Использование мультимедийной и интерактивной техники при обучении информатике учащихся основной школы

Курс информатики и особенности использования мультимедийной и интерактивной техники и программного обеспечения в школе, разработка методов обучения, создание учебного материала. Экспериментальная проверка эффективности применения разработанной методики.

Рубрика Педагогика
Вид дипломная работа
Язык русский
Дата добавления 23.04.2011
Размер файла 1,6 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

ДИПЛОМНАЯ РАБОТА

По теме: «Использование мультимедийной и интерактивной техники при обучении информатике учащихся основной школы»

Содержание

Введение

Глава 1. Курс информатики и особенности использования мультимедийной и интерактивной техники в школе

1.1 Особенности обучения информатике

1.2 Мультимедийная и интерактивная техника

1.3 Мультимедийное программное обеспечение

1.4 Особенности использования мультимедийной и интерактивной техники в обучении

Глава 2. Методика обучения информатике в основной школе с применением мультимедийной и интерактивной техники

2.1 Отбор содержания обучения разделу «Аппаратные и программные средства ИКТ» курса информатики

2.2 Создание учебного материала для проведения уроков информатики с помощью мультимедийной и интерактивной техники

2.3 Разработка методов обучения информатике школьников с использованием мультимедийной и интерактивной техники

2.4 Экспериментальная проверка эффективности применения разработанной методики

Заключение

Библиография

Введение

Актуальность проблемы.

В современном мире для любой организации, в том числе и школы уже недостаточно просто приобрести проектор или экран. Мы живем в эру информатизации. Одним из направлений которой становится процесс информатизации образования. Предполагающий использование возможностей применения мультимедийной и интерактивной техники, методов и средств информатики для активизации процессов развития наглядно-действенного, наглядно-образного, теоретического типов мышления; для развития творческого, интеллектуального потенциала обучаемого. Способностей к коммуникативным действиям; для интенсификации всех уровней учебно-воспитательного процесса, повышения его эффективности и качества. Поэтому компьютер является центральной фигурой в данном процессе. А также дополнительное оборудование, которое помогает перевести обучение на новый уровень. Всему этому способствует внедрение в учебный процесс не только компьютеров, но и мультимедийной и интерактивной техники, такой например, как: мультимедийные проекторы и интерактивные доски.

В соответствии с приоритетным проектом развития образования в школах стали появляться интерактивные доски, мультимедийные проекторы и т.д. Таким образом, применение их на уроке информатики и ИКТ не является сегодня экзотикой, и, наверное, впервые техническое оборудование школ в целом и кабинета информатики в частности, осуществляется быстрее, чем дидактическое сопровождение этого процесса.

В современной школе применение информационно-коммутационных технологий (ИКТ) на уроке становится очень распространенным явлением. И правильное использование в учебном процессе компьютера, который является наивысшим техническим средством обучения, позволяет осуществлять учебный процесс в новых условиях, когда учитель перестает быть единственным источником информации для учащихся. В этом учителю помогает новое современное техническое средство - интерактивная доска, которая сменила меловую и маркерную доски.

Появилась возможность использовать мультимедийную и интерактивную технику на уроках информатики и ИКТ, но уровень и качество использования говорят о необходимости дальнейшего исследования проблемы. В настоящее время большинством педагогов не выяснен смысл понятий, связанных с мультимедиа, не говоря уже о четко выстроенной технологии. Актуальным является продолжение обсуждения данной проблемы использования мультимедийной и интерактивной техники на уроках информатики и ИКТ. Таким образом, стоит отметить необходимость и новизну написания работ по данной тематике.

Цель дипломной работы: разработать методы обучения информатике и ИКТ с использованием мультимедийной и интерактивной техники.

Объект исследования: система обучения информатике и ИКТ учащихся основной школы.

Предмет исследования: методы обучения информатике и ИКТ с использованием мультимедийной и интерактивной техники.

Гипотеза исследования: внедрение и разработка методов использования мультимедийной и интерактивной техники в процессе обучения учащихся основной школы на уроках информатики и ИКТ способствует повышению активности учащихся на уроках и, как следствие, повышению эффективности обучения информатике.

В ходе выполнения дипломной работы были поставлены следующие задачи:

· проанализировать научную литературу по теме дипломной работы;

· отобрать содержание обучения разделу «Аппаратные и программные средства ИКТ» курса информатики;

· разработать учебный материал для проведения уроков информатики в условиях использования мультимедийной и интерактивной техники;

· разработать методы обучения информатике школьников,предусматривающие использование мультимедийной и интерактивной техники;

· экспериментально проверить разработанную систему обучения.

В ходе написания дипломной работы были использованы следующие методы:

· анализ научной литературы;

· разработка материалов по теме дипломного проекта;

· проведение эксперимента.

Новизна дипломной работы состоит в рассмотрении мультимедийной и интерактивной техники в качестве средства обучения информатике, в обосновании возможности ее использования в учебном процессе, в разработке новых методов обучения информатике и ИКТ.

Практическая значимость работы состоит в том, что в работе рассмотрены преимущества использования мультимедийной и интерактивной техники, выступающих в качестве средств, позволяющих использовать мультимедийные учебные презентации и интерактивные учебные пособия для объяснения нового учебного материала, закрепления знаний по информатике и ИКТ в рамках обучения разделу «Аппаратные и программные средства ИКТ». В ходе исследования усовершенствована система обучения информатике и ИКТ с использованием мультимедийной и интерактивной техники, что было выражено в:

· создании учебного материала для проведения уроков информатики с помощью мультимедийной и интерактивной техники;

· разработке методов обучения информатике с помощью мультимедийной и интерактивной техники.

