Основные методы философских исследований

Общелогические методы как особые приемы мыслительной деятельности, которые распространяются на любой познавательный процесс. Сущность эмпирического уровня научного познания. Специфические особенности применения индукции в философских исследованиях.

Рубрика Философия
Вид контрольная работа
Язык русский
Дата добавления 25.08.2017
Размер файла 71,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru

Размещено на http://www.allbest.ru

1. Понятия «методология» и «метод»

В научной литературе существует несколько подходов относительно определения понятия «методология».

Во-первых, методология, начиная с Р. Декарта, долгое время рассматривалась лишь как учение о методах деятельности. Такое понимание методологии мы находим в трудах К. Маркса. Подобное толкование методологии ограничивало её предмет анализа методов и сформировало узкое понимание этого термина.

Во-вторых, традиционно сложилось представление, что методология связана только с научной деятельностью. Но научная деятельность является лишь одним из специфических видов деятельности наряду с искусством, религией, философией.

В-третьих, в гуманитарных и общественных науках в силу недостаточного уровня развития их теоретического аппарата в былые годы сложилась тенденция относить к методологии все теоретические построения, находящиеся на более высокой степени абстракции.

В-четвёртых, некоторые авторы разделили методологию (имея в виду методологию науки) на два типа: 1) описательную - о структуре научного знания и закономерностях научного познания; 2) нормативную - прямо направленную на регуляцию деятельности и представляющую собой рекомендации и правила осуществления научной деятельности. Очевидно, что речь идёт всего лишь о двух разных функциях методологии.

В-пятых, в ряде работ последнего десятилетия стали формироваться группы специалистов, называющих себя «методологами», которые в различных регионах страны начали проводить «организационно-деятельностные игры» с коллективами работников, направленные на осмысление инновационной деятельности, и под методологией стали понимать определённый тип стратегии или общий метод создания компьютерных программ. Другими словами, стало формироваться новое направление - методология практической деятельности.

В-шестых, в последнее время сформировалось понимание методологии как методологии науки. Данная трактовка сегодня практически принята всеми методологами.

Таким образом, понятие «методология» (в дословном переводе «учение о методе») рассматривается в двух основных значениях:

1) система определенных способов и приёмов, применяемых в той или иной сфере деятельности (науке, политике, искусстве);

2) учение об этой системе, общая теория метода. Как учение о методах и общая теория метода методология является областью философии, которая выполняет методологические функции по отношению к науке.

Принято различать общую и частные методологии. Первая является областью философии, вторая - областью отдельных частных наук. В первой анализируются методы, общие для всех наук, во второй - для отдельных наук и групп наук. Таким образом, методология является многоуровневой и в соответствии с её уровнями можно выделить отдельные группы методов: философские, общенаучные, частнонаучные, дисциплинарные, междисциплинарные. Считается, что каждый уровень методологии обладает относительной автономией и не дедуцируется из других. Однако наиболее общий уровень методологии, т.е. философский, выступает в качестве базового для всех остальных.

Наличие многоуровневой методологии связано с тем обстоятельством, что учёный, особенно в настоящее время, как правило, сталкивается с исключительно сложными познавательными конструкциями и ситуациями. Поэтому с очевидностью просматривается тенденция усиления методологических поисков в самой науке и отдельных её областях.

Деятельность людей в любой её форме (научной, практической и пр.) определяется не только тем, кто действует (субъект) и на что она направлена (объект), но и тем, как совершается данный процесс, какие способы, приемы, средства при этом применяются. Это и есть проблема метода. Метод (от греческого слова «методос» - путь к чему-либо) есть совокупность приемов и операций практического и теоретического освоения действительности. Владение методом означает для человека знание того, каким образом, в какой последовательности совершать те или иные действия для решения тех или иных задач. Другими словами, метод - это способ подхода к действительности.

Ф. Бэкон, английский философ, основатель философии Нового времени и экспериментирующего естествознания, сравнивал метод познания с фонарем, освещающим дорогу путнику, идущему в темноте. А.Р. Декарт, французский философ, математик, естествоиспытатель, определял метод следующим обра-зом: «Под методом, - писал он, - я разумею точные и простые правила, строгое соблюдение которых .... способствует тому, что ум достигает истинного познания всего, что ему доступно».

2. Принципы классификации методов

Классификация методов чаще всего осуществляется по следующим ведущим критериям:

1) по степени общности и широте применения;

2) в зависимости от специфики изучаемого объекта;

3) по способу отношения субъекта к объекту познания.

В первом случае мы все методы делим на всеобщие, общие и частные. Причем всеобщими методами являются философские методы диалектики и метафизики. К общим методам относятся общелогические и общенаучные методы.

Общенаучные методы - это приемы познавательной деятельности, используемые во всех областях науки. Но при этом в отдельных науках они могут иметь специфику своего проявления, например, эксперимент в естествознании и в социальном познании будет иметь отличительные особенности, но тем не менее в принципе применим ко всем областям науки.

Общелогические методы - это особые приемы мыслительной деятельности, которые распространяются на любой познавательный процесс, включая обыденное познание, научное познание и даже вненаучную познавательную деятельность. Среди них можно назвать анализ и синтез, индукцию и дедукцию. Эти приемы мышления вырастали из самой повседневной практической деятельности человека, но затем осмысливались философией, начиная со времен античности, и в настоящее время составляют фундамент мыслительных операций в познавательной деятельности человека на любом ее уровне.

Частные методы - это методы отдельных наук, которые выработаны специально для той или иной отрасли науки.

Во втором случае методы подразделяются по областям науки -естественнонаучные, математические, технические, медицинские, социальные, гуманитарные.

В третьем случае выделяются методы эмпирического и методы теоретического уровней познания.

