Евклідова і неевклідова геометрії

Історія появи й розвитку геометрії: постулати Евкліда, аксіоматика Гильберта та інші системи геометричних аксіом. Неевклідові геометрії в системі Вейля. Різні моделі площини Лобачевского, незалежність 5-го постулату Евкліда від інших аксіом Гильберта.

Рубрика Математика
Вид дипломная работа
Язык украинский
Дата добавления 12.02.2011
Размер файла 263,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Якщо під знаком функції входить кут, то функція розуміється в тригонометричному змісті. Якщо ж входить довжина, то вона ділиться на радіус кривизни і їхня функція розуміється в гіперболічному змісті. Нарешті, у випадку, коли під знаком функції коштує катет, функція міняється на суміжну: синус - на косинус, тангенс - на котангенс і навпаки.

Користуючись наведеним правилом, одержимо для кожного елемента відповідні вираження через прилеглі й протилежні елементи прямокутного трикутника:

(3.33)

Основна формула Лобачевского

Нехай дана на площині Лобачевского пряма a і крапка A, не інцідентна їй. Опустимо із крапки А перпендикуляр АВ на пряму а (мал. 19). Проведемо також через крапку А пряму АТ, паралельну прямій а в якому-небудь напрямку. Кут , як указували вище, називається кутом паралельності, а відрізку АВ. Для одержання основний формул Лобачевского, що зв'язує кут паралельності ВАО = П(p) з відрізком p=АВ, візьмемо на промені В яку-небудь крапку С. Для прямокутного трикутника AВС, маємо

Будемо видаляти тепер крапку З по промені нескінченно, прагне при цьому до 1 і в межі, одержимо

Звідси треба, що

Вставляючи в останню рівність

остаточно одержимо

Ця формула, що зв'язує кут паралельності П(р) з відповідним відрізком р, називається основною формулою Лобачевского. З її треба, що кут паралельності є монотонно убутною функцією. Якщо відрізок паралельності р прагне до нуля, то кут паралельності прагне до прямого кута, якщо ж р прагне до нескінченності, то кут П(р) прагнути до нуля.

Геометрія сфери простору Лобачевского

Візьмемо в тривимірному просторі Лобачевского сферу радіуса R із центром у деякій крапці О. На цій сфері індуцирується деяка сферична геометрія. сукупність, Що Виходить, пропозицій називається геометрією сфери в просторі Лобачевского. Розглянемо в цій геометрії прямокутний трикутник AВС, утворений з дуг АВ = з, АС = b, ВР = a більших кіл. Дуги більших кіл тут, як і в сферичній геометрії звичайного простору є найкоротшими для досить близьких крапок на сфері. Кути між більшими колами розуміються як лінійні кути двогранних кутів, утворених площинами більших кіл. Припустимо, що кут З даного трикутника прямої. Опустимо далі із крапки В перпендикуляри ВА1 і ВР1 на радіуси ОА й ОС відповідно. Застосовуючи відомі формули до прямокутного трикутника ОВС1 (мал. 20), одержимо

Аналогічно із трикутників ОВА1 і А1ВР1 треба, що

Крім із цих трьох співвідношень ВР1 і ВA1, одержимо формулу

співпадаючу з відповідною формулою для прямокутного сферичного трикутника в евклідовому просторі. Виведемо тепер теорему Піфагора для прямокутного трикутника ABС у геометрії сфери в просторі Лобачевского. Із трикутника ОВС1 маємо

Аналогічно із трикутників ОВА1 і OA1C1 відповідно треба, що

Крім із отриманих трьох рівностей відрізки ОС1 і OA1 виводимо

Ця формула збігається з відповідною формулою для прямокутного трикутника звичайної сферичної геометрії. Зазначеним способом можна переконатися, що в цілому геометрія сфери простору Лобачевского збігається з геометрією сфери Евклідова простору.

Про геометрію Лобачевского в малому

Припустимо тепер, що в трикутнику лінійні розміри a, b, c малі в порівнянні з радіусом кривизни k простору. Це припущення свідомо виконується для трикутників з малими лінійними розмірами або в просторі досить малої кривизни 1/k2. Розкладаючи в статечні ряди гіперболічні функції у формулі (3.26), що виражає теорему косинусів у геометрії Лобачевского, одержимо

З огляду на тут члени до другого порядку малості включно, будемо мати

a2 = b2 + c2 - 2 bc cosA.

