Титан и его сплавы

Титан и его распространенность в земной коре. История происхождения титана и его нахождение в природе. Сплавы на основе титана. Влияние легирующих элементов на температуру полиморфного превращения титана. Классификация титана и его основных сплавов.

Рубрика Производство и технологии
Вид реферат
Язык русский
Дата добавления 29.09.2011
Размер файла 46,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Содержание

1.История происхождения

2.Нахождение в природе

3.Получение

4. Физические свойства

5.Химические свойства

6. Сплавы на основе титана

7.Классификация титана и его сплавов

8.Список литературы

Титан по распространенности в земной коре занимает среди конструкционных металлов четвертое место, уступая лишь алюминию, железу и магнию. Титан - металл IV группы периодической системы с атомным номером 22, атомной массой 47,3, относится к переходным элементам. Титан обладает удельным весом порядка 4500 кг/м3 и довольно высокой температурой плавления, ~1665± 5оС. Модуль упругости у титана низкий Е= 112 ГПа, почти в 2 раза меньше, чем у железа и никеля. Коэффициент теплопроводности составляет 18,85 Вт/(м·К), почти в 13 раз ниже, чем у алюминия и в 4 раза ниже, чем у железа. Имеет низкий коэффициент линейного термического расширения - 8,15 х 106 К-1 (50% от коэффициента расширения аустенитной нержавеющей стали). Титан обладает высоким удельным электросопротивлением.

1.История происхождения

Открытие TiO2 сделали практически одновременно и независимо друг от друга англичанин У. Грегор и немецкий химик М. Г. Клапрот. У. Грегор, исследуя состав магнитного железистого песка (Крид, Корнуолл, Англия, 1789), выделил новую «землю» (окись) неизвестного металла, которую назвал менакеновой. В 1795 г. немецкий химик Клапрот открыл в минерале рутиле новый элемент и назвал его титаном. Спустя два года Клапрот установил, что рутил и менакеновая земля -- окислы одного и того же элемента, за которым и осталось название «титан», предложенное Клапротом. Через 10 лет открытие титана состоялось в третий раз. Французский учёный Л. Воклен обнаружил титан в анатазе и доказал, что рутил и анатаз -- идентичные окислы титана.

Первый образец металлического титана получил в 1825 году Й. Я. Берцелиус. Из-за высокой химической активности титана и сложности его очистки чистый образец Ti получили голландцы А. ван Аркел и И. де Бур в 1925 годутермическим разложением паров иодида титана TiI4.

2. Нахождение в природе

Титан находится на 10-м месте по распространённости в природе. Содержание в земной коре 0,57 % по массе, в морской воде 0,001 мг/л[3]. В ультраосновных породах 300 г/т, в основных -- 9 кг/т, в кислых 2,3 кг/т, в глинах и сланцах 4,5 кг/т. В земной коре титан почти всегда четырёхвалентен и присутствует только в кислородных соединениях. В свободном виде не встречается. Титан в условиях выветривания и осаждения имеет геохимическое сродство с Al2O3. Он концентрируется в бокситах коры выветривания и в морских глинистых осадках. Перенос титана осуществляется в виде механических обломков минералов и в виде коллоидов. До 30 % TiO2 по весу накапливается в некоторых глинах. Минералы титана устойчивы к выветриванию и образуют крупные концентрации в россыпях. Известно более 100 минералов, содержащих титан. Важнейшие из них:рутил TiO2, ильменит FeTiO3, титаномагнетит FeTiO3 + Fe3O4, перовскит CaTiO3, титанит CaTiOSiO4. Различают коренные руды титана -- ильменит-титаномагнетитовые и россыпные -- рутил-ильменит-цирконовые.

Месторождения

Месторождения титана находятся на территории ЮАР, России, Украины, Китая, Японии, Австралии, Индии, Цейлоне, Бразилии, Южной Кореи[4].

