Сетевое планирование
Построение сетевой модели, расчет временных параметров событий. Критический путь модели. Оптимизация сетевой модели по критерию "минимум исполнителей". Исходные данные для оптимизации загрузки. Оптимальное решение игры двух лиц с нулевой суммой.
Рубрика | Маркетинг, реклама и торговля |
Вид | контрольная работа |
Язык | украинский |
Дата добавления | 28.04.2010 |
Размер файла | 87,1 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
14
Содержание
- Сетевое планирование и управление
- Исходные данные для оптимизации загрузки
- Оптимальное решение игры двух лиц с нулевой суммой
Сетевое планирование и управление
Построить сетевую модель, рассчитать временные параметры событий (на рисунке) и работ (в таблице);
Определить критические пути модели;
Оптимизировать сетевую модель по критерию “минимум исполнителей” (указать какие работы надо сдвигать и на сколько дней, внесенные изменения показать на графиках привязки и загрузки пунктирной линией).
Название работы |
Нормальная длительность |
Количество исполнителей |
Вариант 8 (N=11 человек) C, D, E - исходные работы проекта, которые могут начинаться одновременно; Работа А следует за С, работа F начинается сразу после окончания работы А; Работа G следует за F; Работа В следует за D, а работы I и J следуют за В; Работа H следует J и Е, но не может начаться, пока не завершена работа G. |
|
A |
9 |
8 |
||
B |
10 |
3 |
||
C |
6 |
6 |
||
D |
5 |
4 |
||
E |
16 |
5 |
||
F |
12 |
2 |
||
G |
14 |
1 |
||
H |
15 |
3 |
||
I |
11 |
5 |
||
J |
3 |
7 |
На рисунке 1 представлена сетевая модель, соответствующая данному упорядочению работ. Каждому событию присвоен номер, что позволяет в дальнейшем использовать не названия работ, а их коды (см. табл.1). Численные значения временных параметров работ сети представлены в табл.2.
Таблица 1
Описание сетевой модели с помощью кодирования работ
Номера событий |
Код работы |
Продолжительность работы |
||
начального |
конечного |
|||
1 |
2 |
(1,2) |
6 |
|
1 |
3 |
(1,3) |
5 |
|
1 |
7 |
(1,7) |
16 |
|
2 |
4 |
(2,4) |
9 |
|
3 |
5 |
(3,5) |
10 |
|
4 |
6 |
(4,6) |
12 |
|
5 |
6 |
(5,6) |
11 |
|
5 |
7 |
(5,7) |
3 |
|
6 |
7 |
(6,7) |
14 |
|
7 |
8 |
(7,8) |
15 |
A F
9 12
C
6 I
D B 11
5 10 J 14 G
E 3 H
16 15
Рис.1 Сетевая модель
Таблица 2
Временные параметры работ
(i,j) |
t (i,j) |
TPH (i,j) |
TPO (i,j) |
TПН (i,j) |
TПО (i,j) |
RП (i,j) |
RC (i,j) |
|
(1,2) |
6 |
0 |
6 |
0 |
6 |
0 |
0 |
|
(1,3) |
5 |
0 |
5 |
1 |
6 |
1 |
0 |
|
(1,7) |
16 |
0 |
16 |
25 |
41 |
25 |
0 |
|
(2,4) |
9 |
6 |
15 |
6 |
15 |
0 |
0 |
|
(3,5) |
10 |
5 |
15 |
6 |
16 |
1 |
1 |
|
(4,6) |
12 |
15 |
27 |
15 |
27 |
0 |
0 |
|
(5,6) |
11 |
15 |
26 |
16 |
27 |
1 |
1 |
|
(5,7) |
3 |
15 |
18 |
38 |
41 |
23 |
23 |
|
(6,7) |
14 |
27 |
41 |
27 |
41 |
0 |
0 |
|
(7,8) |
15 |
41 |
56 |
41 |
56 |
0 |
0 |
Исходные данные для оптимизации загрузки
Таблица 3
Код работ |
Продолжительность работ |
Количество исполнителей |
|
(1,2) |
6 |
6 |
|
(1,3) |
5 |
4 |
|
(1,7) |
16 |
5 |
|
(2,4) |
9 |
8 |
|
(3,5) |
10 |
3 |
|
(4,6) |
12 |
2 |
|
(5,6) |
11 |
5 |
|
(5,7) |
3 |
7 |
|
(6,7) |
14 |
1 |
|
(7,8) |
15 |
3 |
Допустим, что организация, выполняющая проект, имеет в распоряжении только N = 11 исполнителей. Но в соответствии с графиком загрузки (рис.2), в течение интервала времени с 3 по 16 день для выполнения проекта требуется работа одновременно 41, 39 и затем 40 человек. Таким образом, возникает необходимость снижения максимального количества одновременно занятых исполнителей с 41 до 15 человек.