Глава 1. Курс информатики и особенности использования мультимедийной и интерактивной техники в школе

Классические символы школьной жизни - доска и мел - безнадежно устаревают. На смену им приходят высокотехнологичные интерактивные доски. Использование интерактивной доски на уроке - это не только возможность увлечь школьников интересным материалом, но и самому учителю по-новому взглянуть на свой предмет.

Данное новшество прогресса позволяет, превратить порой скучный процесс обучения в интересное исследование. Мультимедийная и интерактивная техника способна преобразить любой учебный процесс, но не стоит забывать, что все хорошо в меру.

Формирование информационной культуры закладывается в школе в результате изучения новых направлений информатики. К этим направлениям относятся: телекоммуникации, локальные и глобальные сети, распределенные вычисления и базы данных, мультимедиа и гипермедиа технологии. Внедрение новых технологий требует постоянного обновления идей и содержания школьного образования, а также подготовки новых педагогических кадров, способных детально изучать и внедрять эти технологии в образование. Постановка проблемы и начальные этапы ее реализации были осуществлены в восьмидесятых годах двадцатого века А.П. Ершовым, Б.С. Гершунским, Е.И. Машбиц, Н.Ф. Талызиной и другими учеными. Тем не менее, вопросы применения мультимедийных технологий в процессе обучения остаются открытыми. Использование мультимедийных технологий в обучении подразумевает, что выпускники общеобразовательных школ должны владеть механизмами поиска, анализа и сбора информации, должны уметь зрительно воспринимать выражение идей, понятий, процессов и уметь выражать свои идеи через использование различных видов информации. Мультимедийные технологии, которые соединяют в себе и возможность одновременного получения образа объекта, процесса в различных информационных представлениях: графика, звук, видео, и реализации динамизма движения, преобразования объектов в виде анимации, что повышает эффективность обучения.

При этом возникают трудности внедрения интерактивных мультимедийных технологий в процесс обучения: учителям приходится работать с программным обеспечением, созданным инженерами для всеобщего использования. Как правило, оно не учитывает ни психолого-педагогических, ни методических, ни организационных особенностей учебного процесса, не поддерживает школьных стандартов, не связано с учебными и рабочими планами. Учителям для использования мультимедийных технологий самим приходится адаптировать их для интеграции в учебный процесс.

Работа с интерактивной доской предусматривает простое, но творческое использование материалов. Файлы или страницы можно подготовить заранее и привязать их к другим ресурсам, которые будут доступны на занятии, этого можно добиться на уроках информатики и ИКТ. Преподаватели говорят, что подготовка к уроку на основе одного главного файла помогает планировать и благоприятствует течению занятия.

При использовании интерактивной доски значительно повышается эффективность урока за счет инновационной наглядности изучаемого материала; возможности показа сложных процессов и объектов в динамике их виртуального изменения; повышение интереса и учебной мотивации, учащихся к изучению учебного предмета в частности информатики и ИКТ.

1.1 Особенности обучения информатике

Говоря о преподавании информатики, следует первоначально изучить нормативную документацию, а именно стандарты образования.

В данном документе идет речь не только о перечне необходимых ЗУН учащихся, но и о возможном техническом оснащении уроков информатики. Например, использование в преподавании курса «Информатики и ИКТ» специальных технических средств и новейшего оборудования, таких как интерактивные доски и мультимедийные проекторы.

СТАНДАРТ ОСНОВНОГО ОБЩЕГО ОБРАЗОВАНИЯ ПО ИНФОРМАТИКЕ И ИКТ:

Изучение информатики и информационно-коммуникационных технологий на ступени основного общего образования направлено на достижение следующих целей:

* освоение знаний, составляющих основу научных представлений об информации, информационных процессах, системах, технологиях и моделях;

* овладение умениями работать с различными видами информации с помощью компьютера и других средств информационных и коммуникационных технологий (ИКТ), организовывать собственную информационную деятельность и планировать ее результаты;

* развитие познавательных интересов, интеллектуальных и творческих способностей средствами ИКТ;

* воспитание ответственного отношения к информации с учетом правовых и этических аспектов ее распространения; избирательного отношения к полученной информации;

* выработка навыков применения средств ИКТ в повседневной жизни, при выполнении индивидуальных и коллективных проектов, в учебной деятельности, при дальнейшем освоении профессий, востребованных на рынке труда.

ОБЯЗАТЕЛЬНЫЙ МИНИМУМ СОДЕРЖАНИЯ ОСНОВНЫХ ОБРАЗОВАТЕЛЬНЫХ ПРОГРАММ ИНФОРМАЦИОННЫЕ ПРОЦЕССЫ.

Представление информации. Информация, информационные объекты различных видов. Язык как способ представления информации: естественные и формальные языки. Формализация описания реальных объектов и процессов, примеры моделирования объектов и процессов, в том числе - компьютерного. Информационные процессы: хранение, передача и обработка информации. Дискретная форма представления информации. Единицы измерения информации. Управление, обратная связь. Основные этапы развития средств информационных технологий.

Передача информации. Процесс передачи информации, источник и приемник информации, сигнал, кодирование и декодирование, искажение информации при передаче, скорость передачи информации.

Обработка информации. Алгоритм, свойства алгоритмов. Способы записи алгоритмов; блок-схемы. Алгоритмические конструкции. Логические значения, операции, выражения. Разбиение задачи на подзадачи, вспомогательный алгоритм. Обрабатываемые объекты: цепочки символов, числа, списки, деревья, графы. Восприятие, запоминание и преобразование сигналов живыми организмами.

Компьютер как универсальное устройство обработки информации. Основные компоненты компьютера и их функции. Программный принцип работы компьютера. Командное взаимодействие пользователя с компьютером, графический интерфейс пользователя. Программное обеспечение, его структура. Программное обеспечение общего назначения. Представление о программировании.

Информационные процессы в обществе. Информационные ресурсы общества, образовательные информационные ресурсы. Личная информация, информационная безопасность, информационные этика и право.

ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ.

Основные устройства ИКТ. Соединение блоков и устройств компьютера, других средств ИКТ, простейшие операции по управлению (включение и выключение, понимание сигналов о готовности и неполадке и т. д.), использование различных носителей информации, расходных материалов. Гигиенические, эргономические и технические условия безопасной эксплуатации средств ИКТ.

Оперирование компьютерными информационными объектами в наглядно-графической форме (графический пользовательский интерфейс). Создание, именование, сохранение, удаление объектов, организация их семейств. Архивирование и разархивирование. Защита информации от компьютерных вирусов.

Оценка количественных параметров информационных объектов и процессов: объем памяти, необходимый для хранения объектов, скорость передачи и обработки объектов, стоимость информационных продуктов, услуг связи.

Образовательные области приоритетного освоения: информатика и информационные технологии, материальные технологии, обществознание (экономика).

Запись средствами ИКТ информации об объектах и процессах окружающего мира (природных, культурно-исторических, школьной жизни, индивидуальной и семейной истории):

- запись изображений и звука с использованием различных устройств (цифровых фотоаппаратов и микроскопов, видеокамер, сканеров, магнитофонов);

- текстов, (в том числе с использованием сканера и программ распознавания, расшифровки устной речи);

- музыки (в том числе с использованием музыкальной клавиатуры);

- таблиц результатов измерений (в том числе с использованием присоединяемых к компьютеру датчиков) и опросов.

Создание и обработка информационных объектов. Тексты. Создание текста посредством квалифицированного клавиатурного письма с использованием базовых средств текстовых редакторов. Работа с фрагментами текста. Страница. Абзацы, ссылки, заголовки, оглавления. Выделение изменений. Проверка правописания, словари. Включение в текст, списков, таблиц, изображений, диаграмм, формул. Печать текста. Планирование работы над текстом. Примеры деловой переписки, учебной публикации (доклад, реферат).

Образовательные области приоритетного освоения: информатика и информационные технологии, обществоведение, естественнонаучные дисциплины, филология, искусство.

Базы данных. Поиск данных в готовой базе. Создание записей в базе данных.

Образовательные области приоритетного освоения: информатика и информационные технологии, обществознание (экономика и право).

Рисунки и фотографии. Ввод изображений с помощью инструментов графического редактора, сканера, графического планшета, использование готовых графических объектов. Геометрические и стилевые преобразования. Использование примитивов и шаблонов.

Звуки, и видеоизображения. Композиция и монтаж. Использование простых анимационных графических объектов.

Образовательные области приоритетного освоения: языки, искусство; проектная деятельность в различных предметных областях.

Поиск информации. Компьютерные энциклопедии и справочники; информация в компьютерных сетях, некомпьютерных источниках информации. Компьютерные и некомпьютерные каталоги; поисковые машины; формулирование запросов.

Образовательные области приоритетного освоения: обществоведение, естественнонаучные дисциплины, языки.

Проектирование и моделирование. Чертежи. Двумерная и трехмерная графика. Использование стандартных графических объектов и конструирование графических объектов: выделение, объединение, геометрические преобразования фрагментов и компонентов. Диаграммы, планы, карты.

Простейшие управляемые компьютерные модели. Образовательные области приоритетного освоения: черчение, материальные технологии, искусство, география, естественнонаучные дисциплины.

Математические инструменты, динамические (электронные) таблицы.

Таблица как средство моделирования. Ввод данных в готовую таблицу, изменение данных, переход к графическому представлению. Ввод математических формул и вычисление по ним, представление формульной зависимости на графике.

Образовательные области приоритетного освоения: информатика и информационные технологии, естественнонаучные дисциплины, обществоведение (экономика).

Организация информационной среды.

Создание и обработка комплексных информационных объектов в виде печатного текста, веб-страницы, презентации с использованием шаблонов.

Организация информации в среде коллективного использования информационных ресурсов.

Электронная почта как средство связи. Правила переписки, приложения к письмам, отправка и получение сообщения. Сохранение для индивидуального использования информационных объектов из компьютерных сетей (в том числе Интернета) и ссылок на них. Примеры организации коллективного взаимодействия: форум, телеконференция, чат.

Образовательные области приоритетного освоения: информатика и информационные технологии, языки, обществоведение, естественнонаучные дисциплины.

ТРЕБОВАНИЯ К УРОВНЮ ПОДГОТОВКИ ВЫПУСКНИКОВ.

В результате изучения информатики и информационно-коммуникационных технологий ученик должен знать/понимать:

* виды информационных процессов; примеры источников и приемников информации;

* единицы измерения количества и скорости передачи информации; принцип дискретного (цифрового) представления информации;

* основные свойства алгоритма, типы алгоритмических конструкций: следование, ветвление, цикл; понятие вспомогательного алгоритма;

* программный принцип работы компьютера;

* назначение и функции используемых информационных и коммуникационных технологий;уметь

* выполнять базовые операции над объектами: цепочками символов, числами, списками, деревьями; проверять свойства этих объектов; выполнять и строить простые алгоритмы;

* оперировать информационными объектами, используя графический интерфейс: открывать, именовать, сохранять объекты, архивировать и разархивировать информацию, пользоваться меню и окнами, справочной системой; предпринимать меры антивирусной безопасности;

* оценивать числовые параметры информационных объектов и процессов: объем памяти, необходимый для хранения информации; скорость передачи информации;

* создавать информационные объекты, в том числе:

- структурировать текст, используя нумерацию страниц, списки, ссылки, оглавления; проводить проверку правописания; использовать в тексте таблицы, изображения;

- создавать и использовать различные формы представления информации: формулы, графики, диаграммы, таблицы (в том числе динамические, электронные, в частности - в практических задачах), переходить от одного представления данных к другому;