3.Получение

Как правило, исходным материалом для производства титана и его соединений служит диоксид титана со сравнительно небольшим количеством примесей. В частности, это может быть рутиловый концентрат, получаемый при обогащении титановых руд. Однако запасы рутила в мире весьма ограничены, и чаще применяют так называемый синтетический рутил или титановый шлак, получаемые при переработке ильменитовых концентратов. Для получения титанового шлака ильменитовый концентрат восстанавливают в электродуговой печи, при этом железо отделяется в металлическую фазу (чугун), а невосстановленные оксиды титана и примесей образуют шлаковую фазу. Богатый шлак перерабатывают хлоридным или сернокислотным способом.

Концентрат титановых руд подвергают сернокислотной или пирометаллургической переработке. Продукт сернокислотной обработки -- порошок диоксида титана TiO2. Пирометаллургическим методом руду спекают с коксом и обрабатывают хлором, получая парытетрахлорида титана

TiCl4: TiO2 + 2C + 2Cl2 =TiCl4 + 2CO

Образующиеся пары TiCl4 при 850 °C восстанавливают магнием:

TiCl4+ 2Mg = 2MgCl2+ Ti

Полученную титановую «губку» переплавляют и очищают. Рафинируют титан иодидным способом или электролизом, выделяя Ti из TiCl4. Для получения титановых слитков применяют дуговую, электроннолучевую или плазменную переработку.

4.Физические свойства

Титан -- легкий серебристо-белый металл. Существует в двух кристаллических модификациях: ?-Ti с гексагональной плотноупакованной решёткой (a=2,951 A; с=4,679 A[9]; z=2; пространственная группа C6mmc), ?-Ti с кубической объёмноцентрированной упаковкой (a=3,269 A; z=2; пространственная группа Im3m), температура перехода ?-? 883 °C, ?H перехода 3,8 кДж/моль. Точка плавления 1660±20 °C, точка кипения 3260 °C, плотность ?-Ti и ?-Ti соответственно равна 4,505 (20 °C) и 4,32 (900 °C) г/см?[1], атомная плотность 5,71?1022 ат/см?[источник не указан 576 дней]. Пластичен, сваривается в инертной атмосфере. Удельное сопротивление 0,42 мкОм·м при 20 °C

Имеет высокую вязкость, при механической обработке склонен к налипанию на режущий инструмент, и поэтому требуется нанесение специальных покрытий на инструмент, различных смазок.

При обычной температуре покрывается защитной пассивирующей плёнкой оксида TiO2, благодаря этому коррозионностоек в большинстве сред (кроме щелочной).

Титановая пыль имеет свойство взрываться. Температура вспышки 400 °C.

5.Химические свойства

Устойчив к коррозии благодаря оксидной плёнке, но при измельчении в порошок, а также в тонкой стружке или проволоке титан пирофорен[10].

Титан устойчив к разбавленным растворам многих кислот и щелочей (кроме HF, H3PO4 и концентрированной H2SO4).

Легко реагирует даже со слабыми кислотами в присутствии комплексообразователей, например, с плавиковой кислотой HF он взаимодействует благодаря образованию комплексного аниона [TiF6]2?.

При нагревании на воздухе до 1200 °C Ti загорается с образованием оксидных фаз переменного состава TiOx. Из растворов солей титана осаждается гидроксид TiO(OH)2·xH2O, осторожным прокаливанием которого получают оксид TiO2. Гидроксид TiO(OH)2·xH2O и диоксид TiO2 амфотерны.

TiO2 взаимодействует с серной кислотой при длительном кипячении. При сплавлении с содой Na2CO3 или поташом K2CO3 оксид TiO2 образует титанат:

TiO2+K2CO3=K2TiO3+CO2.

При нагревании Ti взаимодействует с галогенами. Тетрахлорид титана TiCl4 при обычных условиях -- бесцветная жидкость, сильно дымящая на воздухе, что объясняется сильным гидролизом TiCl4 содержащимися в воздухе парами воды и образованием мельчайших капелек HCl и взвеси гидроксида титана.

Восстановлением TiCl4 водородом, алюминием, кремнием, другими сильными восстановителями, получен трихлорид и дихлорид титана TiCl3 и TiCl2 -- твёрдые вещества с сильно восстановительными свойствами. Ti взаимодействует с Br2 и I2.