Выделенные по разным основаниям в классификации методы научного познания пересекаются. Поэтому, разбирая отдельные методы, мы возьмём за основу третью классификацию и на её базе будем исследовать методы в соответствии с первой классификацией.

3. Философские методы познания

Как следует из названия, философские методы разрабатываются в рамках философии. Философские методы задают исследованию лишь самые общие регулятивные установки, его генеральную стратегию, но не заменяют специальные методы и не определяют прямо и непосредственно окончательный результат. Наиболее древними философскими методами являются диалектический и метафизический методы. В последние два столетия в рамках отдельных философских учений были разработаны другие философские методы. Так, герменевтика предложила герменевтический метод, логический позитивизм - аналитический метод, в связи с чем неопозитивизм XX столетия нередко называют аналитической философией, феноменология - феноменологический метод, интуитивизм - интуитивный метод.

Для современной науки принципиально важное значение играет диалектический метод. Он опирается на следующие принципы:

1. Объективность рассмотрения. Основное содержание данного принципа может быть представлено в виде следующих требований к исследованию:

а) исходить из чувственно-предметной деятельности (практики) во всем ее объеме и развитии;

б) осознавать и реализовывать активную роль субъекта познания и действия;

в) исходить из фактов в их совокупности и уметь выражать логику вещей в логике понятий;

г) выявлять внутреннее единство (субстанцию) предмета как глубинную основу всех формообразований;

д) выбирать адекватную данному предмету систему методов и сознательно, последовательно реализовывать ее;

е) рассматривать предмет в соответствующем социокультурном контексте, в рамках определенных мировоззренческих ориентаций;

ж) подходить ко всем явлениям и процессам конструктивно-критически;

з) действовать в соответствии с логикой данного предмета.

2. Всесторонность рассмотрения. Этот принцип познания опирается на признание всеобщей связи явлений действительности. Он включает в себя следующие требования:

а) вычленение предмета исследования и проведение его границ;

б) целостное, многоаспектное рассмотрение;

в) изучение «в чистом виде» каждой из сторон предмета;

г) осуществление познания как процесса, развертывающегося вглубь и вширь, в единстве интенсивной и экстенсивной его сторон;

д) вычленение сущности, главной стороны предмета, субстанционального его свойства.

3. Конкретность рассмотрения. Этот принцип предполагает выполнение следующих требований:

а) создание идеальной модели изучаемого явления как диалектически расчлененного целого;

б) выявление преломления общего в единичном, сущности в явлениях, закона в его модификациях;

в) учет многообразных условий места, времени и других обстоятельств, изменяющих бытие этого предмета;

г) выявление специфического механизма взаимосвязи общего и единичного;

д) рассмотрение данного предмета в составе более широкого целого, элементом которого он является.

4. Историзм рассмотрения. Принцип ориентирован на анализ саморазвития действительности. Предполагает следующие основные требования при исследовании:

а) изучение настоящего, современного состояния предмета исследования;

б) реконструкция прошлого, рассмотрение генезиса и последующих этапов развития предмета;

в) предвидение будущего, прогнозирование тенденций дальнейшего развития предмета.

5. Противоречивость рассмотрения. Принцип исследования предмета, предполагающий выполнение следующих требований:

а) выявление внутренних и внешних противоречий изучаемого явления;

б) всесторонний анализ каждой из противоположных сторон;

в) рассмотрение предмета как единства противоположностей в целом на основе знания каждой из них;

г) определение места отдельного противоречия в системе других противоречий предмета;

д) прослеживание этапов развития данного противоречия;

ж) анализ механизма разрешения противоречия как процесса его развертывания и обострения. Диалектические противоречия в мышлении, отражающие реальные противоречия, необходимо отличать от так называемых «логических» противоречий, которые выражают путаницу и непоследовательность мысли и запрещены законами формальной логики.

Неверная реализация и применение принципов диалектики приводят к объективизму и субъективизму, который, в частности, выражается в эклектике (умозаключение, построенное на механическом соединении разнородного, внутренне несоединимого) и софистике (умозаключение, основанное на преднамеренном нарушении правил логики путем абсолютизации отдельных положений), и как следствие, возникновению заблуждений.

Диалектика как метод начала формироваться в античные времена. Основателем диалектики как метода принято считать Сократа, хотя Аристотель называл имя Зенона Элейского. Приемами Сократа пользовались средневековые философы, многие из которых признавали диалектику высшим искусством при познании творений божьих и истолковании вопросов Библии. Большой вклад в развитие диалектики как метода внесли Г. Гегель и К. Маркс. В раскрытии содержания метода диалектики большую роль сыграли отечественные философы-марксисты (Б.М. Кедров, П.В. Копнин, Э.В. Ильенков, З.М. Оруджев). В настоящее время диалектика как всеобщий метод познания играет ведущую роль в современной науке.

Метафизический метод тоже сформировался в античности в трудах Парменида. Он ориентировал на познание явлений вне развития, вне противоречий, как устойчивые и неизменные. Метафизический метод нашел свое применение в классической науке, в частности, в период собирательного естествознания. Он был адекватен науке XVII-XVIII веков. Но уже в последующие столетия, когда естествознание обратилось к изучению процессов, метафизический метод потерял свое ведущее значение, его оттеснила диалектика и заняла подобающее ей место в методологии науки.

4. Общенаучные методы эмпирического познания

Эмпирический уровень научного познания строится главным образом на живом созерцании исследуемых объектов, хотя рациональное познание присутствует в качестве обязательной компоненты, непосредственный контакт с объектом познания необходим для достижения эмпирического знания. На эмпирическом уровне исследователь применяет общелогические и общенаучные методы. К общенаучным методам эмпирического уровня относятся: наблюдение, описание, эксперимент, измерение и др. Ознакомимся с отдельными методами.