Проанализируем возможность уменьшения загрузки (41 человек) в течение 5 дня. Используя Rc (5,6) = 5, сдвинем работу (5,7) на 1 день, что снизит загрузку 5-го дня до 2 человек, но при этом в 11 день появится пик - 42 исполнителя. Для его устранения достаточно сдвинуть работу (6,7) на 1 день, используя Rc (6,7) = 1.
15 16
14 12
11 10
9
3 6
7,8 3
6,7 1
5,7 7
5,6 5
4,6 2
3,5 3
2,4 8
1,7 5
1,3 4
1,2 6
Рис.2 Графики загрузки (а) и привязки (b) до оптимизации.
Проанализируем возможность уменьшения загрузки (38 человек) с 7-го по 12 день, т.е. в течение интервала времени в 6 дней. Так работа (2,4) является единственной, которую можно сдвинуть таким образом, чтобы она не выполнялась в указанные 6 дней с 7-го по 12 день. Для этого, используя Rп (2,4) = 8, сдвинем работу Tу (i,j) на 4 дня, после чего она будет начинаться уже не в 6-й, а в 10 день, к чему мы и стремились. Но поскольку Rс (2,4) = 0 и для сдвига работы Tн (i,j) был использован полный резерв, то это влечет за собой обязательный сдвиг на 7 дней работы (6,7), следующей за работой (2,4).
В результате произведенных сдвигов максимальная загрузка сетевой модели уменьшилась с 41 до 15 человек, что и являлось целью проводимой оптимизации. Окончательные изменения в графиках привязки и загрузки показаны на рис.3 пунктирной линией.
Проведенная оптимизация продемонстрировала следующее различие использования свободных и полных резервов работ. Так, сдвиг работы на время в пределах ее свободного резерва не меняет моменты начала последующих за ней работ. В тоже время сдвиг работы на время, которое находится в пределах ее полного резерва, но при этом превышает ее свободный резерв, влечет сдвиг последующих за ней работ.
15 16
14 12
11 10
9
3 6
7,8 3
6,7 1
5,7 7
5,6 5
4,6 2
3,5 3
2,4 8
1,7 5
1,3 4
1,2 6
Рис.3 Графики загрузки (а) и привязки (b) после оптимизации.
Оптимальное решение игры двух лиц с нулевой суммой
Определите оптимальные стратегии и цену игры. Для 1) - в чистых стратегиях, для 2) - в смешанных.