С азотом N2 выше 400 °C титан образует нитрид TiNx(x=0,58-1,00). При взаимодействии титана с углеродом образуется карбид титана TiCx (x=0,49-1,00).

При нагревании Ti поглощает H2 с образованием соединения переменного состава TiHх (x=1,0). При нагревании эти гидриды разлагаются с выделением H2. Титан образуетсплавы со многими металлами.

6.Сплавы на основе титана

Титан - твердый металл: он в 12 раз тверже алюминия, в 4 раза - железа и меди. Титан химически стоек. На поверхности титана легко образуется стойкая оксидная пленка TiO2, вследствие чего он обладает высокой сопротивляемостью коррозии в пресной и морской воде и в некоторых кислотах, устойчив против коррозии под напряжением. Во влажном воздухе, в морской воде и азотной кислоте он противостоит коррозии не хуже нержавеющей стали, а в соляной кислоте во много раз лучше ее. При температурах выше 500°С титан и его сплавы легко окисляются и поглощают водород, который вызывает охрупчивание (водородная хрупкость).

Титан имеет две полиморфные модификации:

· · низкотемпературную модификацию a -Ti, устойчивую до 882°С, (ГП - решетка а = 0,296 нм, с = 0,472 нм)

· · высокотемпературную b -Ti, устойчивую выше 882оС (ОЦК решетка а= 0,332 нм).

На механические свойства титана значительно влияют примеси кислорода, водорода, углерода и азота, которые образуют с титаном твердые растворы внедрения и промежуточные фазы: оксиды, гидриды, карбиды и нитриды, повышая его характеристики прочности при одновременном снижении пластичности. Поэтому содержание этих примесей в титане ограничено сотыми и даже тысячными долями процента. Опасность водородной хрупкости, особенно в напряженных сварных конструкциях ограничивает содержание водорода. В техническом титане оно находится в пределах 0,008 - 0,012%.

Титан обладает высокой прочностью и удельной прочностью и в условиях глубокого холода, сохраняя при этом достаточную пластичность.

t, оС

+20

-70

-196

s В, МПа

600-700

800...900

1000...1200

d, %

20-30

10-5

3-10

Сплавы на основе титана

Для получения сплавов титан легируют Al, Mo, V, Mn, Cr, Sn, Fe, Zr, Nb. Титан легируют для улучшения механических свойств, реже -- для повышения коррозионной стойкости. Удельная прочность (sв/r) титановых сплавов выше, чем легированных сталей.

Все легирующие элементы по влиянию на полиморфизм титана подразделяются на три группы:

1. a -стабилизаторы -- элементы, повышающие Тпп титана (Рис. 5.13 а). Из металлов к числу a -стабилизаторов относятся Al, Ga, In, из неметаллов -- C, N, O.

2. b -стабилизаторы --элементы, понижающие Тпп титана. Их можно разбить на три подгруппы. В сплавах титана с элементами 1 подгруппы при достаточно низкой температуре происходит эвтектоидный распад b -фазы b a a +g (Рис. 5.13 б); к их числу относятся Si, Cr, Mn, Fe, Co, Ni, Cu, называемые эвтектоидообразующими b -стабилизаторами.

а

б

в

Рисунок 5.13. Влияние легирующих элементов на температуру полиморфного превращения титана

В сплавах титана с элементами 2 подгруппы b -раствор сохраняется до комнатной температуры. К числу этих элементов принадлежат V, Mo, Nb, Ta. Поскольку они образуют непрерывные твердые растворы с b -титаном, их назвали изоморфными b - стабилизаторами.

В сплавах 3 подгруппы равновесная b - фаза также стабилизируется при комнатной температуре, но непрерывных твердых b - растворов не образуется. К элементам этой подгруппы относятся Re, Ru, родий Rh, осмий, иридий, которые в области, богатой титаном, дают с ним такую же диаграмму состояния, как и изоморфные b -стабилизаторы (см. Рис. 3). Их можно назвать квазиизоморфными b - стабилизаторами.

