Фармацевтическая химия углеводов

Характеристика углеводов, природные источники и биологическая роль, номенклатура и классификация. Структура и стереохимия моносахаридов, олигосахаридов, полисахаридов; физические свойства и физико-химические методы исследования; углеводы в питании.

Рубрика Медицина
Вид дипломная работа
Язык русский
Дата добавления 21.08.2011
Размер файла 1,4 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Содержание

  • Вступление
  • Глава 1. Характеристика углеводов
    • 1.1 Биологическая роль углеводов
    • 1.2 Классификация углеводов
    • 1.3 Углеводы в питании
    • 1.4 История изучения углеводов
    • 1.5 Современное состояние химии углеводов
  • Глава 2. Структура и стереохимия моносахаридов
    • 2.1 Номенклатура моносахаров и их распостранение в природе
    • 2.2 Строение и конфигурация моносахаридов
    • 2.3 Циклическая структура моносахаридов
    • 2.4 Таутомерия моносахаридов
  • Глава 3. Физические свойства и физико-химические методы исследования моносахаридов
    • 3.1 Агрегатное состояние и растворимость
    • 3.2 Оптическая активность
    • 3.3 Инфракрасные и ультрафиолетовые спектры моносахаридов и их производных
    • 3.4 ЯМР-спектры моносахаридов и их производных
    • 3.5 Масс-спектры моносахаридов и их производных
  • Глава 4. Олигосахариды
    • 4.1 Строение олигосахаридов
    • 4.2 Номенклатура олигосахаридов
    • 4.3 Природные источники олигосахаридов
    • 4.4 Свойства олигосахаридов
  • Глава 5. Полисахариды
    • 5.1 Номенклатура и классификация
    • 5.2 Полисахариды в природе
    • 5.3 Свойства полисахаридов
  • Глава 6. Идентификация, анализ чистоты и количественное определение препаратов углеводов
    • 6.1 Определение подлинности
    • 6.2 Количественное определение
  • Глава 7. Экспериментальная часть
    • 7.1 Методика анализа
    • 7.2 Результаты анализа
  • Выводы
  • Список использованной литературы

Вступление

Углеводы, наряду с жирами и белками, относятся к важнейшим и незаменимым компонентам пищи. Представляют собой органические соединения, состоящие из углерода, водорода и кислорода. Они синтезируются в растениях из воды и углекислого газа, используя энергию солнечного света, или животными в виде гликогена, накапливающегося в мышцах и печени.

Углеводы, вследствие легкодоступности и быстроты усвоения, являются основным источником энергии для организма. Но, несмотря на то, что человеку необходимы большие количества углеводов для обеспечения процессов жизнедеятельности, их резервы в организме невелики. Поэтому их запасы должны постоянно восполняться.

Физиологическое значение углеводов в основном определяется их энергетическими свойствами. Углеводы являются динамогенными поставщиками энергии, используемыми в организме в процессе мышечной деятельности. Каждый грамм углеводов обеспечивает поступление 16,7 кДж (4 ккал). Значение углеводов как источника энергии определяется их способностью окисляться в организме, как аэробным, так и анаэробным путем. Углеводы в наибольшей степени способны удовлетворить потребности организма в энергии и способствовать снижению ацидотических сдвигов. При всех видах физического труда отмечается повышенная потребность в углеводах. Углеводы входят в состав клеток и тканей и в какой-то мере участвуют в пластических процессах.

Несмотря на постоянное расходование клетками и тканями своих углеводов на энергетические цели содержание углеводов в них поддерживается на постоянном уровне при условии достаточного их поступления с пищей.

Некоторые углеводы обладают выраженной биологической активностью, выполняя в организме специализированные функции. К таким углеводам относятся аскорбиновая кислота, обладающая С-витаминными свойствами, гепарин, предотвращающий свертывание крови в сосудах, гиалуроновая кислота, препятствующая проникновению бактерий через клеточную оболочку, олигосахариды женского молока, задерживающие развитие некоторых кишечных бактерий, гетерополисахариды крови, определяющие специфичность групп крови, и др. Углеводы и их метаболиты играют важную роль в синтезе нуклеиновых кислот, аминокислот, гликопротеинов, мукополисахаридов, коэнзимов и других жизненно необходимых веществ.

В организме углеводы депонируются ограниченно и запасы их невелики. Имеющееся в печени углеводное депо характеризуется относительно небольшой емкостью, и для удовлетворения потребностей организма углеводы поступают бесперебойно в составе пищи. Углеводы тесно связаны с обменом жира - при больших физических нагрузках, когда расход энергии не покрывается углеводами пищи и углеводными запасами организма, происходит образование сахара из жира, всегда в достаточном количестве содержащегося в жировых депо организма. Однако чаще наблюдается обратное влияние, т.е. образование новых количеств жира и пополнение ими жировых депо организма за счет избыточного поступления углеводов с пищей.

Избыток углеводов -- широко распространенное явление. Это один из основных факторов в формировании избыточной массы тела.

Углеводы являются основной частью пищевого рациона. За счет углеводов обеспечивается около половины суточной энергетической ценности пищевого рациона, Потребление углеводов составляет 400-500 г/сут. Удовлетворение потребности в углеводах осуществляется за счет растительных источников. B растительных продуктах (зерновые и др.) углеводы составляют не менее 75% сухого вещества. Потребность в углеводах может удовлетворяться и за счет сахара, который представляет собой чистый углевод.

Усвояемость углеводов достаточно высока: в зависимости от пищевого продукта и характера углеводов, она колеблется от 85 до 98%. Так, коэффициент усвояемости углеводов хлебных и крупяных продуктов составляет 94-96, овощей - 85, картофеля -- 95, фруктов и ягод - 90, кондитерских изделий - 95, сахара - 99, молока и молочных продуктов-98. Правильная кулинарная обработка, измельчение и тщательная тепловая обработка повышают усвояемость углеводов и других компонентов пищи.

Значение животных продуктов как источника углеводов невелико. Основным углеводом животного происхождения является гликоген, обладающий свойствами крахмала, содержится в животных тканях в небольшом количестве. Другой углевод лактоза (молочный сахар) - содержится в молоке в количестве 5 г на 100 г. продукта и более. При систематическом потреблении молока, оно может служить источником углеводов, особенно в детском и пожилом возрасте.