- создавать рисунки, чертежи, графические представления реального объекта, в частности, в процессе проектирования с использованием основных операций графических редакторов, учебных систем автоматизированного проектирования; осуществлять простейшую обработку цифровых изображений;

- создавать записи в базе данных;

- создавать презентации на основе шаблонов;

* искать информацию с применением правил поиска (построения запросов) в базах данных, компьютерных сетях, некомпьютерных источниках информации (справочниках и словарях, каталогах, библиотеках) при выполнении заданий и проектов по различным учебным дисциплинам;

* пользоваться персональным компьютером и его периферийным оборудованием (принтером, сканером, модемом, мультимедийным проектором, цифровой камерой, цифровым датчиком); следовать требованиям техники безопасности, гигиены, эргономики и ресурсосбережения при работе со средствами информационных и коммуникационных технологий;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

* создания простейших моделей объектов и процессов в виде изображений и чертежей, динамических (электронных) таблиц, программ (в том числе в форме блок-схем);

* проведения компьютерных экспериментов с использованием готовых моделей объектов и процессов;

* создания информационных объектов, в том числе для оформления результатов учебной работы;

* организации индивидуального информационного пространства, создания личных коллекций информационных объектов;

* передачи информации по телекоммуникационным каналам в учебной и личной переписке, использования информационных ресурсов общества с соблюдением соответствующих правовых и этических норм.

Школьный учебный предмет информатики не может включать всего того многообразия сведений, которые составляют содержание активно развивающейся науки информатики. В то же время школьный предмет, выполняя общеобразовательные функции должен отражать в себе наиболее общезначимые, фундаментальные понятия и сведения, раскрывающие существо науки, вооружать учащихся знаниями, умениями, навыками, необходимыми для изучения основ других наук в школе, а также подготавливающими молодых людей к будущей практической деятельности и жизни в современном информационном обществе.

Среди принципов формирования содержания общего образования современная дидактика выделяет принцип единства и противоположности логики науки и учебного предмета. Б.Т.Лихачев утверждал, что «идея единства и противоположности логики науки и логики конструирования учебного предмета обусловлена тем, что наука развивается в противоречиях». Она пробивает себе дорогу сквозь толщу предрассудков, совершает скачки вперед, топчется на месте и даже отступает. Педагогическая логика содержания учебного предмета учитывает логику развития основных категорий, понятий данной науки. Вместе с тем педагоги и психологи руководствуются необходимостью учета возрастных особенностей освоения материала школьниками, организуют его на основе как восхождения от абстрактного к конкретному, так и от конкретного к абстрактному».

В связи с этим обстоятельством приходится констатировать, что на процессе формирования школьного учебного предмета информатики сказывается чрезвычайно малая временная станция между возникновением информатики как самостоятельной отрасли науки и включением в практику массовой общеобразовательной школы соответствующего ей нового учебного предмета -- около 10-- 15 лет. По этой причине, определение содержания школьного курса информатики является очень непростой задачей, на решении которой продолжает активно сказываться процесс становления самой базовой науки информатики.

Проблема же и в том, что даже целесообразность введения в школу отдельного предмета информатики не является бесспорной -- существуют аргументы (выдвигаемые как зарубежными, так и отечественными специалистами), которые показывают, что такой путь не является единственным и бесспорным. Вопрос, в конечном итоге, заключается в следующем: чего в новом общеобразовательном знании больше -- того, что должно составить отдельный учебный предмет для общеобразовательной школы, или того, что может (или должно) быть неразрывно связано с содержанием, технологией изучения всех школьных предметов? Для ответа на этот вопрос обратимся к общедидактическому анализу проблемы развития содержания общего среднего образования, данному В.С. Ледневым. В результате длительного теоретического и экспериментального исследования, начатого еще в начале 60-х гг. прошлого века, было установлено, что фундаментальные основы кибернетического знания должны стать составной частью содержания общего школьного образования, и что для решения этого вопроса требуется введение в систему школьных дисциплин отдельного учебного курса. Основываясь на общекибернетической природе нового знания, с самого начала своего исследования, В.С. Леднев для наименования нового школьного предмета использует термин «кибернетика», однако, для данного рассмотрения это обстоятельство можно считать непринципиальным. Рассмотрим суть проблемы подробнее.

Появление кибернетики как науки, изучающей общие закономерности информационных процессов управления, стало важнейшим шагом в познании окружающего мира. Как подчеркивал А. П. Ершов, «понимание единой природы информации вслед за установлением единой природы вещества и энергии стало важнейшим шагом к постижению материального единства мира». Основываясь на этих же общенаучных представлениях о двух типах организации материальных систем -- физическом (вещественно-энергетическом) и кибернетическом (антиэнтропийным), В.С. Леднев анализирует два ряда наук:

* науки, изучающие вещественно-энергетическую организацию материи (химия, космология, физика);

* науки, изучающие кибернетическую (антиэнтропийную) организацию материи (кибернетика, биология, комплекс антропологических наук, обществознание, техникознание).

При этом физика и кибернетика (каждая из них в своей группе) относятся к категории аспектных наук, т.е. наук, исследующих наиболее общие закономерности соответственно вещественно-энергетического и кибернетического подходов к исследованию действительности. На этой же основе складывается и концепция структуры содержания общего среднего образования. Согласно этой концепции, в частности, выделяются две группы общеобразовательных учебных дисциплин, которые изучают два основных аспекта организации окружающего мира: вещественно-энергетический и кибернетико-информационный. Каждая их этих групп предметов является системой со своим системообразующим элементом. В случае вещественно-энергетического аспекта таким системообразующим предметом является физика, в случае кибернетико-информационного аспекта -- кибернетика (информатика).