3. Третья группа представлена легирующими элементами, мало влияющими на Тпп титана. Это олово, цирконий, германий, гафний и торий, которые называют нейтральными упрочнителями.

Почти все промышленные титановые сплавы содержат алюминий.

титан сплав полиморфный

7.Классификация титана и его сплавов

Технический титан и его сплавы получают из титановой губки. Титановая губка -- это пористое серое вещество с насыпной массой 1,5--2,0 г/см3 и очень высокой вязкостью.

В зависимости от содержания примесей технический титан подразделяют на несколько сортов: ВТ1-00 (99,53% Ti), ВТ1-0 (99,48 % Ti) и ВТ1-1 (99,44 % Ti).

Принятая в настоящее время классификация титановых сплавов основана на структуре, которая формируется при отжиге по промышленным режимам. Она включает:

1. a -сплавы, структура которых представлена a -фазой.

2. Псевдо- a -сплавы, структура которых представлена a - фазой и небольшим количеством b -фазы (не более 5%) или интерметаллидов.

3. (a +b ) -сплавы, структура которых представлена a - и b -фазами; сплавы этого типа также могут содержать интерметаллиды.

4. Псевдо-b -сплавы со структурой в отожженном состоянии, представленной a -фазой и большим количеством b -фазы; в этих сплавах закалкой или нормализацией из b -области можно легко получить однофазную b -структуру.

5. b -сплавы, структура которых представлена термически стабильной b -фазой.

6. Сплавы на основе интерметаллидов.

Общая характеристика титановых сплавов

Практически все титановые сплавы, за редким исключением, легируют алюминием, который имеет следующие преимущества перед остальными легирующими компонентами:

а) широко доступен и сравнительно дешев;

б) плотность алюминия значительно меньше плотности титана, поэтому введение алюминия повышает удельную прочность сплавов;

в) алюминий эффективно упрочняет a -, (a +b )- и b - сплавы при сохранении удовлетворительной пластичности;

г) с увеличением содержания алюминия повышается жаропрочность сплавов;

д) алюминий повышает модули упругости;

е) с увеличением содержания алюминия в сплавах уменьшается их склонность к водородной хрупкости.

Однако с увеличением содержания алюминия повышается чувствительность титановых сплавов к солевой коррозии, а также уменьшается их технологическая пластичность. Поэтому если есть опасность контакта сплавов с поваренной солью при работе в интервале температур 250--550°С или необходима высокая технологическая пластичность, содержание алюминия в титановых сплавах следует ограничивать.

Титановые a -сплавы, помимо Al, легируют нейтральными упрочнителями (Sn и Zr). Весьма ценным свойством a -сплавов титана является их хорошая свариваемость; эти сплавы даже при значительном содержании алюминия однофазны, поэтому не возникает охрупчивания шва и околошовной зоны.

К недостаткам a -сплавов относится их сравнительно невысокая прочность, сплавы этого класса термически не упрочняются. При содержании более 6% (по массе) Al технологическая пластичность сплавов невелика. С увеличением содержания алюминия повышаются рабочие температуры титановых a -сплавов. Однако при этом возникает опасность их охрупчивания в результате выделения фазы a 2. Сплавы этого класса, хотя и в меньшей степени, чем титан, склонны к водородной хрупкости.

Сплав ВТ5, содержащий 5%Al отличается более высокими прочностными свойствами по сравнению с титаном, но его технологичность невелика. Применяются для деталей, работающих при температурах до 400°С.

Сплав ВТ5-1, относящийся к системе Ti--Al-- Sn более технологичный, чем BT5 и предназначен для изготовления изделий, работающих в широком интервале температур: от криогенных до 450°С.

Дисперсионно твердеющие a -сплавы представлены английским сплавом Ti+2%Cu. В отожженном и закаленном состоянии сплав малопрочен и пластичен и имеет такую же технологичность, как и технический титан. При старении сплав упрочняется на 30--50% за счет дисперсионного твердения и приобретает sВ=750--800 МПа. Из сплава Ti+2%Cu в Англии изготовляют листы и полосы. Этот сплав сваривается, причем пластичность сварного соединения практически такая же, как у основного металла.