Такие углеводы, как глюкоза, аскорбиновая кислота, углеводсодержащие антибиотики, гепарин широко применяют в медицине.

Именно поэтому анализ качества лекарственных препаратов углеводов является весьма актуальной проблемой.

Цель данной работы - осветить вопросы идентификации, методик анализа и количественного определения препаратов углеводов.

В экспериментальной части работы проведен анализ раствора глюкозы для инъекций 5%.

Глава 1. Характеристика углеводов

1.1 Биологическая роль углеводов

Углеводы (сахариды) -- общее название обширного класса природных органических соединений. Название происходит от слов «уголь» и «вода». Причиной этого является то, что первые из известных науке углеводов описывались брутто-формулой Cx(H2O)y, формально являясь соединениями углерода и воды.

С точки зрения химии углеводы являются органическими веществами, содержащими неразветвленную цепь из нескольких атомов углерода, карбонильную группу, а также несколько гидроксильных групп.

Биологическое значение углеводов:

1. Углеводы выполняют структурную функцию, то есть участвуют в построении различных клеточных структур (например, клеточных стенок растений).

2. Углеводы выполняют защитную роль у растений (клеточные стенки, состоящие из клеточных стенок мертвых клеток защитные образования -- шипы, колючки и др.).

3. Углеводы выполняют пластическую функцию -- хранятся в виде запаса питательных веществ, а также входят в состав сложных молекул (например, пентозы (рибоза и дезоксирибоза) участвуют в построении АТФ, ДНК и РНК).

4. Углеводы являются основным энергетическим материалом. При окислении 1 грамма углеводов выделяются 4,1 ккал энергии и 0,4 г воды.

5. Углеводы участвуют в обеспечении осмотического давления и осморегуляции. Так, в крови содержится 100--110 мг/% глюкозы. От концентрации глюкозы зависит осмотическое давление крови.

6. Углеводы выполняют рецепторную функцию -- многие олигосахариды входят в состав воспринимающей части клеточных рецепторов или молекул-лигандов.

В суточном рационе человека и животных преобладают углеводы. Травоядные получают крахмал, клетчатку, сахарозу. Хищники получают гликоген с мясом.

Организмы животных не способны синтезировать углеводы из неорганических веществ. Они получают их от растений с пищей и используют в качестве главного источника энергии, получаемой в процессе окисления:

Сч2Щ)н + чЩ2 > чСЩ2 + нР2Щ + энергия

В зеленых листьях растений углеводы образуются в процессе фотосинтеза -- уникального биологического процесса превращения в сахара неорганических веществ -- оксида углерода (IV) и воды, происходящего при участии хлорофилла за счёт солнечной энергии:

xCO2 + yH2O > Cx(H2O)y + xO2

1.2 Классификация углеводов

Структурно углеводы подразделяются на следующие группы:

Простые углеводы. К ним относят глюкозу, галактозу и фруктозу (моносахариды), а также сахарозу, лактозу и мальтозу (дисахариды).

Глюкоза - главный поставщик энергии для мозга. Она содержится в плодах и ягодах и необходима для снабжения энергией и образования в печени гликогена.

Фруктоза почти не требует для своего усвоения гормона инсулина, что позволяет использовать ее при сахарном диабете, но в умеренных количествах.

Галактоза в продуктах в свободном виде не встречается. Получается при расщеплении лактозы.

Сахароза содержится в сахаре и сладостях. При попадании в организм расщепляется на более составляющие: глюкозу и фруктозу.

Лактоза - углевод, содержащийся в молочных продуктах. При врожденном или приобретенном дефиците фермента лактазы в кишечнике нарушается расщепление лактозы на глюкозу и галактозу, что известно как непереносимость молочных продуктов. В кисломолочных продуктах лактозы меньше, чем в молоке, так как при сквашивании молока из лактозы образуется молочная кислота.

Мальтоза - промежуточный продукт расщепления крахмала пищеварительными ферментами. В дальнейшем мальтоза расщепляется до глюкозы. В свободном виде она содержится в меде, солоде (отсюда второе название - солодовый сахар) и пиве.

Сложные углеводы. К ним относят крахмал и гликоген (перевариваемы углеводы), а также клетчатку, пектины и гемицеллюлозу.

Крахмал - в питании составляет до 80% всех углеводов. Его основные источники: хлеб и хлебобулочные изделия, крупы, бобовые, рис и картофель. Крахмал, относительно медленно переваривается, расщепляясь до глюкозы.

Гликоген, его еще называют «животный крахмал», - полисахарид, который состоит из сильно разветвленных цепочек молекул глюкозы. Он в небольших количествах содержится в животных продуктах (в печени 2-10% и в мышечной ткани - 0,3-1% ).

Клетчатка - это сложный углевод, входящий в состав оболочек растительных клеток. В организме клетчатка практически не переваривается, лишь незначительная часть может подвергнуться под влиянием находящихся в кишечнике микроорганизмов.

Клетчатку, вместе с пектинами, лигнинами и гемицеллюлозой, называют или балластными веществами. Они улучшают работу пищеварительной системы, являясь профилактикой многих заболеваний. Пектины и гемицеллюлоза обладают гигроскопичными свойствами, что позволяет им сорбировать и увлекать с собой избыток холестерина, аммиак, желчные пигменты и другие вредные вещества. Еще одним важным достоинством пищевых волокон является их помощь в профилактике ожирения. Не обладая высокой энергетической ценностью, овощи из-за большого количества пищевых волокон способствуют раннему чувству насыщения.

В большом количестве пищевые волокна содержится в хлебе грубого помола, отрубях, овощах и фруктах.

1.3 Углеводы в питании

Потребность организма в углеводах

Углеводы - это основной и незаменимый источник энергии в организме, они обеспечивают около 60% энергозатрат человека. Потребность в углеводах более всего зависит от возраста, характера и интенсивности труда. Согласно традиционной системе питания, в среднем, взрослый здоровый человек, должен потреблять 300-500 г углеводов в сутки, а в отдельных случаях этот показатель может вырасти до 600-800 г.

Хотя нет официально принятых норм, но при потреблении менее 100 г углеводов возникает риск закисления организма и развития углеводной недостаточности (кетоз), поэтому необходимо не опускаться ниже этой планки.