Кибернетико-информационная картина мира формируется практически всеми школьными предметами, однако только курс кибернетики (информатики) способен подытожить и обобщить полученные учащимися знания, т.е. выступить в качестве системообразующего фактора. Таким образом, основываясь на описанной выше концепции научной картины мира и исходя из того, что набор обязательных учебных предметов предопределяется двумя факторами -- совмещенной структурой деятельности и структурой объекта изучения. В.С. Леднев делает основополагающий вывод об обязательном перечне учебных общеобразовательных предметов, в число которых включается и кибернетика.

При этом указанные выше два фактора носят объективный характер, что объясняет стабильность структуры общего среднего образования. Появление в этой структуре новых устойчивых учебных предметов может быть вызвано лишь существенными изменениями в научной картине мира и сменой доминирующего вида деятельности. Весьма примечательно, что курс кибернетики (информатики)-- единственный новый общеобразовательный учебный предмет, родившийся в XX веке, все остальные учебные предметы для сферы общего образования -- продукт XIX века. Важным в рассматриваемой проблеме является вопрос о том, как изучать информатику в общеобразовательной школе -- в отдельном учебном курсе, как дисциплину в составе одного из имеющихся курсов или целесообразнее рассредоточить учебный материал по информатике среди ряда учебных дисциплин.

Рассматривая этот же вопрос, применительно к общеобразовательному курсу кибернетики, В.С. Леднев приводит следующие аргументы в пользу отдельного учебного курса. «Если учебный материал по кибернетике распределить между различными учебными курсами, то в этом случае сведения области действительности, изучаемые кибернетикой и не входящие составной частью в предметы других наук, будут систематизированы не по основным признакам, по которым они систематизируются в науке, а по второстепенным, так как будут излагаться в логике другого учебного курса».

Это неизбежно влечет за собой формирование у учащихся неполных и даже искаженных представлений области действительности, изучаемой кибернетикой. Более того, такой путь исключает возможность формирования основных, фундаментальных понятий кибернетики в рамках и логике понятийного и методического аппарата, выработанного этой наукой, являющегося эффективным дидактическим средством формирования понятий. Понятия кибернетики, изучаемые в логике других учебных курсов, оказываются инородными в их понятийной системе, и будут восприняты учащимися как второстепенные, не имеющие принципиального значения. Поэтому, наиболее целесообразным решением вопроса о путях изучения кибернетики в средней школе, является выделение для ее изучения отдельного учебного курса. Разумеется, в разумных пределах, сведения из кибернетики могут и должны быть включены в смежные учебные предметы: математику, биологию и курс трудового обучения. Появление в содержании общего среднего образования нового учебного предмета влечет за собой необходимость определенного переосмысления роли тесно связанных с ним учебных предметов, и даже некоторой корректировки их содержания. Эти изменения не могут не отразиться на характере и структуре межпредметных связей.

Развивая эти выводы, обосновывая положение учебного предмета «Информатика» в структуре школьных учебных предметов вполне определенно: «Общее кибернетическое образование, является базовым компонентом содержания общего образования. Это значит, что на него распространяется следующая дидактическая формула: всякий базовый компонент общего образования включается в содержание образования двояко -- в виде особого учебного предмета (сегодня - это курс информатики) и в виде «вкраплений» во все другие учебные предметы».

Информационные процессы и технологии и есть объект информатики. Благодаря им образуются различные «предметные» области информатики, базирующиеся на разных наборах операций и процедур, различных видах кибернетического оборудования (во многих случаях наряду с компьютером используются специализированные приборы и устройства), разных информационных носителях и т.п.

* теория алгоритмов (формальные модели алгоритмов, проблемы вычислимости, сложность вычислений и т.п.);

* базы данных (структуры данных, поиск ответов на запросы, логический вывод в базах данных, активные базы и т.п.);

* искусственный интеллект (представление знаний, вывод на знаниях, обучение, экспертные системы и т.п.);

* бионика (математические модели в биологии, модели поведения, генетические системы и алгоритмы и т.п.);

* распознавание образов и обработка зрительных сцен (статистические методы распознавания, использование призрачных пространств, теория распознающих алгоритмов, трехмерные сцены и т.п.);

* теория роботов (автономные роботы, представление знаний о мире, децентрализованное управление, планирование целесообразного поведения и т.п.);

* инженерия математического обеспечения (языки программирования, технологии создания программных систем, инструментальные системы и т.п.);

* теория компьютеров и вычислительных сетей (архитектурные решения, многоагентные системы, новые принципы переработки информации и т.п.);

* компьютерная лингвистика (модели языка, анализ и с текстов, машинный перевод и т.п.);

* числовые и символьные вычисления (компьютерно-ориентированные методы вычислений, модели переработки информации в различных прикладных областях, работа с естественно-языковыми текстами и т.п.);

* системы человеко-машинного взаимодействия (модели курса, распределение работ в смешанных системах, организация коллективных процедур, деятельность в телекоммуникационных системах и т. п.);

* нейроматематика и нейросистемы (теория формальных нейронных сетей, использование нейронных сетей для обучения нейрокомпьютеров и т.п.);

* использование компьютеров в замкнутых системах (модели реального времени, интеллектуальное управление, системы мониторинга и т. п.).

Говоря о построении курса Информатики и ИКТ, можно сказать. Что он основывается не только на стандартах, но также вписан в БУП РФ, то есть в базисный учебный план российской Федерации. Становление данного курса было достаточно сложным, а также внезапным. Первоначальный курс информатики существенно отличался от нынешнего, технические средства реализации информатики были другими. Прошло не мало времени, чтобы такой учебный предмет как информатика, вобрал в себя весь спектр реализации компьютерной техники в условиях современного общества. Оснащение школ, новой техникой, которая включает в себя не только новые модели компьютеров, но и мультимедийную и интерактивную технику, позволяет методистам и учителям информатики изменять не только критерии выходных знаний, умений, навыков, но и пересматривать и изменять нормативные документы, по оснащению школьной материальной базы, оцениванию ЗУН учащихся, разработку новых материалов для внедрения их в процесс обучения школьников.