В псевдо-a -сплавы для повышения прочности и жаропрочности при сохранении достаточной технологичности и свариваемости наряду с алюминием следует вводить b -стабилизаторы. Псевдо-a -сплавы при одинаковой с a -сплавами пластичности обладают на 10--20% более высокой прочностью, что обусловлено существенным измельчением зерна при переходе от a - к (a +b ) -структуре. При комнатной температуре псевдо-a -сплавы отличаются более высокой технологической пластичностью по сравнению с a -сплавами.

Псевдо-a -сплавы отличаются высокой термической стабильностью, хорошей свариваемостью. Существенный недостаток псевдо-a -сплавов -- их высокая склонность к водородной хрупкости.

Эту группу представляют сплавы системы Ti--Al--Mn (ОТ4-0; ОТ4-1; ОТ4; ВТ4; ОТ4-2), обладают высокой технологической пластичностью. Сплавы хорошо свариваются всеми видами сварки. Недостатки этих сплавов: а) сравнительно невысокая прочность и жаропрочность; б) большая склонность к водородной хрупкости. С повышением содержания алюминия и марганца в этой серии сплавов прочность их возрастает, а пластичность и технологичность ухудшаются.

К этой группе принадлежат также сплавы ВТ20, ВТ18.

Сплав ВТ20 разрабатывали как более прочный и жаропрочный листовой сплав по сравнению с ВТ5-1. Упрочнение сплава ВТ20 обусловлено его легированием, помимо алюминия, цирконием и небольшими количествами молибдена и ванадия. Технологическая пластичность сплава ВТ20 невысока из-за большого содержания алюминия. Сплав предназначен для изготовления изделий, работающих длительно при температурах до 500°С.

Сплав ВТ18 относится к наиболее жаропрочным титановым сплавам; он может длительно работать при температурах 550--600°С. Высокая жаропрочность сплава обусловлена большим содержанием в нем алюминия и циркония. Однако, в отличие от других псевдо-a -сплавов сплав ВТ18 плохо сваривается.

Большинство a - и псевдо-a -сплавов применяют в отожженном состоянии.

Наиболее благоприятным сочетанием всех свойств отличаются двухфазные сплавы, состоящие из a +b - фаз. Эти сплавы характеризуются лучшей технологической пластичностью в отожженном состоянии по сравнению с a -сплавами, высокой прочностью, способностью к термическому упрочнению закалкой и старением, меньшей склонностью к водородной хрупкости по сравнению с a и псевдо-a сплавами.

В отличие от a - и псевдо-a -сплавов a +b сплавы существенно упрочняются в результате закалки и старения.

Механические свойства отожженных (a +b )-сплавов существенно зависят от характера микроструктуры. Наибольшие различия наблюдаются для сплавов с зернистой и пластинчатой структурой. Для сплавов с зернистой структурой характерны высокая циклическая прочность, пластичность, технологичность.

Сплавы с пластинчатой структурой отличаются высокой вязкостью разрушения, ударной вязкостью, жаропрочностью при пониженных характеристиках пластичности и циклической прочности. Высокая вязкость разрушения титановых сплавов с такой структурой обусловлена сильным ветвлением трещин при их распространении.

Классическим примером таких сплавов является ВТ6 (Ti-6%Al-4%V) ВТ14 - Ti - 5Al - 1V - 3Mo и ВТ16 - Ti -2,5Al -5V - 5Mo). Их применяют в отожженном и термически упрочненном состоянии. К этой же группе принадлежат ВТ22 (Ti - 5Al - 5V - 5Mo - 1Fe - 1Cr) и новый сплав ВТ23 - Ti--4,5Al--4,5V--2Mo--1Cr--0,6Fe. Это среднелегированный (a +b)-сплав мартенситного класса.