Наблюдение есть чувственное отражение предметов и явлений внешнего мира. Это исходный метод эмпирического познания, позволяющий получить некоторую первичную информацию об объектах окружающей действительности.

Научное наблюдение отличается от обыденного и характеризуется рядом особенностей:

целенаправленность (фиксация взглядов на поставленной задаче);

планомерность (действие по плану);

активность (привлечение накопленных знаний, технических средств).

По способу проведения наблюдения могут быть:

непосредственные,

опосредованные,

косвенные.

Непосредственные наблюдения - это чувственное отражение тех или иных свойств, сторон исследуемого объекта при помощи только органов чувств. Например, визуальное наблюдение положения планет и звезд на небе. Так делал Тихо Браге в течение 20 лет с непревзойденной для невооруженного глаза точностью. Он создал эмпирическую базу данных для открытия впоследствии Кеплером законов движения планет.

В настоящее время непосредственные наблюдения используются в космических исследованиях с бортов космических станций. Избирательная способность человеческого зрения и логический анализ - это те уникальные свойства метода визуальных наблюдений, которыми не обладает никакой набор аппаратуры. Другой областью применения метода непосредственного наблюдения является метеорология.

Опосредованные наблюдения - исследование объектов с использованием тех или иных технических средств. Появление и развитие таких средств во многом определило то громадное расширение возможностей метода, которое произошло за последние четыре столетия. Если в начале XVII столетия астрономы наблюдали за небесными телами невооруженным взглядом, то с изобретением в 1608 г. оптического телескопа перед исследователями открылся огромный облик Вселенной. Затем появились зеркальные телескопы, а в настоящее время на орбитальных станциях стоят рентгеновские, которые позволяют наблюдать такие объекты Вселенной, как пульсары, квазары. Другим примером опосредованного наблюдения служит изобретенный в XVII веке оптический микроскоп, а в XX веке - электронный.

Косвенные наблюдения - это наблюдение не самих исследуемых объектов, а результатов их воздействий на другие объекты. Особенно используется такое наблюдение в атомной физике. Здесь микрообъекты нельзя наблюдать ни с помощью органов чувств, ни приборов. То, что наблюдают ученые в процессе эмпирических исследований в ядерной физике, - это не сами микрообъекты, а результаты их действий на некоторые технические средства исследования. Например, при изучении свойств заряженных частиц с помощью камеры Вильсона эти частицы воспринимаются исследователем косвенно по их видимым проявлениям - трекам, состоящим из множества капелек жидкости.

Любое наблюдение, хотя и опирается на данные чувств, требует участия теоретического мышления, при помощи которого оформляется в виде определенных научных терминов, графиков, таблиц, рисунков. Кроме того, оно основывается и на определенных теоретических положениях. Это особенно наглядно видно на косвенных наблюдениях, поскольку установить связь между ненаблюдаемым и наблюдаемым явлением позволяет только теория. А. Эйнштейн в этой связи говорил: «Можно ли наблюдать данное явление или нет - зависит от вашей теории. Именно теория должна установить, что можно наблюдать, а что нельзя».

Наблюдения могут нередко играть важную эвристическую роль в научном познании. В процессе наблюдений могут быть открыты совершенно новые явления или данные, позволяющие обосновать ту или иную гипотезу. Научные наблюдения обязательно сопровождаются описанием.

Описание - это фиксация средствами естественного и искусственного языка сведений об объектах, полученных в результате наблюдения. Описание можно рассматривать как завершающий этап наблюдения. С помощью описания чувственная информация переводится на язык понятий, знаков, схем, рисунков, графиков, цифр, принимая тем самым форму, удобную для дальнейшей рациональной обработки (систематизации, классификации, обобщения).

Описания бывают двух видов:

а) качественные;

б) количественные, которые формируются в результате измерительных процедур.

Описания результатов наблюдений составляют эмпирический базис науки, опираясь на который, исследователи создают эмпирические обобщения, сравнивают изучаемые объекты по тем или иным параметрам, устанавливают последовательность этапов их развития, проводят классификацию и пр.

Описание должно отвечать ряду требований:

- быть по возможности более полным;

- точным;

- объективным;

- давать достоверную и адекватную картину самого объекта;

- использовать понятия, имеющие однозначный смысл.

Почти все науки проходят «описательную» стадию в своем развитии. Причем, если меняются средства описания, то часто создается новая система понятий, а вместе с ней меняется и парадигма в самой науке.

Измерение - это метод, заключающийся в определении количественных значений тех или иных свойств, сторон изучаемого объекта, явления с помощью специальных технических устройств.

Введение измерения в естествознание превратило последнее в строгую науку. Оно дополняет качественные методы познания природных явлений количественными. В основе операции измерения лежит сравнение объектов по каким-либо сходным свойствам или сторонам, а также введение определенных единиц измерения.

Единица измерения - это эталон, с которым сравнивается измеряемая сторона объекта или явления. Эталону присваивается числовое значение «1». Существует множество единиц измерения, соответствующее множеству объектов, явлений, их свойств, сторон, связей, которые приходится измерять в процессе научного познания. При этом единицы измерения подразделяются на основные, выбираемые в качестве базисных при построении системы единиц, и производные, выводимые из других единиц с помощью каких-то математических соотношений. Методика построения системы единиц как совокупности основных и производных была впервые предложена в 1832 г. К. Гауссом. Он построил систему единиц, в которой за основу были приняты 3 произвольные, не зависимые друг от друга основные единицы: длина (миллиметр), масса (миллиграмм) и время (секунда). Все остальные определялись при помощи этих трех.