Также важно чтобы, пищевой рацион человека содержал не менее 25-30 г пищевых волокон, что позволит избежать проблем с перевариванием пищи и утилизацией вредных веществ, образующихся в процессе пищеварения.

Гликемический индекс

Некоторые углеводы (простые) усваиваются организмом практически мгновенно, что приводит к резкому повышению уровня глюкозы в крови, другие (сложные) усваиваются постепенно и не дают резкого повышения уровня сахара в крови. Благодаря замедленному усвоению, употребление продуктов, содержащих такие углеводы, обеспечивает более продолжительное чувство насыщения. Это их свойство используют в диетологии, для похудения.

А чтобы оценить скорость того или иного продукта расщепляться в организме применяют гликемический индекс (ГИ). Этот показатель, определяет с какой скоростью продукт расщепляется в организме и преобразуется в глюкозу. Чем быстрее происходит расщепление продукта, тем выше его гликемический индекс (ГИ). За эталон была взята глюкоза, чей гликемический индекс (ГИ) равен 100. Все остальные показатели сравниваются с гликемическим индексом (ГИ) глюкозы.

Содержание углеводов в продуктах

Пищевые источники углеводов разделяют на группы исходя из количества содержащихся углеводов, а также по скорости их расщепления в организме.

По количеству входящих в состав углеводов, продукты делятся на следующие группы:

Наибольшее количество углеводов (более 65 г на 100 г продукта) содержат следующие продукты: сахар, конфеты, мед, варенье, мармелад, зефир, печенье сдобное, рис, макароны, крупы, финики, изюм, чернослив, сухофрукты.

Большое количество углеводов (40-60 г на 100 г продукта) содержат следующие продукты: хлеб, фасоль, горох, черный шоколад, халва, пирожные, шиповник сушеный, инжир сушеный, ликер.

Средние количества углеводов (20-40 г на 100 г продукта) содержат следующие продукты: хлеб бородинский, бананы, шиповник свежий, соя, фисташки, кокос, белый шоколад.

Малое количество углеводов (менее 20 г на 100 г продукта) содержат следующие продукты: молоко и молочные продукты, овощи, большинство фруктов, бобы, грибы, яичный порошок, орехи.

По скорости расщепления углеводов, продукты делятся на такие группы:

Продукты с высоким ГИ: финики, сахар, картофель печеный, кукурузные хлопья, карамель, картофель-фри, хлебцы пшеничные, пиво, арбуз, воздушный рис, белый хлеб, мед, просо, пюре, кукуруза, изюм, сухофрукты, сладкая вода, мороженное, варенье, патока, чипсы, шоколад молочный, пшено, манная каша, свекла, сухие овсяные завтраки.

Продукты со средним ГИ: хлеб ржаной, овсянка, гамбургеры, макароны, рисовая вермишель, бананы, картофель варенный, манго, попкорн, рис коричневый, овсяное печенье и отруби, гречка, фасоль консервированная, киви, хлеб черный, хлеб с отрубями, грейпфрутовый сок, персики, абрикосы, рис отварной, горошек, виноград, пиво, квас, дыня.

Продукты с низким ГИ: спагетти белые, цитрусовые, овсяные хлопья, земляника, клубника, крыжовник, фруктовые соки, хлеб ячменный, яблоки, горох сухой, груши, йогурты нежирные, сливы, молоко обезжиренное, фасоль, ягоды, чечевица, шоколад черный, вишня, фасоль красная, орехи, соя, кефир.

Дефицит и избыток углеводов в организме

Дефицит углеводов

Хронический дефицит углеводов приводит к истощению запасов гликогена в печени и отложению жира в ее клетках, что может привести к жировому перерождению печени.

Недостаток углеводов приводит к нарушению обмена жиров и белков: организм начинает в качестве источников энергии использовать жиры и белки пищи, а также жировые отложения и мышечную ткань. В крови начинают накапливаться вредные продукты неполного окисления жирных кислот и некоторых аминокислот - кетоны. Избыточное образование кетонов при усиленном окислении жиров и частично белков может привести к смещению внутренней среды организма в кислотную сторону и отравлению тканей мозга вплоть до развития ацидотической комы с потерей сознания.

Распознать сильный дефицит углеводов можно по таким симптомам:

· слабость

· сонливость

· головокружение

· головные боли

· чувство голода

· тошнота

· потливость

· дрожь рук

Эти симптомы быстро проходят после приема сахара. А чтобы не допустить развития подобного состояния, не стоит опускать минимальную планку приема углеводов ниже 100 г в сутки.

Избыток углеводов

Избыток углеводов может приводить к ожирению. Излишки углеводов в пище вызывают повышение уровня инсулина в крови, и способствует образованию жировых запасов. Главная причина этого - резкое повышение уровня глюкозы в крови, что происходит при большом однократном приеме богатой углеводами пищи. Вырабатываемая глюкоза попадает в кровь, а ее излишки организм вынужден «нейтрализовывать» с помощью инсулина, который преобразует глюкозу в жир.

Систематическое чрезмерное употребление сахара и других легкоусвояемых углеводов способствует проявлению скрытого сахарного диабета из-за перегрузки, а затем истощения клеток поджелудочной железы, которая вырабатывает необходимый для усвоения глюкозы инсулин. Подчеркнем, сам сахар и содержащие его продукты не вызывают диабет, а лишь являются факторами риска при имеющемся заболевании.

1.4 История изучения углеводов

Огромное практическое и научное значение углеводов с давних времен привлекало к ним внимание исследователей. У самых истоков цивилизации лежит первое практическое знакомство человека с углеводами. Обработка древесины, изготовление бумаги и хлопчатобумажных и льняных тканей, хлебопечение, брожение -- все эти процессы, известные еще с глубокой древности, непосредственно связаны с переработкой углеводсодержащего сырья. Тростниковый сахар был, по-видимому, первым органическим веществом, полученным человеком в химически чистом виде. Становление химии как науки во второй половине XVIII века неразрывно связано и с первыми работами в области химии углеводов. Вслед за тростниковым сахаром были выделены первые индивидуальные моносахариды -- фруктоза (Ловиц, 1792 г.) и глюкоза (Пру, 1832 г.). В 1811 г. Кирхгоф, работавший в то время в Петербурге, получил глюкозу при обработке крахмала кислотой, проведя таким образом первый химический гидролиз полисахарида, а в 1814 г. провел первый ферментолиз того же полисахарида. Наконец, А.М. Бутлеров в 1861 г. осуществил свой исторический синтез, получив при обработке водного раствора формальдегида известковой водой смесь сахаров (метиленэтан), содержащую и некоторые природные моносахариды.