Рассматривая все вышеперечисленные критерии и условия, можно констатировать, что современное общество и современные технологии дают мощный толчок для усовершенствования процесса обучения информатике и ИКТ на разных ступенях, а также по выведения качества обученности в каждой ступени на новый, более высокий уровень. Данную тенденцию ярко можно рассмотреть на уроках информатики и ИКТ, так как данный предмет непосредственно связан с новыми информационными технологиями и использованием мультимедийной и интерактивной техники.

Для работы с выше упомянутой техникой необходимо знать ее принципы построения, возможности, а также практическую реализацию, о чем будет изложено в следующем параграфе.

1.2 Мультимедийная и интерактивная техника

Прежде чем перейти к рассмотрению, не посредственно техники, хочется еще раз напомнить о ее положительных качествах:

· возможность демонстрировать презентации, а также делать пометки по ходу изложения материала, выделять, удалять, добавлять фрагменты;

· возможность управлять системой компьютера, и всеми процессами прямо с доски, здорово акцентирует внимание учащихся;

· эстетический аспект: тема урока, выведенная с помощью проектора или написанная на интерактивной доске, выглядит намного привлекательнее, чем на обычной доске.

· работа с интерактивным экраном не требует специальных навыков или знаний, поэтому вносить пометки или изображать на доске необходимую информацию, в схемах может даже пятиклассник.

Проекторы.

Первые видео проекторы, предназначенные исключительно для воспроизведения видеосигналов, появились в 70-х годах и выполнялись на электронно-лучевых трубках. Ряд фирм продолжает их выпуск - привлекает высокая разрешающая способность, обеспечивающая очень хорошее качество изображения. Однако аппараты эти, по нынешним меркам, не слишком яркие, весят они десятки килограмм и стоят десятки тысяч долларов.

Проектор -- световой прибор, перераспределяющий свет лампы с концентрацией светового потока на поверхности малого размера или в малом объёме. Проекторы являются в основном оптико-механическими или оптическо-цифровыми приборами, позволяющими при помощи источника света проецировать изображения объектов на поверхность, расположенную вне прибора -- экран. Появление проекционных аппаратов обусловило возникновение кинематографа, относящегося к проекционному искусству.

Виды проекционных приборов.

Диаскопический проекционный аппарат -- изображения создаются при помощи лучей света, проходящих через светопроницаемый носитель с изображением. Это самый распространённый вид проекционных аппаратов. К ним относят такие приборы как: кинопроектор, диапроектор, фотоувеличитель, проекционный фонарь, кодоскоп и др.

Эпископический проекционный аппарат -- создаёт изображения непрозрачных предметов путём проецирования отраженных лучей света. К ним относятся эпископы, мегаскоп.

Эпидиаскопический проекционный аппарат -- формирует на экране комбинированные изображения как прозрачных, так и непрозрачных объектов.

Мультимедийный проектор (также используется термин «Цифровой проектор») -- с появлением и развитием цифровых технологий это наименование получили два, вообще говоря, различных класса устройств.

На вход устройства подаётся видеосигнал в реальном времени (аналоговый или цифровой). Устройство проецирует изображение на экран возможно, при этом наличие звукового канала.

Устройство получает на отдельном или встроенном в устройство носителе или из локальной сети файл или совокупность файлов (слайд-шоу) -- массив цифровой информации. Декодирует его и проецирует видеоизображение на экран, возможно, воспроизводя при этом и звук. Фактически, является сочетанием в одном устройстве мультимедийного проигрывателя и собственно проектора.

Лазерный проектор -- выводит изображение с помощью луча лазера.

Мультимедийные проекторы.

Название «цифровой проектор» связано, прежде всего, с обычным ныне применением в таких проекторах цифровых технологий обработки информации и формирования изображения.

Одночиповые проекторы.

Чип DLP Внешние изображения.

В проекторах с одним DMD-чипом цвета образуются путём помещения вращающегося цветного диска между лампой и DMD, что является очень похожим на «последовательную систему цветного телевидения» американской телевизионной радиовещательной компании Columia Broadcasting System, которая использовалась в 1950 годах. Цветной диск обычно делится на 4 сектора: три сектора под основные цвета (красный, зелёный и синий), а четвёртый сектор -- прозрачный, для увеличения яркости. Из-за того, что прозрачный сектор уменьшает насыщенность цветов, в некоторых моделях он может отсутствовать вообще, в других вместо пустого сектора могут использоваться дополнительные цвета. DMD чип синхронизирован с вращающимся диском таким образом, чтобы зелёный компонент изображения отображался на DMD, когда зелёный сектор диска находится на пути свечения лампы. Аналогично для красного и синего цветов.

Красная, зелёная и синяя компоненты изображения отображаются попеременно, но с очень высокой частотой. Таким образом, зрителю кажется, что на экран проецируется разноцветная картинка. В ранних моделях, диск совершал один оборот за каждый кадр. Позже, создали проекторы, в которых диск делает два или три оборота за один кадр, а в некоторых проекторах диск разделён на большее количество секторов и палитра на нём повторяется дважды. Это означает, что компоненты изображения выводятся на экран, сменяя друг друга до шести раз за один кадр.

В некоторых последних high-end моделях вращающийся цветной диск заменён на блок из очень ярких светодиодов трёх основных цветов. Благодаря тому, что светодиоды возможно очень быстро включать и выключать, этот приём позволяет ещё больше увеличить частоту обновления одноцветность картины.

«Эффект радуги».

Эффект радуги присущ только одночиповым проекторам DLP. Как уже было сказано, в конкретный момент времени на изображение отображается только один цвет. Когда глаз движется по спроецированному изображению, эти различные цвета становятся видимыми, в результате чего глазом воспринимается «радуга».