Ця залежність між елементами трикутника виражає теорему косинусів в евклідовій геометрії. У випадку прямокутного трикутника cosA=0; отже,

a2 = b2 + c2

т. е. справедлива теорема Пифагора. Далі при наших припущеннях синуси гіперболічні у формулі (3.28) у першому наближенні пропорційні аргументам, тому

т. е. сторони трикутника пропорційні синусам протилежних кутів. Останні три рівності дозволяють затверджувати, що формули геометрії Лобачевского для фігур з малими лінійними розмірами збігаються з відповідними формулами евклідової геометрії.

2.4 Різні моделі площини Лобачевского. Незалежність 5-го постулату Евкліда від інших аксіом Гильберта

У попередньому параграфі познайомилися з основними формулами двомірної геометрії Лобачевского, які в той же час були формулами геометрії сфери чисто мнимого радіуса в псевдоевклідовом просторі.

Ця сфера, по суті, є одна з можливих моделей площини Лобачевского. Інша модель - модель Бельтрами-Клейна. Вона вийшла з першої моделі шляхом центрального проектування крапок сфери на яку-небудь її дотичну площину. Остання, мабуть, буде евклідовою площиною.

Площина Лобачевского в моделі Бельтрами-Клейна зображується у вигляді внутрішності кола, причому прямі зображуються хордами. Пересічні прямі зображуються пересічними хордами. Якщо загальна крапка буде прагнути по одній із прямих до нескінченності, то паралельні прямі будуть зображуватися хордами, загальна крапка яких належить абсолюту (обмежуючої внутрішність кола окружності). Нарешті, зверхпаралельні прямі в розглянутій моделі зображуються хордами, які, будучи продовжені, перетнуться в крапці, що належить зовнішньої області абсолюту.

Неважко переконатися, що пучок прямих першого роду при Даному відображенні переходить у сукупність хорд, що перетинаються в загальній крапці, що належить внутрішності абсолюту. Пучок прямих другого роду, тобто прямих, паралельних один одному в даному напрямку, переходить у сукупність хорд, що перетинаються в деякій крапці абсолюту. Нарешті, пучок прямих третього роду відображається в сукупність хорд, що перетинаються в деякій крапці поза абсолютом. Крапки абсолюту називаються нескінченно вилученими крапками й крапки поза абсолютом - ідеальними крапками площини Лобачевского. Тому пучки прямих другого й третього родів називаються іноді пучками з нескінченно вилученими або відповідно ідеальними центрами.

Неважко переконатися також, що вісь пучка прямих третього роду є полярою полюса - свого ідеального центра. Справді, допустимо, що вісь пучка не є полярою ідеального центра. Припустимо, наприклад, що вона не проходить через крапку перетинання поляри крапки Р с абсолютом. Тоді на площині Лобачевского буде існувати пряма СС1 одночасно перпендикулярна й паралельна до прямій СВ, що неможливо.

Переносячи по відображенню у внутрішність абсолюту основні поняття відображуваної площини Лобачевского, у підсумку одержимо так звану модель Бельтрами-Клейна.

Ясно, що до моделі Бельтрами-Клейна можна прийти безпосередньою перевіркою аксіом Гильберта I-IV і аксіоми паралельності Лобачевского в множині крапок внутрішності кола і його хорд, уводячи між ними відповідним чином основні відносини. Крапками й прямими в цій моделі є внутрішні крапки абсолюту і його хорди без кінців. „інцідентність" крапок і прямих, а також „между" для трьох крапок, що належать одній прямій, розуміються у звичайному змісті. Два відрізки (кута) уважаються конгруентними, якщо вони будуть відповідними при деякому взаємно однозначному крапковому відображенні розширеної (за рахунок додавання невласної прямої) евклідової площини, при якому абсолют залишається незмінними „прямі" переходять в „прямі".

У моделі Бельтрами-Клейна довжини й кути спотворюються, якщо малюнки 23, 24 розуміти в евклідовому змісті.