Однако химия углеводов в современном смысле этого слова возникла, естественно, лишь с развитием основ органической химии, одним из разделов которой она является. Структурная теория дала ключ к пониманию строения углеводов, и уже через 10--15 лет после ее провозглашения Килиани и Эмиль Фишер начинают свои фундаментальные исследования, завершившиеся в 90-х годах прошлого столетия установлением строения простейших углеводов. Решающее влияние на развитие химии углеводов оказали стереохимические представления Вант-Гоффа, причем развитие стереохимии также было неразрывно связано с химией углеводов; экспериментальный материал, почерпнутый из химии углеводов, сыграл очень важную роль в развитии основных положений стереохимической теории.

В первый период развития химии углеводов были заложены основные понятия и принципы этого раздела органической химии, созданы классические аналитические приемы и разработаны генеральные синтетические методы. Характерной особенностью этого периода является тесное и плодотворное взаимодействие химии углеводов с другими разделами бурно развивавшейся органической химии. Химия углеводов заимствует из арсенала органической химии различные реакции деградации, необходимые для установления строения углеводов, и многочисленные синтетические приемы. В свою очередь, достижения химии углеводов стимулировали развитие многих общих разделов органической химии; кроме уже отмеченного выше влияния на развитие стереохимии, можно упомянуть учение о таутомерии, первые шаги химии полимеров и многое другое.

Одним из поворотных моментов в химии сахаров была разработка Хеуорсом в 20-х годах ХХ столетия подходов к изучению структуры полисахаридов, которые были созданы на основе метода метилирования и впервые открыли путь к экспериментальному решению вопроса о строении полисахаридных цепей. Следствием этого было быстрое развитие химии полисахаридов.

Три обстоятельства вызвали в послевоенные годы подлинный переворот в области химии углеводов и обеспечили ее последующий прогресс.

Прежде всего, была осознана исключительная роль биополимеров в жизненных процессах, что, естественно, поставило перед химией углеводов -- важнейших компонентов живой ткани -- новые задачи. Изучение структуры и ее связи с биологической функцией в ряду углеводов вызвало к жизни новые представления и заложило основу новых направлений. Одновременно бурное развитие промышленности полимеров и их использование в технике и повседневной жизни было непосредственно связано с широким изучением практически важных природных полимеров и, прежде всего, с развитием химии и технологии целлюлозы, ее спутников и продуктов ее переработки. Это открыло широкую дорогу исследованиям по химии полисахаридов и потребовало развития многих новых областей химии сахаров.

С другой стороны, развитие теории органической химии и в особенности создание основ конформационного анализа впервые позволило обсуждать реакционную способность молекулы углевода, исходя из строго обоснованных предпосылок. Использование конформационных представлений в химии углеводов совершило подлинную революцию во взглядах на реакционную способность сложной полифункциональной молекулы сахара, и современная химия сахаров обязана этому своими лучшим: достижениями.

Наконец, последнее, столь же важное обстоятельство, оказавшее решающее влияние на развитие современной химии углеводов, состоит во внедрении новой техники эксперимента. Введение аналитической и препаративной хроматографии, электрофоретических методов позволил по-новому поставить работу по разделению и индивидуализации углеводов и решить задачи, которые требовали Раньше поистине титанического труда. Внедрение инфракрасной спектроскопии, а позднее ЯМР-спектроскопии и масс-спектрометрии предоставило в распоряжение исследователя орудия, которые в корне изменили всю работу по установлению строения сложнейших производных углеводов.

1.5 Современное состояние химии углеводов

Современная химия углеводов представляет собой сложный комплекс знаний. Она включает вопросы выделения индивидуальных или максимально очищенных, часто очень лабильных соединений из сложных смесей, изучение их строения химическими, биохимическими, физико-химическими, физическими методами, разработку методов синтеза разнообразных соединений, причем особенно сложным и ответственным является стереохимический контроль синтетических реакций и, наконец, глубокое изучение зависимости свойств углеводов от их строения, что создает основы для технического использования огромных ресурсов углеводсодержащего сырья. Изучение биологических свойств углеводов, их функций в биохимических системах необходимо для познания существа важнейших процессов жизнедеятельности и непосредственно связано с прогрессом современной биохимии и молекулярной биологии.

Класс углеводов включает соединения, очень разнообразные по типу, начиная от низкомолекулярных веществ, содержащих всего несколько атомов углерода, и кончая соединениями с огромным молекулярным весом, достигающим нескольких миллионов. В соответствии с этим и решение отдельных задач, приемы, методы и сама логика исследования могут сильно различаться в зависимости от того, с каким типом углеводов приходится иметь дело. По этой причине при любом изложении основ химии углеводов следует предусмотреть разделение материала в соответствии с целесообразной классификацией. Все углеводы, известные до настоящего времени как природные или синтетические соединения, следует, прежде всего разделить на три больших класса -- моносахариды, олигосахариды и полисахариды. Это деление, хотя и основывается на формальных признаках, имеет глубокий принципиальный и методический смысл.

Под моносахаридами понимают полиоксикарбонильные соединения непрерывной углерод-углеродной цепью, причем наряду с гидроксильными и карбонильными группами они могут содержать также карбоксильные группы, аминогруппы, тиольные группы и др. Моносахариды, таким образом, достаточно разнообразны по своему строению, а следовательно, и по свойствам, но обладают рядом общих признаков в химическом поведении, и это позволяет рассматривать их как один класс углеводов.

Указанное определение относится к моносахаридам в строгом смысле слова. Вместе с тем есть несколько типов соединений, не соответствующих полностью этому определению, но генетически тесно связанных с подлинными моносахаридами. Это, прежде всего продукты восстановления и окисления моносахаридов, лишенные карбонильной группы,-- многоатомные спирты (полиолы) и полиоксикарбоновые одноосновные или двухосновные кислоты. Соединения этих классов лишены основной химической характеристики моносахаридов, которая складывается из сочетания свойств карбонила и цепи углеродных атомов, несущих гидроксильные группы, и поэтому значительно отличаются по свойствам от моносахаридов.