В дальнейшем с развитием науки и техники появились и другие системы единиц физических величин, построенные по принципу Гаусса. Они базировались на метрической системе мер, но отличались друг от друга основными единицами.

Кроме названного подхода в физике появилась так называемая естественная система единиц. Ее основные единицы определялись из законов природы. Например, «естественная» система физических единиц, предложенная Максом Планком. В ее основу были положены «мировые постоянные»: скорость света в пустоте, постоянная тяготения, постоянная Больцмана и постоянная Планка. Приравняв их к «1», Планк получил производные единицы длины, массы, времени и температуры.

Вопрос об установлении единообразия в измерении величин был принципиально важным. Отсутствие такого единообразия порождало существенные трудности для научного познания. Так, до 1880 г. включительно не существовало единства в измерении электрических величин. Для сопротивления, например, было 15 названий единиц измерения, 5 единиц названий электрического тока и т.д. Все это затрудняло расчеты, сравнения полученных данных и пр. Только в 1881 г. на первом международном конгрессе по электричеству была принята первая единая система: ампер, вольт, ом.

В настоящее время в естествознании действует преимущественно международная система единиц (СИ), принятая в 1960 году XI Генеральной конференцией по мерам и весам. Международная система единиц построена на базе семи основных (метр, килограмм, секунда, ампер, кельвин, кандела, моль) и двух дополнительных (радиан, стерадиан) единиц. С помощью специальной таблицы множителей и приставок можно образовывать кратные и дольные единицы (например, 10-3 = милли - одна тысячная доля от исходной).

Международная система единиц физических величин является наиболее совершенной и универсальной из всех существовавших до настоящего времени. Она охватывает физические величины механики, термодинамики, электродинамики и оптики, которые связаны между собой физическими законами.

Потребность в единой международной системе единиц измерения в условиях современной научно-технической революции очень велика. Поэтому такие международные организации как ЮНЕСКО и международная организация законодательной метрологии призвали государства, являющиеся членами этих организаций, принять систему СИ и градуировать в ней все измерительные приборы.

Существует несколько видов измерений: статические и динамические, прямые и косвенные.

Первые определяются характером зависимости определяемой величины от времени. Так, при статических измерениях величина, которую мы измеряем, остается постоянной во времени. При динамических измерениях измеряется величина, меняющаяся во времени. В первом случае - это размеры тела, постоянного давления и т.п., во втором случае - это измерение вибраций, пульсирующего давления.

По способу получения результатов различают измерения прямые и косвенные.

В прямых измерениях искомое значение измеряемой величины получается путем непосредственного сравнения ее с эталоном или выдается измерительным прибором.

При косвенном измерении искомую величину определяют на основании известной математической зависимости между этой величиной и другими, получаемыми путем прямых измерений. Косвенные измерения широко используются в тех случаях, когда искомую величину невозможно или слишком сложно измерить непосредственно, или когда прямое измерение дает менее точный результат.

Технические возможности измерительных приборов в значительной степени отражают уровень развития науки. Современные приборы значительно совершеннее тех, которыми ученые пользовались в XIX веке и ранее. Но это не помешало ученым прошлых веков сделать выдающиеся открытия. Например, оценивая измерение скорости света, проведенное американским физиком А. Майкельсоном, С.И. Вавилов писал: «На почве его экспериментальных открытий и измерений выросла теория относительности, развилась и рафинировалась волновая оптика и спектроскопия и окрепла теоретическая астрофизика».

С прогрессом науки продвигается вперед и измерительная техника. Создана даже целая отрасль производства - приборостроение. Хорошо развитое измерительное приборостроение, разнообразие методов и высокие характеристики средств измерения способствуют прогрессу в научных исследованиях. В свою очередь, решение научных проблем открывает нередко новые пути совершенствования самих измерений.

Несмотря на роль наблюдения, описания и измерения в научных исследованиях, у них есть серьезное ограничение - они не предполагают активного вмешательства субъекта познания в естественное протекание процесса. Дальнейший процесс развития науки предполагает преодоление описательной фазы и дополнения рассмотренных методов более активным методом - экспериментом.

Эксперимент (от лат. - проба, опыт) - это метод, когда путем изменения условий, направления или характера данного процесса создаются искусственные возможности изучения объекта в относительно «чистом» виде. Он предполагает активное, целенаправленное и строго контролируемое воздействие исследователя на изучаемый объект для выяснения тех или иных сторон, свойств, связей. При этом экспериментатор может преобразовывать исследуемый объект, создавать искусственные условия его изучения, вмешиваться в естественное течение процессов.

Эксперимент включает в себя предыдущие методы эмпирического исследования, т.е. наблюдение и описание, а также еще одну эмпирическую процедуру - измерение. Но к ним не сводится, а имеет свои особенности, отличающие его от других методов.

Во-первых, эксперимент позволяет изучать объект в «очищенном» виде, т.е. устраняя всякого рода побочные факторы, наслоения, затрудняющие процесс исследования. Например, эксперимент требует специальных помещений, защищенных от электромагнитных воздействий.

Во-вторых, при эксперименте могут создаваться специальные условия, например, температурный режим, давление, электрическое напряжение. В таких искусственных условиях удается обнаружить удивительные, порой неожиданные свойства объектов и тем самым постигать их сущность. Особо следует отметить эксперименты в космосе, где имеются и достигаются условия, невозможные в земных лабораториях.

В-третьих, многократная воспроизводимость эксперимента позволяет получать достоверные результаты.

В-четвертых, изучая процесс, экспериментатор может включать в него все, что считает нужным для получения истинного знания об объекте, например, менять химические агенты воздействия.