Сплав этой группы ВТ8 (Ti - 6,5Al - 3,3Mo - 0,3Si - 0,5Zr) легирован молибденом, алюминием и небольшими количествами кремния, его структура в отожженном состоянии представлена a -фазой, b -фазой (10%) и небольшим количеством дисперсных силицидов. Сплав ВТ8 обладает высокой термической стабильностью; удовлетворительной пластичностью, но плохо сваривается, недостаточно технологичен. Сплав применяют в отожженном и термически упрочненном состоянии при температурах до 450-- 500°С.

Сплав ВТ9 в отличие от ВТ8 дополнительно легирован цирконием (1,6Zr). Введение циркония в сплавы системы Ti--Al--Mo--Si приводит к повышению прочности почти без снижения пластичности при сохранении достаточно высокой термической стабильности. Ввиду благоприятного влияния циркония и высокого содержания алюминия сплав ВТ9 более жаропрочен, чем другие титановые (a +b ) сплавы. Сплав может работать до 500--550°С.

Псевдо-b -сплавы относятся к высоколегированным титановым сплавам, в которых суммарное .содержание легирующих элементов доходит до 20% и более. Хотя при закалке из b -области в этих сплавах фиксируется только b -фаза, она термически нестабильна и при старении распадается с выделением дисперсной a -фазы.

К преимуществам псевдо-b -сплавов относятся:

1. Высокая технологическая пластичность в закаленном состоянии. Это связано с тем, что b -фаза с ОЦК. решеткой по своей природе более пластична, чем гексагональная a -фаза.

2. Большой эффект термического упрочнения, что связано с большим пересыщением закаленной b -фазы. Распад пересыщенной b -фазы при старении обеспечивает повышение прочности сплавов в 1,5--1,7 раза.

3. Малая склонность к водородной хрупкости.

Недостатки псевдо b -сплавов:

а) невысокая термическая стабильность, в результате чего их нельзя применять для длительной работы при температурах выше 350°С;

б) неудовлетворительная свариваемость;

в) большой разброс механических свойств, вызванный химической неоднородностью сплавов в связи с высокой степенью их легирования и большой чувствительностью процесса старения к содержанию примесей внедрения;

г) сравнительно высокая плотность (5--5,1 г/см3).

Разработанные к настоящему времени псевдо-b -титановые сплавы можно разделить на две группы: а) легированные алюминием, b -стабилизаторами, а в некоторых случаях и нейтральными упрочнителями; б) легированные b -стабилизаторами и нейтральными упрочнителями.

Псевдо-b -сплав ВТ15 содержит 3-4% Al; 7- 8% Mo и 10-11,5%Cr. В закаленном состоянии сплав ВТ15 отличается невысокой прочностью, большой пластичностью (s в = 880--1000 МПа; d =12-20%) и хорошо штампуется. Затем сплав термически упрочняют старением. При старении из пересыщенного b -раствора выделяются дисперсные частицы a -фазы, которые и обеспечивают упрочнение. После закалки и старения временное сопротивление разрыву составляет 1300-1500 МПа при удлинении около 6%.

Свариваемость этих сплавов затрудняет бурный рост зерна в b -области. По указанным причинам псевдо-b -сплавы первой группы применяют ограниченно.

Сплав ВТ30 (Ti - 11Mo - 5,5Zr - 4,5Sn). Сплав ВТ30 обладает высокой технологической пластичностью в закаленном состоянии, в котором хорошо поддается холодной обработке давлением. Сплав закаливают с температуры 800°С, а затем подвергают старению при 530°С. Отличительная его особенность -- большая разница в прочностных свойствах в закаленном состоянии и после старения: временное сопротивление разрыву составляет 650--750 МПа после закалки, а после старения достигает 1400--1600 МПа.

В нашей стране в полупромышленном масштабе производят b -сплав 4201 (Ti+33%Мо), отличающийся высокой коррозионной стойкостью. В ряде областей применения он может заменять тантал, коррозионно-стойкие никелевые сплавы и даже золото и платину. Сплав отличается высокой технологической пластичностью, хорошо сваривается всеми видами сварки.