Производители одночиповых DLP-проекторов выходили из положения, разгоняя вращающийся сегментирование разноцветный диск, либо увеличивая число цветных сегментов, таким образом, уменьшая этот артефакт. Свет от светодиодов позволил ещё уменьшить данный эффект, благодаря высокой частоте переключения между цветами.

В дополнение ко всему, светодиоды могут излучать любой цвет любой интенсивности, что позволило увеличить гамму и контрастность изображения.

Трёхчиповые проекторы.

Этот тип DLP-проекторов использует призму для разделения луча, излучаемого лампой, и каждый из основных цветов затем направляется на свой чип DMD. Затем эти лучи объединяются, и изображение проецируется на экран.

Большое количество представленных на рынке моделей проекторов можно разделить на четыре основные категории по типу элемента, формирующего изображение:

* CRT - Cathode Ray Tube;

* LCD - Liquid Crystal Display;

* DLP - Digital Light Processing;

Технология CRT

Несмотря на появление новых технологий и их внедрение, проекторы, построенные на этой проверенной временем технологии, все же обладают рядом преимуществ и успешно конкурируют в ряде областей. Принцип их действия аналогичен CRT-мониторам, с тем лишь отличием, что конечное изображение проецируется на внешний экран.

CRT-проекторы, как правило, состоят из трех электронно-лучевых трубок размером от 7 до 12", каждая из которых воспроизводит один из трех базовых цветов RGB, выделенных внутренним контроллером из входного сигнала. Излучаемый свет, проходя через линзу, накладывается на проекцию изображения, получаемую с двух других ЭЛТ, и таким образом формируя конечное изображение.

Данную технологию выделяет непревзойденное качество изображения. Четкость, достоверность цветопередачи без дополнительных алгоритмов цветокоррекции (необходимых в других технологиях), глубокий уровень черного, широкий диапазон разрешений при отсутствии искажений, низкий уровень шума и длительность непрерывной работы (более 10 тыс. часов) делают такие проекторы достаточно привлекательными.

Тем не менее, эти преимущества влекут за собой ряд недостатков, к которым следует отнести чувствительность к демонстрации статичных изображений, что может сократить срок службы ЭЛТ до 1000 часов. Следующим весомым недостатком может стать сложность в настройке проектора - сведение цветов, установка баланса белого, что требует квалифицированных специалистов. Отметим, что при замене вышедшего из строя элемента, изменении местоположения проектора или типа проекционной поверхности, такие настройки необходимо проводить заново. Увидеть по-настоящему качественное изображение возможно только при отсутствии освещения - при световом потоке 100-800 ANSI лм, CRT-технология проигрывает по яркости остальным. Большие, нежели у остальных, габариты и масса делают такие проекторы стационарными устройствами. Ко всему этому следует добавить высокую цену (в среднем, около $20 тыс.).

Технология LCD

В мультимедийных проекторах, построенных по этой технологии, роль формирователя изображения выполняет LCD-матрица просветного типа. Изображение на LCD-матрице формируется таким же образом, как и в обычных ЖК-дисплеях. Технология основывается на свойстве молекул жидкокристаллического вещества менять пространственную ориентацию под воздействием электрического поля. Таким образом, появляется возможность контролировать прозрачность каждого элемента, а соответственно, и излучаемый им световой поток. Достаточно часто для усиления светового потока на каждый пиксель матрицы устанавливается микролинза, направляющая проходящий свет в прозрачную область.

В современных LCD-проекторах применяется комплекс из трех жидкокристаллических просветных матриц размером 0,7-2". Световое излучение лампы преобразуется в равномерный световой поток, и выделяются три составляющие пространства RGB, которые посредством дихроичных зеркал направляются на соответствующие им ЖК матрицы. Сформированные ими изображения мультиплексируются в призматическом блоке, и далее полученный световой поток проходит через линзу, проецируясь на внешний экран.

Такие проекторы отличают небольшие размеры и достаточно высокая яркость (до 10000 ANSI лм). Благодаря фиксированной матрице, проецируемое изображение обладает практически идеальной геометрией, а согласно принципам функционирования, они адаптированы для воспроизведения мультимедийных сигналов от компьютерных источников. Для воспроизведения нестандартных разрешений применяются специальные алгоритмы преобразования.

Согласно методам изготовления LCD-матриц, в недорогих и старших моделях проекторов на внешнем экране возможно появление различимой сетки, "мертвых" пикселей. Также к недостаткам можно отнести обязательное активное охлаждение и, для некоторых моделей проекторов, применение вентиляторов определенных вендоров, которые, в свою очередь, могут быть достаточно шумны (в районе 50 дБ). Среднее время непрерывной работы составляет 2000 часов, после чего требуется замена лампы - достаточно дорогого компонента, стоимость которого иногда составляет более половины стоимости проектора.

Технология DLP.

Согласно следующей технологии, изображение, проецируемое на экран, формируется посредством компонента DMD (Digital Micromirror Device).

Такой формирователь представляет собой набор огромного количества управляемых микрозеркал, расположенных на кремниевой пластине. Этот набор определяет разрешение, воспроизводимое проектором, - каждое микрозеркало отвечает за работу конкретного пикселя. Принцип действия DMD-чипа подобен функционированию статической оперативной памяти, но в нем содержимое каждой ячейки кристалла определяет положение, соответствующего ей микрозеркала.

В зависимости от поступающего управляющего сигнала, зеркало может занимать одно из двух положений, но в любом случае отклонение от плоскости микросхемы составляет около 12°. Таким образом, в зависимости от положения микрозеркала, поступающий на него световой сигнал либо направляется в объектив, либо в светопоглотитель. От времени, проводимого зеркалом в том или ином положении, зависит воспринимаемая яркость точки на внешнем экране.