Проведение эксперимента предполагает следующие этапы:

выдвижение цели;

постановка вопроса;

наличие исходных теоретических положений;

наличие предположительного результата;

планирование путей ведения эксперимента;

создание экспериментальной установки, обеспечивающей необходимые условия для воздействия на изучаемый объект;

контролируемое видоизменение условий эксперимента;

точная фиксация следствий воздействия;

описание нового явления и его свойств;

10) наличие людей с должной квалификацией.

Научные эксперименты бывают следующих основных видов:

- измерительные,

- поисковые,

- проверочные,

- контрольные,

- исследовательские

и другие в зависимости от характера поставленных задач.

В зависимости от того, в какой области проводятся эксперименты, их подразделяют на:

- фундаментальные эксперименты в области естественных наук;

- прикладные эксперименты в области естественных наук;

- промышленный эксперимент;

- социальный эксперимент;

- эксперименты в области гуманитарных наук.

Рассмотрим некоторые из видов научного эксперимента.

Исследовательский эксперимент даёт возможность обнаружить у объектов новые, ранее неизвестные свойства. Результатом такого эксперимента могут быть выводы, не вытекающие из имеющихся знаний об объекте исследования. Примером могут служить эксперименты, поставленные в лаборатории Э. Резерфорда, в ходе которых обнаружилось странное поведение альфа-частиц при бомбардировке ими золотой фольги. Большинство частиц проходило сквозь фольгу, небольшое количество отклонялось и рассеивалось, а некоторые частицы не просто отклонялись, а отталкивались обратно, как мяч от сетки. Такая экспериментальная картина, согласно расчетам, получалась в том случае, если масса атома сосредотачивается в ядре, занимающем ничтожную часть его объема. Отскакивали обратно альфа-частицы, которые соударялись с ядром. Так исследовательский эксперимент, проведенный Резерфордом и его сотрудниками, привел к обнаружению ядра атома, а тем самым и к рождению ядерной физики.

Проверочный. Этот эксперимент служит для проверки, подтверждения тех или иных теоретических построений. Так, существование целого ряда элементарных частиц (позитрона, нейтрино) было вначале предсказано теоретически, а позднее они были обнаружены экспериментальным путём.

Качественные эксперименты являются поисковыми. Они не предполагают получения количественных соотношений, а позволяют выявить действие тех или иных факторов на изучаемое явление. Например, эксперимент по изучению поведения живой клетки под действием электромагнитного поля. Количественные эксперименты чаще всего следуют за качественным экспериментом. Они направлены на установление точных количественных зависимостей в исследуемом явлении. В качестве примера можно привести историю открытия связи электрических и магнитных явлений. Эту связь обнаружил датский физик Эрстед в процессе проведения чисто качественного эксперимента. Он поместил компас рядом с проводником, по которому пропускал электрический ток, и обнаружил, что стрелка компаса отклонялась от первоначального положения. Вслед за обнародованием Эрстедом своего открытия последовали количественные эксперименты ряда ученых, разработки которых закрепились в названии единицы силы тока.

Близки по своей сути к научным фундаментальным экспериментам прикладные. Прикладные эксперименты ставят своей задачей поиск возможностей практического применения того или иного открытого явления. Г. Герц ставил задачу экспериментальной проверки теоретических положений Максвелла, практическое применение его не интересовало. Поэтому эксперименты Герца, в ходе которых были получены электромагнитные волны, предсказанные теорией Максвелла, оставались естественнонаучными, носящими фундаментальный характер.

Попов же изначально ставил перед собой задачу практического содержания, и его эксперименты положили начало прикладной науке - радиотехнике. Более того, Герц вообще не верил в возможность практического применения электромагнитных волн, не видел никакой связи между своими экспериментами и нуждами практики. Узнав о попытках практического использования электромагнитных волн, Герц даже написал в Дрезденскую палату коммерции о необходимости запретить эти эксперименты как бесполезные.

Что касается промышленных и социальных экспериментов, а также в
области гуманитарных наук, то они появились только в XX столетии. В
гуманитарных науках особенно интенсивно развивается экспериментальный метод в таких областях как психология, педагогика, социология. В 20-е годы XX века развиваются социальные эксперименты. Они способствуют внедрению в жизнь новых форм социальной организации и оптимизации управления обществом.

5. Общенаучные методы теоретического познания

Теоретический уровень научного познания отражает явления и процессы со стороны их универсальных внутренних связей и закономерностей, достигая этого путем рациональной обработки данных эмпирического уровня знания. Поэтому в нем задействованы все формы мышления - понятия, суждения, умозаключения, общелогические методы, а также методы, связанные с мыслительными операциями - абстрагирование, идеализация, формализация и пр. Остановимся подробнее на отдельных методах.

Абстрагирование. Восхождение от абстрактного к конкретному.

Процесс познания, как правило, начинается с рассмотрения конкретных чувственных предметов и явлений, их внешних признаков, свойств, связей. Только в результате изучения чувственно-конкретного человек приходит к обобщенным представлениям, понятиям, т.е. абстракциям.

Абстрагирование - это мысленное отвлечение от каких-то менее существенных свойств, сторон, признаков изучаемого объекта с одновременным выделением, формированием одной или нескольких существенных сторон, свойств, признаков этого объекта. Результат, получаемый в процессе абстрагирования, именуют абстракцией (абстрактное).

Существуют два вида абстрагирования: отождествления и изоляции.

Абстракция отождествления представляет собой понятие, которое получается в результате отождествления некоторого множества предметов и объединения их в особую группу. Например, такие понятия как вид, род, отряды и т. п., используемые в биологии.

Изолирующая абстракция представляет собой выделение некоторых свойств, отношений, неразрывно связанных с предметами материального мира, в самостоятельные сущности («устойчивость», «растворимость», «элек-тропроводность» и т.п.).