Титановые b - сплавы с термодинамически устойчивой b - фазой можно получить лишь на основе таких систем, в которых легирующие элементы имеют о.ц.к. решетку при комнатной температуре и образуют с b -титаном непрерывный ряд твердых растворов. К таким элементам принадлежат ванадий, молибден, ниобий и тантал. Однако стабильные b - фазы в этих сплавах образуются при таких высоких концентрациях компонентов, что титановые сплавы теряют основное их преимущество, а именно сравнительно малую плотность. Поэтому титановые сплавы со стабильной b - фазой не получили широкого промышленного применения.

Список литературы

1. Фрагмент справочника "Металлы и сплавы - марки и химический состав"

2. "Металловедение и термическая обработка цветных металлов и сплавов" Б.А. Колачев, В.А.Ливанов,В.И.Елагин

3. "Металлургия цветных металлов" Н.И. Уткин

4. Металлография титана, под ред. С. Г. Глазунова и Б. А. Колачева, М., 1980

Размещено на Allbest.ru


Подобные документы

  • Содержание титана в земной коре. Состав титановых концентратов, полученных из титановых руд, находящихся на территории Казахстана. Современная технология получения титанового шлака и металлического титана. Особенности очистки четырёххлористого титана.

    реферат [4,8 M], добавлен 11.03.2015

  • Общая характеристика и механические свойства титана как металла. Оценка главных преимуществ и недостатков титановых сплавов, сферы их практического применения и значение в кораблестроении. Батискаф "Алвин": история проектирования и построения, проблемы.

    реферат [161,2 K], добавлен 19.05.2015

  • Общие положения, классификация и области применения сплавов на основе интерметаллидов. Материалы с эффектом памяти формы. Сплавы на основе алюминидов титана. Сплавы на основе алюминидов никеля. Области использования сплавов на основе интерметаллидов.

    курсовая работа [1,1 M], добавлен 02.06.2014

  • Процесс получения титана из руды. Свойства титана и область его применения. Несовершенства кристаллического строения реальных металлов, как это отражается на их свойствах. Термическая обработка металлов и сплавов - основной упрочняющий вид обработки.

    контрольная работа [2,3 M], добавлен 19.01.2011

  • Физико-химические свойства титана и технология его производства. Карботермическая и алюмотермическая выплавка ферротитана. Достоинства и недостатки способов ведения плавки. Титан высокой чистоты как конструкционный материал. Применение жидкого алюминия.

    лекция [306,6 K], добавлен 24.11.2013

  • Устройство работы доменной печи. Технология производства титана. Свойства титана и область его применения. Углеродистые конструкционные стали обыкновенного качества. Назначение и область применения станков строгальной группы. Лакокрасочные материалы.

    контрольная работа [202,6 K], добавлен 14.03.2014

  • Рассмотрение основных факторов, влияющих на технологические свойства титана и его сплавов. Определение свойств титановых сплавов. Оценка свойств материала для добычи нефти и газа на шельфе. Изучение практики использования в нефтегазовой промышленности.

    реферат [146,1 K], добавлен 02.04.2018

  • Понятие о металлах, особенности их атомного строения, физико-механические, химические и технологические свойства. Сплавы золота, серебра, титана, платины и палладия, нержавеющая сталь; их характеристики и применение в ортопедической стоматологии.

    презентация [433,4 K], добавлен 01.12.2013

  • Двухкарбидные твердые сплавы. Основные свойства и классификация твердых сплавов. Метод порошковой металлургии. Спекание изделий в печах. Защита поверхности изделия от окисления. Сплавы на основе высокотвердых и тугоплавких карбидов вольфрама и титана.

    контрольная работа [17,9 K], добавлен 28.01.2011

  • Обзор технологий и патентной литературы по восстановлению тетрахлорида титана магнием. Металлургический, конструктивный, тепловой, электрический расчет аппарата восстановления. Контроль и автоматизация технологических процессов, безопасность проекта.

    дипломная работа [596,3 K], добавлен 31.03.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.