цепи поверки потенциометра установки, мВ.
Верхний предел проверочного прибора Диск -250 400 оС.
gмн = 1мкВ
=
Поверка расчета:
25.4
25.4
Неравенство выполняется, значит средства проверки выбраны верно.
Литература
1. Олейник Б.Н. Приборы и методы температурных измерений. М.: Издательство стандартов, 1987.
2. Температурные измерения. Справочник. Пор ред. Геращенко О.А. Киев: Наука думка, 1989.
3. Полный номенклатурный каталог «Теплоприбор» Челябинск 2006.
4. Вторичные приборы. Каталоги предприятий-изготовителей.
5. Номенклатурный перечень серийно выпускаемых приборов и средств автоматизации. Каталог. М.
6. ГОСТ 8.558-93. ГСИ. Государственная поверочная схема для средств измерений температуры.
7. Методики поверки измерительных приборов (из технических описаний).
8. ГОСТ 8.280-78. Потенциометры и уравновешенные мосты автоматические. Методы и средства поверки.
9. ГОСТ 8.338-2002. Термопреобразователи технических термоэлектрических термометров. Методы и средства поверки.
10. ГОСТ Р 8.585-2001. Преобразователи термоэлектрические. Номинальные статистические характеристики преобразования.
11. ГОСТ 6616-94. Преобразователи термоэлектрические. Общие технические условия.
Размещено на Allbest.ru
Подобные документы
Сведения о методах и видах измерений. Описание теории и технологической схемы процесса искусственного охлаждения. Метрологическое обеспечение процесса. Выбор и обоснование системы измерений, схема передачи информации. Расчет погрешностей измерения.
курсовая работа [437,4 K], добавлен 29.04.2014Погрешность измерения температуры перегретого пара термоэлектрическим термометром. Расчет методической погрешности изменения температуры нагретой поверхности изделия. Определение погрешности прямого измерения давления среды деформационным манометром.
курсовая работа [203,9 K], добавлен 01.10.2012Основные черты технического обеспечения современных автоматизированных систем управления технологическим процессом. Расчет среднеквадратичной погрешности контроля. Анализ приборов управления и регулирования, характеристика измерительных приборов.
курсовая работа [1,2 M], добавлен 22.05.2019Теоретические основы и главные понятия метрологии. Методы нормирования метрологических характеристик средств измерений, оценки погрешностей средств и результатов измерений. Основы обеспечения единства измерений. Структура и функции метрологических служб.
учебное пособие [1,4 M], добавлен 30.11.2010Характеристика метрологической службы ООО "Белозерный ГПК", основные принципы ее организации. Метрологическое обеспечение испытаний газотурбинных двигателей, их цели и задачи, средства измерения. Методика проведения измерений ряда параметров работы ГТД.
дипломная работа [9,6 M], добавлен 29.04.2011Понятие об измерениях и их единицах. Выбор измерительных средств. Оценка метрологических показателей измерительных средств и методы измерений. Плоскопараллельные концевые меры длины, калибры, инструменты для измерения. Рычажно-механические приборы.
учебное пособие [2,5 M], добавлен 11.12.2011Общие задачи метрологии как науки о методах и средствах измерений. Метрологическое обеспечение машиностроения, качество измерений. Метрологическая экспертиза документации и поверка средств измерений. Ремонт штангенциркулей, юстировка и поверочные схемы.
презентация [680,0 K], добавлен 15.12.2014Конструктивные особенности подшипникового узла, определение динамической нагрузки. Расчет контактного давления при посадке колеса на вал. Расчет резьбового соединения с учетом шероховатости поверхности. Выбор измерительных средств и форм контроля.
курсовая работа [2,7 M], добавлен 14.01.2018Анализ методов и технических средств измерения температуры. Общее понятие о температурных датчиках. Построение функциональной схемы измерительного устройства. Расчет элементов измерительной цепи. Принцип действия термопреобразователей сопротивления.
курсовая работа [1,0 M], добавлен 05.12.2014Методика выполнения измерений температуры воды. Разработка инструкции по поверке преобразователя перепада давления. Стандартизация и метрологическое обеспечение функционирования измерительной информационной системы. Обработка результатов измерений.
курсовая работа [241,4 K], добавлен 24.04.2012