Переход от чувственно-конкретного к абстрактному всегда связан с известным упрощением действительности. Вместе с тем, восходя от чувственно-конкретного к абстрактному, теоретическому, исследователь получает возможность глубже понять изучаемый объект, раскрыть его сущность.

Конечно, в истории науки имели место и ложные, неверные абстракции, не отражавшие ровным счетом ничего в объективном мире, например, эфир, теплород, электрическая жидкость и т.п. Они лишь объясняли мир наблюдаемых объектов. Но подавляющее число абстракций отражают сущность и сыграли свою положительную роль в развитии научного знания.

Одним из показательных примеров роли абстракции является создание Максвеллом теории электромагнитного поля. Максвелл создал свою теорию, идя от чувственно-наглядных опытов, эмпирических представлений Фарадея, которая, в свою очередь, открывала новые перспективы.

Поскольку конкретное (т.е. реальные объекты, процессы материального мира) есть совокупность множества свойств, сторон, внутренних и внешних связей и отношений, его невозможно познать во всем многообразии, оставаясь на этапе чувственного познания, ограничиваясь им. Поэтому и возникает потребность в теоретическом осмыслении конкретного, т.е. восхождении от чувственно-конкретного к абстрактному.

Формирование научных абстракций, общих теоретических положений не является конечной целью познания, а представляет собой только средство более глубокого, разностороннего познания конкретного. Поэтому необходимо дальнейшее движение (восхождение) познания от достигнутого абстрактного вновь к конкретному. Получаемое на этом этапе исследования знание о конкретном будет качественно иным по сравнению с тем, которое имелось на этапе чувственного познания. Логически-конкретное есть теоретически воспроизведенное в мышлении исследователя конкретное во всем богатстве его содержания. Оно содержит в себе уже не только чувственно воспринимаемое, но и нечто скрытое, недоступное чувственному восприятию, нечто существенное, закономерное, постигнутое лишь с помощью теоретического мышления, с помощью определенных абстракций.

Восхождение от абстрактного к конкретному характеризует общую направленность научно-теоретического познания, имеющего целью переход от менее содержательного к более содержательному знанию. Другими словами, исследователь получает в результате целостную картину изучаемого объекта во всем богатстве его содержания.

Идеализация. Мысленный эксперимент.

Идеализация - это особый вид абстрагирования, представляющий собой мысленное внесение определенных изменений в изучаемый объект в соответствии с целями исследований. В результате таких изменений могут быть, например, исключены из рассмотрения какие-то свойства, стороны, признаки объектов. Примером такого вида идеализации может служить широко распространенная в механике идеализация - материальная точка, причем под ней могут подразумевать любое тело, от атома до планеты.

Другим видом идеализации является наделение объекта какими-то свойствами, которые в реальной действительности неосуществимы. Примером такой идеализации является абсолютно черное тело. Такое тело наделяется не существующим в природе свойством поглощать абсолютно всю попадающую на него лучистую энергию, ничего не отражая и ничего не пропуская сквозь себя.

Спектр излучения абсолютно черного тела является идеальным случаем, ибо на него не оказывает влияние ни природа вещества излучателя, ни состояние его поверхности. Проблемой расчета количества излучения, испускаемого идеальным излучателем - абсолютно черным телом, занялся Макс Планк, который работал над ней 4 года. В 1900 г. ему удалось найти решение в виде формулы, которая правильно описывала спектральное распределение энергии излучаемого абсолютно черного тела. Так работа с идеализированным объектом помогла заложить основы квантовой теории, ознаменовавшей радикальный переворот в науке.

Целесообразность использования идеализации определяется следующими обстоятельствами:

во-первых, идеализация целесообразна тогда, когда подлежащие исследованию реальные объекты достаточно сложны для имеющихся средств теоретического, в частности, математического анализа, а по отношению к идеализированному случаю можно, приложив эти средства, построить и развить теорию, в определенных условиях и целях эффективную для описания свойств и поведения этих реальных объектов;

во-вторых, идеализацию целесообразно использовать в тех случаях, когда необходимо исключить некоторые свойства, связи исследуемого объекта, без которых он существовать не может, но которые затемняют существо протекающих в нем процессов. Сложный объект представляется как бы в «очищенном» виде, что облегчает его изучение. Пример - идеальная паровая машина Сади Карно;

в-третьих, применение идеализации целесообразно тогда, когда исключаемые из рассмотрения свойства, стороны, связи изучаемого объекта не влияют в рамках данного исследования на его сущность. Так, если в ряде случаев возможно и целесообразно рассматривать атомы в виде материальной точки, то такая идеализация недопустима при изучении структуры атома.

Если существуют разные теоретические подходы, то возможны и разные варианты идеализации. В качестве примера можно привести три разных понятия «идеального газа», сформировавшихся под влиянием различных теоретико-физических представлений: Максвелла-Больцмана, Бозе-Эйнштейна, Ферми-Дирака. Однако полученные при этом все три варианта идеализации оказались плодотворными при изучении газовых состояний различной природы. Так, идеальный газ Максвелла-Больцмана стал основой исследований обычных молекулярных разряженных газов, находящихся при достаточно высоких температурах; идеальный газ Бозе-Эйнштейна был применён для изучения фотонного газа, а идеальный газ Ферми-Дирака помог решить ряд проблем электронного газа.

Идеализация в отличие от чистого абстрагирования допускает элемент чувственной наглядности. Обычный процесс абстрагирования ведет к образованию мысленных абстракций, не обладающих никакой наглядностью. Эта особенность идеализации очень важна для реализации такого специфического метода теоретического познания, каковым является мысленный эксперимент.