1) 2)
Таблица 5
B1 |
B2 |
B3 |
B4 |
|||
A1 |
1 |
3 |
4 |
1 |
1 |
|
A2 |
5 |
6 |
9 |
1 |
1 |
|
A3 |
2 |
8 |
4 |
3 |
2 |
|
5 |
8 |
9 |
3 |
Решение
Все расчеты удобно проводить в таблице, к которой, кроме матрицы Р, введены столбец и строка (табл.1). Анализируя строки матрицы (стратегии игрока А), заполняем столбец : а1 = 1; а2 = 1; а3 = 2 - минимальные числа в строках 1, 2,3. Аналогично = 5; = 8; = 9; = 3 - максимальные числа в столбцах 1, 2, 3 соответственно. Нижняя цена игры , (1; 1;
2) = 2 (наибольшее число в столбце ) и верхняя цена игры , (5; 8; 9;
3) = 3 (наименьшее число в строке ). Эти значения не равны, т.е. , и, так как они достигаются ни на одной и той же паре стратегий, то игра седловой точки не имеет. И, так как игра седловой точки не имеет, то применение чистых стратегий не дает оптимального решения игры. В таком случае можно получить оптимальное решение случайным образом чередуя чистые стратегии. Пусть игра задана платежной матрицей
Средний выигрыш игрока А, если он использует оптимальную смешанную стратегию
,
а игрок В чистую стратегию В1 (это соответствует первому столбцу платежной матрицы Р), равен цене игры v:
Тот же средний выигрыш получает игрок А, если 2-й игрок применяет стратегию В2, т.е.
.
Учитывая, что получаем систему уравнений для определения оптимальной стратегии S*A и цены игры v:
Решая эту систему, получим оптимальную стратегию
и цену игры
Применяя теорему об активных стратегиях при отыскании - оптимальной стратегии игрока В, получаем, что при любой чистой стратегии игрока А (А1 или А2) средний проигрыш игрока В равен цене игры v, т.е.
Тогда оптимальная стратегия () определяется формулами:
Применим полученные результаты для отыскания оптимальных стратегий для игры, рассмотренной выше. Игра задана платежной матрицей без седловой точки:
Поэтому ищем решение в смешанных стратегиях: для игрока А средний выигрыш равен цене игры v (при В1 и В2) для игрока В средний проигрыш равен цене игры v (при А1 и А2). Системы уравнений приведенные выше в данном случае имеют вид:
Решая эти системы, получаем v = 0.
Это означает, что оптимальная стратегия каждого игрока состоит в том, чтобы чередовать свои чистые стратегии случайным образом, выбирая каждое из убежищ с вероятностью -3 и 4 при этом средний выигрыш равен 0.
Оптимальное решение игры двух лиц с нулевой суммой.
Определите оптимальные стратегии и цену игры. Для 1) - в чистых стратегиях, для 2) - в смешанных.
1) 2)
Таблица 5
B1 |
B2 |
B3 |
B4 |
|||
A1 |
2 |
3 |
4 |
2 |
2 |
|
A2 |
3 |
5 |
2 |
4 |
2 |
|
A3 |
2 |
5 |
4 |
6 |
2 |
|
3 |
5 |
4 |
6 |
Решение.
Все расчеты удобно проводить в таблице, к которой, кроме матрицы Р, введены столбец и строка (табл.1). Анализируя строки матрицы (стратегии игрока А), заполняем столбец : а1 = 2; а2 = 2; а3 = 2 - минимальные числа в строках 1, 2,3. Аналогично = 3; = 5; = 4; = 6 - максимальные числа в столбцах 1, 2, 3 соответственно. Нижняя цена игры , (2; 2;
2) = 2 (наибольшее число в столбце ) и верхняя цена игры , (3; 5; 4;
6) = 3 (наименьшее число в строке ). Эти значения не равны, т.е. , и, так как они достигаются ни на одной и той же паре стратегий, то игра седловой точки не имеет.
И, так как игра седловой точки не имеет, то применение чистых стратегий не дает оптимального решения игры. В таком случае можно получить оптимальное решение случайным образом чередуя чистые стратегии.
Пусть игра задана платежной матрицей
Средний выигрыш игрока А, если он использует оптимальную смешанную стратегию
,
а игрок В чистую стратегию В1 (это соответствует первому столбцу платежной матрицы Р), равен цене игры v:
Тот же средний выигрыш получает игрок А, если 2-й игрок применяет стратегию В2, т.е.
.