Таким образом, выводя последовательно составляющие пространства RGB и контролируя время нахождения зеркал в том или ином положении, можно получить широкий диапазон оттенков. Размеры микрозеркала составляют примерно 14х14 мкм, при этом расстояние между ними не более 1 мкм, что делает полезной 90 % поверхности DMD-кристалла, тем самым снижая потери светового потока, и позволяет достигнуть уровня 18000 ANSI лм.

DLP-проекторы могут содержать от одной до трех DMD-матриц. В случае трехматричного устройства световой поток лампы, как и в LCD-проекторах, с помощью дихроичных призм разделяется на основные составляющие RGB, каждая из которых направляется на свою DMD-матрицу, формирующую изображение одного цвета. Дальнейшее прохождение световых потоков через линзу формирует на внешнем экране полноцветное изображение. Двухматричный проектор дополнительно оборудован вращающимся светофильтром, состоящим из двух секторов пурпурного (R+B) и желтого (R+G) цветов. В процессе работы дихроичные призмы разделяют световой поток на составляющие, при этом поток красного цвета направляется постоянно на одну и ту же DMD-матрицу, а потоки синего и зеленого цветов поочередно обрабатывает вторая DMD-матрица. Необходимость в постоянной проекции красного цвета вызвана недостаточной интенсивностью излучения красной составляющей спектра некоторых ламп.

Несколько подробней рассмотрим одноматричные мультимедийные проекторы. Принцип их действия схож с двухматричными, с тем лишь отличием, что вращающийся светофильтр содержит три сектора с основными цветами RGB. Скорость вращения такого фильтра составляет 60 оборотов в секунду, т. е. время обновления картинки составляет 17 мс. Для уменьшения этого времени увеличивается скорость вращения фильтра, как правило, в два раза. Однако можно встретить обозначение 4x, т. е. четырехкратное уменьшение времени формирования точки. Реально это означает внедрение светофильтра с 6 секторами.

В связи этими и другими параметрами, DLP-устройства подразделяются на пять классов:

* 1 класс - одноматричные портативные проекторы, рассчитанные на показ презентаций в офисных помещениях.

* 2 класс - одноматричные проекторы, специально разработанные для систем домашнего кинотеатра.

* 3 класс - трехматричные высококачественные проекторы для применения в больших помещениях (кинотеатры и т. п.)

* 4 класс - компоненты для проекционных телевизоров и видеокубов.

* 5 класс - специализированные устройства на основе рассматриваемой технологии.

В настоящее время практически все DLP-проекторы первого класса дополнительно снабжаются еще одним (четвертым) прозрачным сектором - за счет этого сильно увеличивается интенсивность свечения белого цвета, тем самым увеличивая характеристику светового потока ANSI более чем в полтора раза, однако конечное изображение теряет насыщенность. Получается ситуация, когда на формирование цветного изображения приходит световой поток с интенсивностью в два раза меньше, чем для формирования белого цвета. Это, впрочем, некритично для проведения презентаций небольших масштабов, где цветовая характеристика слайда скорее носит рекомендательный характер. Отметим, что световой поток таких проекторов без учета прозрачного сектора составляет примерно 30-50 % от заявленного.

D-ILA-технология.

Сравнительно молодая технология D-ILA (Direct Drive Image Light Amplifier), разработанная компанией Huges-JVC, практически первая коммерческая реализация технологии LCoS (Liquid Crystal on Silicon). Так же как и LCD-технология, D-ILA базируется на свойствах жидких кристаллов, однако вместо матриц просветного типа на основе аморфного или поликристаллического кремния, используется многослойная отражающая структура, размещенная на подложке из монокристаллического кремния. Благодаря расположению элементов схемы управления, выполненных по комплиментарной технологии CMOS за светомодулирующим слоем жидких кристаллов, появилась возможность существенно увеличить плотность размещения пикселей и увеличить полезную площадь D-ILA-матрицы (до 93 %). Отметим, что формирование элементов управления и светомодулирующего слоя может быть выполнено в рамках единого технологического процесса. Отражающие свойства матрицы определяются состоянием слоя жидких кристаллов, меняющегося под воздействием переменного электрического напряжения, которое формируется между отражающими электродами (одновременно выполняющими управляющие функции) и общим для всех пикселей прозрачным электродом. Формирование изображения происходит по трехматричной схеме, практически аналогично LCD-технологии.

CRT-проекторы

Преимущества

Недостатки

* Высокое качество

* Высокая стоимость

* Большая длительность непрерывной работы

* Большие габариты, вес

* Глубокий уровень черного

* Необходима периодическая калибровка

* Практически неограниченное разрешение

* Нечеткая геометрия

* Низкий уровень шума, достаточность пассивного охлаждения

* Низкий уровень яркости

* Испытанная временем технология (более полувека)

* Не рекомендуется для статичных изображений

LCD/DLP-проекторы

Преимущества

Недостатки

* Малый вес

* Относительная молодая технология

* Стоимость

* Невысокий уровень черного

* Прекрасно подходят для презентаций

* "Мертвые" пиксели

* Высокая яркость

* Обязательно активное охлаждение, более высокий уровень шума

* Идеальная геометрия

* Высокая стоимость замены лампы

* Легкая настройка и использование

* Подходят для очень больших дисплеев

Так же при рассмотрении проекторов необходимо учитывать некоторые их параметру:

Типы ламп.

В современных проекторах для получения интенсивного потока света используют эффективные галогенные, металло-галидные или ксеноновые дуговые лампы. Галогенные лампы используются в проекторах небольшой мощности и имеют срок службы 50 - 100 часов (по спаду яркости на 50% за счет запыления внутренней поверхности стекла лампы). Металло-галидные лампы используются в проекторах средней и высокой мощности.


Подобные документы

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.