Мысленный эксперимент - это мысленный подбор тех или иных положений, ситуаций, позволяющих обнаружить какие-то важные особенности исследуемого объекта. Мысленный эксперимент предполагает оперирование идеализированным объектом, которое заключается в мысленном подборе тех или иных положений, ситуаций, позволяющих обнаружить какие-то важные особенности исследуемого объекта. В этом проявляется определенное сходство мысленного эксперимента с реальным. Более того, всякий реальный эксперимент, прежде чем быть осуществлен на практике, сначала «проигрывается» исследователем мысленно в процессе обдумывания, планирования.

Вместе с тем, мысленный эксперимент играет и самостоятельную роль в науке. При этом, сохраняя сходство с реальным экспериментом, он в то же время существенно отличается от него. Это отличие заключается в следующем:

. Реальный эксперимент - это метод, связанный с практическим, «орудийным» познанием окружающего мира. В мысленном же эксперименте исследователь оперирует не материальными объектами, а их идеализированными образами и само оперирование производится в его сознании, т.е. чисто умозрительно, без всякого материально-технического обеспечения.

. В реальном эксперименте приходится считаться с реальными физическими и иными ограничениями поведения объекта исследования. В этом плане мысленный эксперимент имеет явное преимущество перед экспериментом реальным. В мысленном эксперименте можно абстрагироваться от действия нежелательных факторов, проведя его в идеализированном, «чистом» виде.

. В научном познании могут быть случаи, когда при исследовании некоторых явлений, ситуаций проведение реальных экспериментов оказывается вообще невозможным. Этот пробел в познании может восполнить только мысленный эксперимент.

Наглядным примером роли мыслительного эксперимента является история открытия явления трения. В течение тысячелетия господствовала концепция Аристотеля, утверждавшая, что движущееся тело останавливается, если толкающая его сила прекращается. Доказательством служило движение тележки или шара, которое прекращалось само собой, если воздействие не возобновлялось.

Галилею удалось путем мыслительного эксперимента поэтапной идеализацией представить идеальную поверхность и открыть закон механики движения. «Закон инерции, - писали А. Эйнштейн и Л. Инфельд, - нельзя вывести непосредственно из эксперимента, его можно вывести умозрительно - мышлением, связанным с наблюдением». Этот эксперимент никогда нельзя выполнить в действительности, хотя он ведет к глубокому пониманию действительных процессов.

Мыслительный эксперимент может иметь большую эвристическую ценность, помогая интерпретировать новое знание, полученное чисто математическим путем. Это подтверждается многими примерами из истории науки. Одним из них является мысленный эксперимент В. Гейзенберга, направленный на разъяснение соотношения неопределенности. В этом мысленном эксперименте соотношение неопределенности было найдено благодаря абстрагированию, разделившему целостную структуру электрона на две противоположности: волну и корпускулу. Тем самым совпадение результата мысленного эксперимента с результатом, достигнутым математическим путем, означало доказательство объективно существующей противоречивости электрона как цельного материального образования и дало возможность понять его сущность.

Метод идеализации, весьма плодотворный во многих случаях, имеет в то же время определенные ограничения. Развитие научного познания заставляет иногда отказываться от ранее существовавших идеализаций. К примеру, Эйнштейн отказался от таких идеализаций как «абсолютное пространство» и «абсолютное время». Кроме того, любая идеализация ограничена конкретной областью явлений и служит для решения только определенных проблем.

Сама по себе идеализация, хотя и может быть плодотворной и даже подводить к научному открытию, еще не достаточна для того, чтобы сделать это открытие. Здесь определяющую роль играют теоретические установки, из которых исходит исследователь. Так, идеализация паровой машины, удачно осуществленная Сади Карно, подвела его к открытию механического эквивалента теплоты, которого он не смог открыть, так как верил в существование теплорода.

Основное положительное значение идеализации как метода научного познания заключается в том, что получаемые на её основе теоретические построения позволяют затем эффективно исследовать реальные объекты и явления. Упрощения, достигаемые с помощью идеализации, облегчают создание теории, вскрывающей законы исследуемой области явлений материального мира. Если теория в целом правильно описывает реальные явления, то правомерны и положенные в ее основу идеализации.

Формализация. Язык науки.

Под формализацией понимается особый подход в научном познании, который заключается в использовании специальной символики, позволяющей отвлечься от изучения реальных объектов, от содержания описывающих их теоретических положений и оперировать вместо этого некоторым множеством символов (знаков). Примером формализации может служить математическое описание.

Для построения любой формальной системы необходимо:

1) задание алфавита, т.е. определенного набора знаков;

2) задание правил, по которым из исходных знаков этого алфавита могут быть получены «слова», «формулы»;

3) задание правил, по которым от одних слов, формул данной системы можно переходить к другим словам и формулам (так называемые правила вывода).

Достоинство формализации состоит в обеспечении краткости и четкости записи научной информации, что открывает большие возможности для оперирования ею. Вряд ли удалось успешно пользоваться, например, теоретическими выводами Максвелла, если бы они не были компактно выражены в виде математических уравнений, а описаны с помощью обычного естественного языка.

Разумеется, формализованный язык не столь богат и гибок как естественный, но зато он не многозначен (полисемия), а обладает однозначной семантикой. Таким образом, формализованный язык обладает свойством моносемичности. Расширяющееся использование формализации как метода теоретического познания связано не только с развитием математики. В химии тоже есть своя символика вместе с правилами оперирования ею. Она представляет собой один из вариантов формализованного искусственного языка.

Язык современной науки существенно отличается от естественного человеческого языка. Он содержит много специальных терминов, выражений, в нем широко используются средства формализации, среди которых центральное место принадлежит математической формализации. Исходя из потребностей науки, создаются различные искусственные языки, предназначенные для решения тех или иных задач. Все множество созданных и создаваемых искусственных формализованных языков входит в язык науки, образуя мощное средство научного познания.