Учитывая, что получаем систему уравнений для определения оптимальной стратегии S*A и цены игры v:
Решая эту систему, получим оптимальную стратегию
и цену игры
Применяя теорему об активных стратегиях при отыскании - оптимальной стратегии игрока В, получаем, что при любой чистой стратегии игрока А (А1 или А2) средний проигрыш игрока В равен цене игры v, т.е.
Тогда оптимальная стратегия () определяется формулами:
Применим полученные результаты для отыскания оптимальных стратегий для игры, рассмотренной выше.
Игра задана платежной матрицей без седловой точки:
Поэтому ищем решение в смешанных стратегиях: для игрока А средний выигрыш равен цене игры v (при В1 и В2) для игрока В средний проигрыш равен цене игры v (при А1 и А2). Системы уравнений приведенные выше в данном случае имеют вид:
Решая эти системы, получаем v = 0.
Это означает, что оптимальная стратегия каждого игрока состоит в том, чтобы чередовать свои чистые стратегии случайным образом, выбирая каждое из убежищ с вероятностью -1 и 2 при этом средний выигрыш равен 0.
Подобные документы
Построение сетевой логистической модели по ООО "Хлебокомбинат Моркинского райпо". Расчёты ее параметров табличным способом. Общая оценка информации по поставщикам. Анализ динамики и структуры запасов. Балансовые показатели деятельности предприятия.
контрольная работа [823,9 K], добавлен 18.06.2014Типичные ошибки планирования и их последствия. Детальное планирование с разработкой графиков для оперативного управления на уровне ответственных исполнителей. Сетевая модель в графическом виде. Метод критического пути, построение условных диаграмм.
реферат [831,4 K], добавлен 08.12.2009Место сетевой торговли в современном развитии. Распределительно-логистические центры как база интеграционных процессов в сетевой торговле. Гармонизация среды для формирования взаимодействия местных производителей и товаров собственного производства.
реферат [1,0 M], добавлен 23.08.2014Применение линейного маркетинга, коммивояжерского и теле-маркетинга. Сетевой маркетинг компании, его основные достоинства и недостатки. Сетевой маркетинг в Интернете. Эффективная реализация выпускаемого товара. Привлечение новых дистрибьюторов.
реферат [61,7 K], добавлен 19.05.2015Организация междугородных грузоперевозок. Разработка информационной модели компании "ТК". Построение модели данных компании в нотации IDEF 1X. Выбор инструмента моделирования. Принципы моделирования бизнес-процессов. Построение модели процессов.
курсовая работа [2,4 M], добавлен 30.06.2012Разработка модели женской спортивной куртки. Внедрение данной модели на рынок. Характеристика рынка швейных услуг. Реклама проектируемой модели. Расчет стоимости и экономические показатели проектируемой женской спортивной куртки. Жизненный цикл товара.
реферат [34,4 K], добавлен 08.02.2010Виды продвижения товаров в Интернете. Бизнес-модели, используемые при их продвижении. Выбор оптимальной модели интеграции предприятия в электронный бизнес и стратегия рекламы и продвижения товаров в Интернет. Эффективность применения сетевой рекламы.
курсовая работа [102,5 K], добавлен 13.12.2009Теоретические основы для разработки модели прогнозирования коммуникационной эффективности рекламы на банковском рынке. Модели Аристотеля и Лотмана. Диффузная теория. Регрессионный анализ временных рядов. Переменные модели прогнозирования эффективности.
дипломная работа [76,4 K], добавлен 26.05.2012Сетевой маркетинг как инструмент бизнеса, особенности его использования в российских банках. История финансовой пирамиды "МММ". Жизнеспособность сетевого маркетинга в Российской Федерации. Явление пересечения сетей, отсутствие закона о сетевом маркетинге.
презентация [5,0 M], добавлен 05.08.2011Сущность и содержание сетевого маркетинга, его основные принципы и закономерности, источники и составные части. Сетевой маркетинг в России, история его становления и развития. Маркетинг-план компании Фаберлик, условия достижения уровней квалификации.
контрольная работа [35,0 K], добавлен 15.01.2014