У розглянутій моделі через крапку А, дану поза прямій а, можна провести прямі, які перетинають пряму а; прямі АU, АV, паралельні а й, нарешті, прямі b - зверх паралельні, що розташовуються у внутрішності заштрихованих вертикальних кутів. У цій моделі виконуються всі аксіоми Гильберта, у тому числі й аксіома Лобачевского. Відстань d(А, В) між двома крапками A, У в моделі Бельтрами-Клейна виражаються за допомогою проективних понять. Якщо хорда АВ перетинає абсолют у крапках М, N, то

де (ABMN) позначає подвійне відношення зазначених чотирьох крапок (АМ: ВМ): (АN: BN). У самому діді, припустимо, що

(4.1)

є рівнянням абсолюту в однорідних координатах. Крім того, за умовою нам дані крапки А(аi) і В(bi). Становлячи рівняння прямій АВ, одержимо

(4.2)

Щоб знайти крапки перетинання М, N, прямій АВ з абсолютом, вирішимо спільно систему рівнянь (4.1) і (4.2) щодо невідомих . Вставляючи з рівності (4.2) у рівняння (4.1), одержимо

. (4.3)

Розгортаючи більш докладно ліву частину (4.3), будемо мати

.

Тому що крапка А i) не належить абсолюту, тобто , те вирішуючи квадратне рівняння

знайдемо наступних значень відносини , для шуканих крапок:

З іншого боку, як відомо, подвійне відношення чотирьох крапок А, B, М, N дорівнює подвійному відношенню, складеному з відповідних значень параметра , тому

Але ця рівність можна переписати у вигляді

(4.4)

Вставляючи в праву частину (4.4) знайдені вираження , і з огляду на (3.21), одержимо

Тому що по визначенню

те попередня рівність можна переписати так:

Логарифмуючи цю рівність, маємо остаточно

(4.5)

Ця формула показує, що відстань між двома крапками А и В рівняється з точністю до множника подвійному відношенню даних крапок А, У и крапок М, N перетинання прямій АВ з абсолютом.

Кут між двома променями а, b, що виходять із крапки З, також виражається через проективні поняття комплексної геометрії, Нехай т, n позначають дотичні до абсолюту, що проходять через крапку С. Помітимо, що прямі m, n необхідно комплексно сполучені. Аналогічно попередній формулі маємо

Модель Бельтрами-Клейна примітна тим, що прямі площини Лобачевского в ній зображуються у вигляді відкритих відрізків прямих евклідової площини. Вона здійснює геодезичне відображення площини Лобачевского на внутрішність кола евклідової площини.

Перш ніж перейти до інших моделей площини Лобачевского потрібно зробити наступні два важливих зауваження. По-перше, до моделі Бельтрами-Клейна можна прийти на основі відображення площини Лобачевского на граничну поверхню, на якій здійснюється Евклідова геометрія. Тому аксіоми геометрії Лобачевского тут виконуються автоматично по відображенню. Але наведене тут опис по відображенню основних понять дозволяє у свою чергу прийти до цієї моделі самостійним образом, на основі доказу выполнимости послідовно кожної аксіоми I - IV, V.

По-друге, до цієї ж моделі Бельтрами-Клейна можна прийти, мабуть, проектуванням у просторі Минковского сфери чисто мнимого радіуса з її центра на дотичну до неї площина, наприклад, у північному полюсі.

Припустимо тепер, що абсолют із центром Про модель Бельтрами-Клейна є більшим колом сфери. Ортогональне проектування внутрішності абсолюту на одну з отриманих півсфер дозволяє одержати нову модель площини Лобачевского на півсфері. Потім стереографическое проектування цієї півсфери на вихідну площину з полюса S, розташованого в іншій півсфері, де відрізок OS перпендикулярний площини абсолюту, приводить до моделі Пуанкаре усередині кола. Отже, у колишньому абсолюті прямими тепер є дуги окружностей, що ортогональне перетинають абсолют і діаметри абсолюту. Відносини інцидентності, лежати між і конгруентності кутів мають звичайний сенс. Поняття конгруентності відрізків також відповідним чином переноситься з моделі Бельтрами-Клейна.

Застосовуючи потім дрібно-лінійне відображення комплексного змінного до внутрішньої області абсолюту, одержимо відому модель Пуанкаре на напівплощині. У цій моделі «крапками» є крапки верхньої напівплощини, «прямими» - півкола із центром на граничній прямій - абсолюті. До «прямих» зараховуються також, напівпрямі верхньої напівплощини, перпендикулярні до абсолютної прямої. Відносини інцідентності й лежати між розуміємо у звичайному змісті. Конгруентність кутів у цій моделі збігається з евклідової конгруентностью. Модель Пуанкаре представляє собою конформне відображення площини Лобачевского на Евклідову напівплощина.