Моносахариды -- низкомолекулярные соединения, и этот раздел химии углеводов является, в сущности, одним из разделов органической химии полифункциональных соединений. Его наиболее характерной чертой является решающее влияние стереохимических различий на реакционную способность, переплетающееся с таутомерными отношениями, которые характерны не только для самих моносахаридов, но и для их многочисленных производных. Для установления строения моносахаридов и их производных, как и других органических соединений, помимо химических применяются и физико-химические методы, хотя последние приобрели серьезное значение в химии моносахаридов лишь в самое недавнее время. Синтетическая химия моносахаридов располагает сейчас большим числом разнообразных методов, позволяющих контролировать не только структуру, но и конфигурацию получаемого соединения. Следует только иметь в виду, что полный синтез моносахаридов не привлекал сколько-нибудь серьезного внимания со стороны исследователей, поскольку синтетические методы химии моносахаридов сводятся главным образом к взаимным переходам различных моносахаридов и их производных друг в друга.

Другим большим разделом химии углеводов является химия полисахаридов. Полисахариды представляют собой полимеры моносахаридов, точнее продукты их поликонденсации, и их молекулы образуют цепи, состоящие из моносахаридных звеньев, связанных друг с другом через атом кислорода. Полисахариды -- типичные высокомолекулярные вещества, и этот раздел химии углеводов по принципиальным и методическим подходам сходен с другими разделами химии полимеров. В частности, уже само понятие индивидуального вещества в данном случае теряет смысл и часто заменяется понятием фракции, содержащей идентичное по строению, но различающееся по молекулярному весу семейство полимергомологов. Это накладывает свой отпечаток на методы выделения и разделения полисахаридов. Далее, понятие структуры полисахарида и методы ее установления также сходны с соответствующими понятиями и методами высокомолекулярной химии.

Установление строения полисахаридов -- исключительно сложная задача, так как полифункциональные мономерные звенья моносахаридов могут соединяться между собой многими способами, и число мыслимых вариантов структуры очень быстро возрастает с увеличением степени полимеризации, достигая уже для относительно низкомолекулярных полисахаридов подлинно астрономических величин. При решении вопроса о структуре полисахарида помимо строения мономера и типа межмономерной связи нужно определять также и последовательность мономеров в цепи (для биополимеров это является центральной задачей), а также их взаимное расположение в пространстве. Последнее обстоятельство следует отметить особо, поскольку физические и биологические свойства полимеров в значительной мере определяются формой их макромолекулы, т. е. вторичной и высшими структурами. Поэтому в химии полисахаридов наряду с обычными органохимическими подходами большое значение приобретают физико-химические методы, применяемые в химии полимеров для выяснения размеров и формы макромолекулы.

Среди всех других классов углеводов именно полисахариды привлекают сейчас наиболее пристальное внимание биохимиков и других специалистов, связанных с проблемами биологии. Это объясняется тем, что структура полисахаридных цепей во многих случаях определяет биологическую специфичность, как, например, в случае полисахаридов микроорганизмов. По этой причине химия полисахаридов тесно связана с химией смешанных биополимеров, имеющих в своем составе полисахаридные цепи наряду с пептидными и липидными фрагментами. Этот новый раздел химии углеводов сейчас бурно развивается, и краткое его рассмотрение также включено в книгу.

Наряду с моносахаридами и полисахаридами имеется еще один промежуточный класс углеводов, получивший название олигосахаридов. Олигосахариды содержат небольшие цепи, состоящие из нескольких моно- сахаридных звеньев, построенные по тому же типу, что и цепи полисахаридов. Естественно, что разделение олигосахаридов и полисахаридов достаточно условно. Обычно соединения, содержащие 2--5 звеньев, принято называть низшими олигосахаридами, а соединения, содержащие от шести до десяти звеньев,-- высшими олигосахаридами, что отличает их от полисахаридов, имеющих большее число моносахаридных звеньев.

Химия олигосахаридов занимает важное место во всем комплексе проблем, связанных с исследованием углеводов. Дело в том, что олигосахариды являются низкомолекулярными соединениями, к которым применимы обычные методы органической химии; в частности, олигосахариды, по крайней мере, их низшие представители, могут быть получены синтетически, а их структура может быть выяснена с полной достоверностью во всех деталях. В то же время олигосахариды несут элемент структуры полисахарида. Они имеют гликозидную связь между моносахаридными звеньями, обладают многими химическими, а подчас и биологическими свойствами, напоминающими полисахариды, и поэтому могут рассматриваться как упрощенные модели полисахаридов. Сочетание этих двух моментов придает большую значимость этой области химии углеводов, характеризует ее своеобразие и оправдывает выделение ее в особый раздел.

Оценивая место отдельных разделов химии углеводов во всей проблеме, следует подчеркнуть особое значение химии моносахаридов. Естественно, что свойства олигомеров и полимеров определяются прежде всего свойствами мономерных звеньев. Поэтому в углеводах изучение химического поведения, зависимости между структурой и физическими, химическими и биологическими свойствами и способов изменения этих свойств путем изменения структуры, прежде всего, связано с развитием химии моносахаридов. Химия моносахаридов является фундаментом для исследования свойств более высокомолекулярных углеводов, а потому этот раздел химии углеводов имеет основополагающее значение и заслуживает наиболее детального рассмотрения в любой работе, посвященной химии углеводов.

Глава 2. Структура и стереохимия моносахаридов

2.1 Номенклатура моносахаров и их распространение в природе

Полиоксикарбонильные соединения -- полиоксиальдегиды или полиоксикетоны называются моносахаридами (название «монозы» в настоящее время употребляется редко). По сравнению с другими классами углеводов моносахариды представляют собой наиболее простой и изученный класс соединений. Более сложные углеводы -- олиго- и полисахариды -- построены из моносахаридов, являющихся мономерами. Поэтому химия моносахаридов имеет для всей химии углеводов основополагающее значение.

В настоящее время известно несколько сотен различных по структуре и стереохимии моносахаридов, которые по характеру входящей в их состав карбонильной группы можно разделить на альдозы, содержащие альдегидную группу, и кетозы, содержащие кетогруппу. По числу углеродных атомов различают триозы, тетрозы, пентозы, гексозы и т. д. Моносахариды, в состав которых входит более шести углеродных атомов, объединяют под общим названием «высшие сахара».