Що стосується поняття конгруентності відрізків, то воно визначається через рухи або відстань між двома крапками А и В, причому поняття відстані між крапками в останньому випадку не припускає виміру відрізків. По визначенню воно означає число.

(*)

якщо крапки A, У лежать на півкола або число

(**)

якщо крапки лежать на напівпрямій, перпендикулярній граничній прямій XX. У цих формулах кути , і ординати в1 , в2 мають звичайний сенс, ясний з малюнка 29,буд.

Очевидно, завжди можемо припускати, що позначення кутів символами , і ординат в1, в2 для даних крапок A, У здійснено так, що праві частини в (*), (**) позитивні. Тепер неважко визначається конгруентність відрізків. Відрізки АВ і СD конгруентні, якщо відстань між кінцями A, В одного відрізка дорівнює відстані між кінцями З, D іншого відрізка.

Підкреслимо ще раз, що до моделі Пуанкаре на напівплощині ми прийшли в результаті відображення першої моделі Пуанкаре у внутрішності кола. Тому аксіоми Гильберта геометрії Лобачевского виконуються автоматично по відображенню.

Опису основних образів, що приводяться тут, і відносин інцидентності, лежати між, конгруентності відрізків і кутів дозволяють прийти до цієї моделі Пуанкаре на напівплощині самостійним образом, шляхом доказу кожної аксіоми гильбертовської аксіоматики.

На закінчення зупинимося на питанні незалежності 5-го постулату Евкліда від інших аксіом Гильберта. Відповідно до загальної установки, викладеної в главі 1, досить побудувати яку-небудь модель, на якій би виконувалися всі аксіоми Гильберта I - V за винятком аксіоми паралельності V. Аксіома ця, еквівалентна щодо аксіом I - IV твердженню 5-го постулату, полягає в наступному. Через крапку А, не приналежній прямій а, можна провести в площині, обумовленою цією крапкою А и прямій а, не більше одній прямій, що не перетинається з даній прямій a.

Очевидно, будь-яка модель геометрії Лобачевского, наприклад, Бельтрами-Клейна дозволяє довести незалежність аксіоми паралельності від попередніх аксіом I - IV. Дійсно, на цій моделі виконуються всі 19 аксіом I - IV, а аксіома V не виконується. Звідси містимо, що за допомогою аксіом I - IV, Гильберта неможливо довести аксіому паралельності V. Інакше кажучи, 5-й постулат Евкліда не можна вивести як теорему з попередніх аксіом I - IV.

Висновок

Відкриття неевклідової геометрії, Начало якому поклав Лобачевский, не тільки зіграло величезну роль у розвитку нових ідей і методів у математиці природознавства, але має й філософське значення. Панування до Лобачевского думки про непорушність геометрії Евкліда значною мірою ґрунтувалося на навчанні відомого німецького філософа І. Канта (1724-1804), родоначальника німецького класичного ідеалізму. Кант затверджував, що людина впорядковує явища реального миру відповідно до апріорних уявлень, а геометричні подання й ідеї нібито апріорні (латинське слово aprior означає - споконвічно, заздалегідь), тобто, не відбивають явищ дійсного миру, не залежать від практики, від досвіду, а є вродженими людському миру, раз і назавжди зафіксованому, властивими людському розуму, його духу. Тому, Кант уважав, що Евклідова геометрія непохитна, незмінна, і є вічною істиною. Ще до Канта геометрія Евкліда вважалася непорушної, як єдино можливе вчення про реальний простір.

Відкриття неевклідової геометрії довело, що не можна абсолютувати уявлення про простір, що «уживана» (як назвав Лобачевский геометрію Евкліда) геометрія не є єдино можливою, однак це не підірвало непорушність геометрії Евкліда. Отже, в основі геометрії Евкліда лежать не апріорному, уроджені розуму поняття й аксіоми, а такі поняття, які пов'язані з діяльністю людини, з людською практикою. Тільки практика може вирішити питання про те, яка геометрія вірніше викладає властивості фізичного простору. Відкриття неевклідової геометрії дало вирішальний поштовх грандіозному розвитку науки, сприяло й понині сприяє більше глибокому розумінню матеріального світу.