Более детальная классификация моносахаридов, учитывающая одновременно оба признака -- число углеродных атомов и характер карбонильной группы, различает альдопентозы, альдогексозы, кетопентозы (или пентулозы) и т. д.

Первыми стали известны моносахариды состава СnН2nОn, в которых число гидроксильных групп на единицу меньше числа углеродных атомов: СnНn+1O(ОН)n-1. Позднее были открыты моносахариды с меньшим числом гидроксильных групп, получившие название дезоксисахаров.

Обычно моносахариды содержат прямую цепь углеродных атомов, однако существуют также моносахариды с разветвленной цепью, так называемые «разветвленные» сахара.

Кроме карбонильной и гидроксильных групп в молекулу моносахарида могут входить и другие функциональные группы, например карбоксильная или аминогруппа. Моносахариды, содержащие вместо одной или нескольких гидроксильных групп аминогруппы, называют дезоксиаминосахарами или просто аминосахарами. Последнее название, более простое и краткое, используется очень часто, хотя и не является вполне строгим с точки зрения принятой в настоящее время номенклатуры. Моносахариды, в которых наиболее удаленный от карбонильной группы углеродный атом входит в состав карбоксильной группы, называются уроновыми кислотами.

Представители всех перечисленных выше групп моносахаридов найдены в природе. Кроме того, синтетическим путем получены моносахариды, содержащие две карбонильные группы, а также такие, в которых одна или несколько гидроксильных групп заменены на галоген, нитрогруппу, тиольную группу и т. д.

В основу номенклатуры моносахаридов положены моносахариды состава СnН2nОn с прямой цепью углеродных атомов. Для обозначения положения заместителей в молекуле моносахарида принято нумеровать углеродные атомы таким образом, чтобы карбонильный углерод имел наименьший номер. Кислородные, водородные и другие атомы, соединенные с данным углеродным атомом, получают тот же номер. В наименовании производного указывается не только положение заместителя, но и атом, с которым связан заместитель

Одноосновные карбоновые кислоты, соответствующие по структуре альдозам, носят название альдоновых кислот, а дикарбоновые кислоты, образующиеся в результате окисления первого и последнего атомов углеродной цепи в молекуле моносахарида, называются сахарными кислотами.

Будучи чрезвычайно реакционноспособными соединениями, моносахариды редко встречаются в свободном виде. В живом организме они существуют либо в виде своих производных, чаще всего -- в виде эфиров фосфорной кислоты, либо входят в состав более сложных веществ -- гликозидов, олиго- и полисахаридов, гликопротеинов, гликолипидов, нуклеиновых кислот и т. п. Исключение составляют D-глюкоза, найденная в свободном виде в крови млекопитающих, соке растений и в других источниках, и некоторые кетозы.

Из моносахаридов наиболее широко распространены в природе пентозы и гексозы, среди которых первое место, безусловно, занимает D-глюкоза. Она является необходимым компонентом любых живых организмов -- от вирусов до высших растений и позвоночных, и входит в состав самых различных соединений, начиная с сахарозы, целлюлозы и крахмала и кончая некоторыми гликопротеинами и вирусной рибонуклеиновой кислотой. Весьма часто встречаются, хотя и не имеют столь универсального распространения, такие пентозы, как L-арабиноза и D-ксилоза, входящие в состав ряда полисахаридов и гликозидов, и гексозы -- D-галактоза и D-манноза, являющиеся компонентами многих полисахаридов растительного, животного или бактериального происхождения. Галактоза найдена также в гликолипидах мозга, олигосахаридах молока, ряде важных гликопротеинов. Специфическую биологическую роль выполняют D-рибоза и 2-дезокси-D-рибоза -- вещества, из которых построена полимерная цепь рибонуклеиновых и дезоксирибонуклеиновых кислот.

Производные моносахаридов активно участвуют в метаболизме живой клетки. С их многообразными превращениями связаны фотосинтез, обеспечение клетки энергией, детоксикация и вывод ядовитых веществ, проникающих извне или возникающих в ходе метаболизма, биосинтез ароматических аминокислот -- тирозина и фенилаланина, а также ряда других ароматических соединений, образование сложных биополимеров (полисахаридов, гликопротеинов, гликолипидов, нуклеиновых кислот), которые играют главную роль в построении субклеточных структур, обеспечивающих правильное функционирование клетки.

2.2 Строение и конфигурация моносахаридов

Центральное место в химии моносахаридов занимают альдогексозы, альдопентозы и кетогексозы. Их строение в общем виде может быть изображено формулами I, V и VI:

Из рассмотрения структурных формул моносахаридов видно, что последние содержат большое число асимметрических атомов углерода. Как известно, для соединения имеющего п асимметрических атомов, число стереоизомеров составляет 2n Таким образом, для альдогексоз, имеющих строение I, должно существовать 24 стереоизомеров, а для альдопентоз V и кетогексоз VI--23 стереоизомеров. Отсюда ясно, насколько важны стереохимические различия отдельных моносахаридов, от которых, в первую очередь, и зависят различия в их свойствах.

Уже в 80-е годы XIX века стало известно достаточно много моносахаридов и возникла задача определения их конфигурации.

Начало этой работе было положено Э. Фишером, определившим в 1891 г. конфигурации D-глюкозы, D-маннозы и D-фруктозы.

Глюкоза Манноза Фруктоза

Таким образом, исследования Э. Фишера позволили определить относительную конфигурацию глюкозы, маннозы, фруктозы и арабинозы. Вскоре аналогичным путем были установлены относительные конфигурации остальных пентоз и гексоз, что создало фундамент для развития химии углеводов. Работы Э. Фишера имели и более общее значение. В результате этих работ впервые в истории органической химии были созданы экспериментальные методы определения конфигураций, а стереохимическая гипотеза Вант-Гоффа получила наглядное и весьма сильное подтверждение, что дало новый мощный стимул для развития стереохимии органических соединений в целом.

2.3 Циклическая структура моносахаридов

Ациклические формулы не согласуются с рядом химических свойств моносахаридов. Прежде всего, карбонильная группа в моносахаридах не дает некоторых альдегидных реакций, например окрашивания с обычным образом приготовленным реагентом Шиффа (раствор фуксинсернистой кислоты). Полные ацетаты cахаров вообще не проявляют никаких альдегидных свойств.

Одна из гидроксильных групп в молекуле моносахарида проявляет особые свойства. Так, при нагревании глюкозы с 3%-ным раствором хлористого водорода в метаноле образуется смесь двух изомерных веществ -- метилглюкозидов, содержащих одну метоксильную группу. Как известно, обычные спирты в столь мягких условиях простых эфиров не образуют. Метилглюкозиды не проявляют никаких альдегидных свойств, но, имея только одну метоксильную группу, не могут быть обычными ацеталями.

Наконец, и это самое важное, глюкоза и другие моносахариды, а также уже упомянутые метилглюкозиды и полные ацетаты моносахаридов, существуют в двух стереоизомерных формах (б- и в-изомеры). Таким образом, общее число изомерных моносахаридов и их производных оказывается вдвое больше, чем это предсказывает стереохимическая теория, исходя из числа асимметрических углеродных атомов. Это свидетельствует о наличии в молекулах моносахаридов дополнительного асимметрического центра.

Полуацетальная (или, иначе, лактольная) циклическая формула позволяет объяснить все перечисленные выше факты.

Неспособность моносахаридов вступать в некоторые реакции, характерные для альдегидной группы, можно отнести за счет того, что последняя в свободном виде в моносахариде отсутствует. Гидроксильная группа у С1 (в кетозах -- у С2) в циклической форме находится в особом положении: единственная из всех гидроксильных групп она соединена с углеродным атомом, при котором имеется другой кислородный заместитель, и представляет собой гидроксильную группу полуацеталя. Углеродный атом, с которым связан полуацетальный гидроксил (иначе называемый гликозидным гидроксилом), получил название гликозидного (или аномерного) центра. Высокая реакционная способность полуацетального гидроксила объясняется, с современной точки зрения, стабилизацией образующегося при его отщеплении карбониевого иона за счет свободной пары электронов соседнего кислородного атома.

Отсутствие альдегидных реакций у гликозидов и полных ацетатов объясняется замещением полуацетального гидроксила которое исключает возможность превращения полуацетальной формы в альдегидную.

Наконец, понятно, что при замыкании цикла карбонильный углеродный атом, связанный теперь с четырьмя различными заместителями, становится асимметрическим; это приводит к удвоению числа стереоизомерных альдоз и их производных.

После надежного доказательства циклической структуры производных моносахаридов Хеуорс внес дополнения в номенклатуру моносахаридов. По его предложению моносахариды, содержащие шестичленный тетрагндропирановый цикл, стали называть пиранозами, их гликозиды -- пиранозидами, а моносахариды и их гликозиды с пятичленным тетрагидрофурановым циклом -- фуранозами и фуранозидами.

Хеуорс пересмотрел также способ написания формул моносахаридов. Формулы Э. Фишера при всех их достоинствах плохо отражают реальную форму молекул моносахаридов и громоздки. Хеуорс предложил свои так называемые «перспективные» формулы. Согласно его предложению, циклическую молекулу моносахарида условно считают плоской. Для изображения на бумаге ее мысленно располагают таким образом, чтобы кислородный атом пиранозного кольца находился на наибольшем расстоянии от глаза наблюдателя справа (у фуранозного кольца -- посередине), а углеродная цепь была бы обращена выпуклой стороной к наблюдателю. Затем расположенную таким образом молекулу изображают по законам перспективы, как это представлено ниже, причем обычно часть молекулы, приближенную к наблюдателю, показывают жирной линией.

Заместители помещают сверху или снизу от плоскости молекулы в зависимости от конфигурации соответствующего углеродного атома.

2.4 Таутомерия моносахаридов

Как говорилось выше, химические свойства сахаров не могут быть полностью объяснены, если для них принять строение полиоксикарбонильных соединений. Однако и циклические полуацетальные формулы Колли-Толленса, устраняющие ряд противоречий, неудовлетворительны, поскольку они не объясняют альдегидных свойств моносахаридов и их способности давать ациклические производные, например, присоединять синильную кислоту с образованием оксинитрилов, давать тиоацетали и т. д. Это привело к заключению, что моносахариды, способны к таутомерным превращениям:

Подобные таутомерные превращения известны под названием кольчато-цепной таутомерии. Моносахариды в зависимости от условий реакции и примененных реагентов реагируют в одной из таутомерных форм: пиранозной, фуранозной или ациклической. Сахара были исторически одними из первых веществ, для которых наблюдалось явление таутомерии. Понятие о кольчато-цепной таутомерии возникло при рассмотрении свойств моносахаридов, и лишь позднее это явление было обнаружено для более простых г- и д-оксикарбонильных соединений.

Существование таутомерии для моносахаридов подтверждено экспериментально путем исследования их оптической активности, а в последнее время также с помощью ЯМР- и ИК-спектроскопии.

Еще в 1846 г. Дюбрюнфо обнаружил, что удельное вращение раствора глюкозы изменяется во времени, пока не достигнет некоторого постоянного значения. Это явление, наблюдающееся также и для всех других моносахаридов, получило название мутаротации. Мутаротация связана с взаимными превращениями таутомерных форм моносахарида и установлением равновесия между ними. Положение равновесия зависит от структуры и стереохимии моносахарида, но не зависит от того, из какой таутомерной формы данного сахара мы исходим. Так, свежеприготовленные водные растворы а- и р-D-глюкозы имеют удельное вращение [a]D+106° и +22,5° соответственно. С течением времени удельное вращение первого падает, а второго возрастает, в обоих случаях достигая постоянного значения +52,5°.

Если исходить из приведенной выше схемы равновесного взаимопревращения пяти различных форм, то скорость мутаротации должна выражаться весьма сложным уравнением. Однако для многих моносахаридов (например, для D-глюкозы и D-ксилозы) скорость мутаротации подчиняется уравнению обратимой реакции первого порядка, что соответствует равновесию только между двумя таутомерными формами соединения. Прочие таутомеры присутствуют в этих случаях в очень низкой концентрации.

Скорость мутаротации возрастает как в присутствии кислот, так и в присутствии оснований. Считается, что стадией, определяющей скорость процесса, является промежуточное образование открытой формы:

Скорость мутаротации некоторых cахаров (например, D-галактозы, D-рибозы и всех кетоз) не подчиняется уравнению первого порядка. Это является результатом того, что в растворе в заметных концентрациях присутствует более двух таутомерных форм вещества. Кроме пиранозной формы в этих случаях в растворе должна находиться также фуранозная или ациклическая форма, или обе формы вместе.