Список літератури

1. Глейзер Г.І. Історія математики в школі IX - X класи. - К., 2004

2. Даан Дальмедино А., Пейффер І. Шляхи й лабіринти. Нариси по історії математики. - К., 2003

3. Егоров І.П. Лекції по аксіоматиці Вейля й неевклідовим геометріям. - К., 2003

4. Егоров І. П. Основи геометрії. - К., 2003

5. Клайн М., Математика. Втрата визначеності. - К., 2004

6. Лаптєв Б.Л. М.І. Лобачевский і його геометрія. - К., 2006

7. Неевклідові простори й нові проблеми фізики. - К., 2003

8. Розенфельд Б.А. Неевклідові простори. - К., 2005

9. Широков П.А. Короткий нарис основ геометрії Лобачевского. - К., 1999.

10. Яглам І.М. Принцип відносності Галілея й неевклідова геометрія. - К., 2000

Евклідова і неевклідова геометрії


Подобные документы

  • Системи аксіом евклідової геометрії. Повнота системи аксіом евклідової геометрії. Арифметична реалізація векторної системи аксіом Г. Вейля евклідової геометрії. Незалежність системи аксіом Г. Вейля. Доведення несуперечливості геометрії Лобачевського.

    курсовая работа [2,3 M], добавлен 10.12.2014

  • Основні галузі сучасної математичної науки. Розвиток аксіоматичного методу. Різні підходи та трактування логічних основ геометрії. Система аксіом О.Д. Александрова, О.В. Погорєлова, Л.С. Атанасяна. Аксіоматична будова геометрії в "Началах" Евкліда.

    курсовая работа [1,3 M], добавлен 13.05.2015

  • Суть та значення аксіоматичної побудови геометрії. Аксіоматика Д. Гільберта евклідової геометрії. Аксіоми сполучення, порядку, конгруентності, неперервності та паралельності. Характеристика різних аксіоматик. Векторна аксіоматика еклідової геометрії.

    курсовая работа [179,9 K], добавлен 17.03.2012

  • Микола Іванович Лобачевський як відомий російський математик, творець неевклідової геометрії. Його дослідження у галузі геометрії. Походження неевклідової геометрії. Три моделі геометрії Лобачевського: Пуанкаре, Клейна та інтерпретація Бельтрамі.

    реферат [229,4 K], добавлен 31.03.2013

  • Елементи загальної теорії багатомірних просторів, аксіоматика Вейля. Геометрія k-площин в афінному і евклідовому просторах: паралелепіпеди, симплекси, кулі. Застосування багатомірної геометрії: простір-час класичної механіки і теорії відносності.

    дипломная работа [1,0 M], добавлен 28.01.2011

  • Аналіз історії виникнення неевклідової геометрії. Знайомство з біографією М. Лобачевського. Розгляд ознак паралельності прямих. Загальна характеристика головних формул тригонометрії Лобачевского. Особливості теореми про існування паралельних прямих.

    дипломная работа [1,5 M], добавлен 12.05.2014

  • Розгляд основних відмінностей геометричних систем, побудованих за ідеями Келі. Аналіз геометрії Келі-Клейна поза круговим абсолютом II. Особливості диференціальних метричних форм геометрії Рімана. Характеристика геометричних систем з афінною групою.

    дипломная работа [660,6 K], добавлен 09.09.2012

  • Теорія геометричних побудов, її місце в курсі елементарної геометрії. Аналіз геометричних побудов різними засобами, їх аксіоматика за допомогою двосторонньої лінійки. Взаємозамінність двосторонньої лінійки з циркулем і лінійкою. Приклади рішення задач.

    курсовая работа [740,3 K], добавлен 27.10.2015

  • Історія створення і різні формулювання теореми Піфагора як актуальної математичної задачі, спроби докази теореми. Визначення теореми Фалеса про пропорційні відрізки, її рішення. Місце теореми Вієта та формули Герона в сучасному шкільному курсі геометрії.

    курсовая работа [1,5 M], добавлен 25.05.2019

  • Дидактична гра як форма навчання. Теоретичні основи використаня дидактичних ігор під час навчання геометрії в основній школі. Методичні передумови та вимоги до організації і проведення дидактичних ігор. Дидактичні ігри на прикладі геометрії 9 класу.

    курсовая работа [207,2 K], добавлен 05.12.2007

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.