Способов, позволяющих экспериментально показать присутствие в растворах ациклической формы, в настоящее время не существует. Ни инфракрасные, ни ультрафиолетовые спектры моносахаридов не содержат характерных для карбонильной группы максимумов поглощения. Это может объясняться гидратацией карбонильной функции ациклической формы, которая к тому же присутствует в растворе в очень низкой концентрации.

Долгое время считали, что содержание ациклической формы может быть определено полярографически и объясняли различие в скоростях полярографического восстановления моносахаридов присутствием в равновесной смеси различных количеств альдегидной формы. (Эти концентрации даже были вычислены.) Однако позднее показано, что в действительности нельзя связывать скорость полярографического восстановления моносахаридов с концентрацией альдегидной формы в их водных растворах.

Глава 3. Физические свойства и физико-химические методы исследования моносахаридов

3.1 Агрегатное состояние и растворимость

Агрегатное состояние и растворимость моносахаридов и их производных определяются, в первую очередь, наличием в их молекулах большого числа сильнополярных гидроксильных групп, способных к образованию водородных связей. Поэтому подавляющее большинство моносахаридов представляет собой нелетучие вещества, легко растворимые в воде, диметилформамиде или диметилсульфоксиде, умеренно растворимые в низших спиртах, пиридине и уксусной кислоте и практически нерастворимые в таких обычных органических растворителях, как эфир, бензол, хлороформ, диоксан, тетрагидрофуран, этилацетат и т. д. Однако производные моносахаридов, в которых гидроксильные группы замещены (метиловые эфиры, ацетаты, триметилсилилпроизводные, некоторые алкилиденовые производные), достаточно летучи, и их можно очищать перегонкой или возгонкой в вакууме. Для анализа этих производных может быть применена газо-жидкостная хроматография.

Молекулы моносахаридов в растворах сильно сольватированы вследствие диполь-дипольного взаимодействия и межмолекулярных водородных связей с растворителем, что часто ведет к образованию вязких «сиропов». Ориентация молекул в вязких растворах затруднена, поэтому образование зародышей кристаллов и, следовательно, весь процесс кристаллизации сильно замедляется или кристаллизация вовсе не идет. Другим затруднением при кристаллизации моносахаридов является их способность к образованию нескольких таутомерных форм. Поскольку примеси препятствуют кристаллизации, вещества, склонные к таутомерным превращениям, обычно кристаллизуются с трудом, так как по отношению к данному таутомеру остальные играют роль примесей. Кроме того, установление таутомерного равновесия ведет к снижению концентрации таутомера, способного кристаллизоваться, что весьма существенно. По-видимому, быстрым установлением таутомерного равновесия можно объяснить, почему сахара часто хорошо кристаллизуются из уксусной кислоты.

По этим причинам для кристаллизации моносахаридов и их производных разработан ряд специальных приемов, благодаря которым в настоящее время значительная часть моносахаридов получена в кристаллическом состоянии. В ряде случаев моносахариды образуют кристаллогидраты и кристаллические соединения с неорганическими солями, например с хлористым кальцием.


Подобные документы

  • Общая характеристика полезных свойств правильного рационального питания. Химические элементы, входящие в состав пищевых веществ. Биологическая ценность белков и углеводов для организма человека, их состав и классификация. Состав и полезные свойства жиров.

    реферат [20,6 K], добавлен 09.07.2010

  • Понятие природных флавоноидов, их классификация и типы: окисленные и восстановленные. Физико-химические свойства, методы выделения и идентификации, направления исследования данных соединений. Заготовка сырья, его сушка, хранение, растительные источники.

    курсовая работа [54,5 K], добавлен 09.10.2014

  • Нарушение расщепления и всасывания углеводов. Врожденная недостаточность лактазы. Основные типы регуляции углеводного обмена. Этиопатогенез, основные причины и признаки сахарного диабета, хронические осложнения. Гипергликемические состояния у человека.

    лекция [24,7 K], добавлен 13.04.2009

  • Углеводы, их роль в биологических процессах живых организмов и человека. Характерные признаки фруктоземии. Мальтазная и изомальтазная недостаточность. Болезни, связанные с нарушением выработки ферментов. Наследственная непереносимость фруктозы, лактозы.

    презентация [13,3 M], добавлен 03.12.2014

  • Общая характеристика парацетамола. Применение парацетамола, его лекарственные формы и степень токсичности. Особенности синтеза парацетамола, его фармацевтическая химия. Установление подлинности парацетамола. Количественное определение препарата.

    курсовая работа [496,6 K], добавлен 30.11.2014

  • Физические свойства глюкозы. Основные пищевые продукты, насыщенные углеводами. Правильное соотношение углеводов, жиров и белков как основа здорового питания. Поддержание уровня глюкозы в крови, иммунной функции. Повышение содержания инсулина в крови.

    презентация [2,1 M], добавлен 15.02.2014

  • Классификация и распространение углеводов, их значение для жизнедеятельности человека. Использование рефрактометрии в анализе глюкозы. Анализ глюкозы как альдегидоспирта, влияние щелочей, окислителей и кислот на препараты. Стабилизация растворов глюкозы.

    курсовая работа [690,1 K], добавлен 13.02.2010

  • Стероидные гормоны - группа физиологически активных веществ, регулирующих процессы жизнедеятельности у животных и человека: группы, физико-химические свойства, функции, синтез. Определение подлинности препаратов, их использование в медицинской практике.

    дипломная работа [9,1 M], добавлен 25.03.2011

  • Предмет и объект фармацевтической химии, ее связь с другими дисциплинами. Современные наименования и классификация лекарственных средств. Структура управления и основные направления фармацевтической науки. Современные проблемы фармацевтической химии.

    реферат [54,6 K], добавлен 19.09.2010

  • Понятие и история открытия барбитуратов. Применение барбитуратов в медицине, их физиологические эффекты. Фармацевтическая химия производных барбитуровой кислоты. Особенности хранения барбитуратов. Описание и фармакологические свойства таблетки Барбамил.

    курсовая работа [2,6 M], добавлен 19.05.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.