Вместе с тем следует иметь в виду, что создание какого-то единого формализованного языка науки не представляется возможным. Одновременно формализованные языки не могут быть единственной формой языка современной науки, ибо стремление к максимальной адекватности требует использования и неформализованных форм языка. Но в той мере, в какой адекватность немыслима без точности, тенденция к возрастающей формализации языков всех и особенно естественных наук является объективной и прогрессивной.

6. Общенаучные методы, применяемые и на эмпирическом, и на теоретическом уровнях научного познания

Существует ряд методов, которые с успехом применимы на любом уровне научного познания. Это методы аналогии и моделирования.

Аналогия.

Под аналогией понимают метод, основанный на подобии, сходстве каких-то свойств, признаков или отношений у различных в целом объектов. Установление сходства (или различия) между объектами осуществляется в результате их сравнения. Таким образом, сравнение лежит в основе метода аналогии.

Если делается логический вывод о наличии какого-либо свойства, признака, отношения у изучаемого объекта на основании установления его сходства с другими объектами, то этот вывод называют умозаключение по аналогии.

Степень вероятности получения правильного умозаключения по аналогии будет тем выше, чем 1) больше известно общих свойств у сравниваемых объектов; 2) существеннее обнаруженные у них общие свойства и 3) глубже познана взаимная закономерная связь этих сходных свойств.

Надо, однако, иметь в виду, что если объект, в отношении которого делается умозаключение по аналогии с другим объектом, обладает каким-нибудь свойством, не совместимым с тем свойством, о существовании которого должен быть сделан вывод, то общее сходство этих объектов утрачивает всякое значение.

Метод аналогии применяется в различных областях науки, как естественных, математических, так и гуманитарных. Используя аналогию, можно скачком выводить мысль на новый, ранее неизвестный уровень, она является наиболее простым и доступным путем движения от старого знания к новому. Но аналогия - не доказательство.

Вывод по аналогии в самом общем смысле можно определить как перенос информации с одного объекта на другой. При этом первый объект, который собственно подвергается исследованию, именуется моделью, а другой объект, на который переносится информация, полученная в результате исследования первого объекта (модели), называется оригиналом (иногда - прототипом, образцом). Между моделью и оригиналом существует сходство и подобие. Аналогия и подобие лежат в основе метода, который называется моделированием.

Моделирование - метод исследования объектов познания на их моделях. Он предполагает построение и изучение моделей реально существующих предметов и явлений. В зависимости от характера используемых в научном исследовании моделей различаются несколько видов моделирования.

1. Физическое моделирование.

Оно характеризуется физическим подобием между моделью и оригиналом и имеет целью воспроизведение в модели процессов, свойственных оригиналу. По результатам исследования тех или иных физических свойств модели судят о явлениях, происходящих в естественных («натуральных») условиях. Пренебрежение результатами такого моделирования может иметь тяжкие последствия. Примером служит история с английским кораблем-броненосцем «Кэптэн», построенным в 1870 г. Ученый-кораблестроитель В. Рид провел исследование модели корабля и выявил серьезные дефекты в его конструкции. Он сообщил об этом Адмиралтейству, но его мнение не было принято во внимание. В результате при выходе в море корабль перевернулся, что повлекло за собой гибель более 500 моряков.

В настоящее время физическое моделирование широко используется для разработки и экспериментального исследования различных сооружений (плотин электростанций, оросительных систем и т.п.), машин и т.п. до их реального построения. Например, аэродинамические качества самолетов исследуются на моделях.

2. Идеальное (мысленное) моделирование.

К этому виду моделирования относятся самые различные мысленные представления в форме тех или иных воображаемых моделей. Например, модель атома Резерфорда напоминала Солнечную систему: вокруг ядра («Солнца») вращаются электроны («планеты»). Эту же модель можно реализовать материально в виде чувственно воспринимаемых физических моделей.

3. Символическое (знаковое) моделирование.

Оно связано с условно-знаковыми представлениями каких-то свойств, отношений объекта-оригинала. К символическим (знаковым) моделям относятся разнообразные топологические и графические представления (графики, схемы, номограммы и т.п.) исследуемых объектов. Например, химическая символика, отражающая соотношение элементов во время химических реакций.

4. Математическое моделирование - разновидность символического. Символический язык математики позволяет выражать свойства, стороны, отношения объектов и явлений самой различной природы. Взаимосвязи между различными величинами, описывающими функционирование такого объекта или явления, могут быть представлены соответствующими уравнениями. Получившаяся система уравнений вместе с известными данными, необходимыми для ее решения, называется математической моделью явления.

5. Вещественно-математическое (или предметно-математическое) моделирование. Математическое моделирование может применяться в особом сочетании с физическим моделированием. Это позволяет исследовать какие-то процессы в объекте-оригинале, заменяя их изучением процессов совсем иной природы, протекающих в модели, которые, однако, описываются теми же математическими соотношениями, что и исходные процессы. Так, механические колебания могут моделироваться электрическими колебаниями на основе полной идентичности описывающих их дифференциальных уравнений.

В настоящее время вещественно-математическое моделирование нередко реализуется с помощью электронных аналоговых устройств, которые позволяют создавать математическую аналогию между процессами, протекающими в объекте-оригинале и в специально организованной электронной схеме. Последняя и обеспечивает получение новой информации о процессах в исследуемом объекте.


Подобные документы

  • Научное познание и его структура. Термин "знание". Субъект и объект познания. Понятие метода. Общелогические приемы познания. Эмпирические и теоретические методы научного исследования. Ощущение. Восприятие. Представление. Мышление.

    контрольная работа [15,5 K], добавлен 08.02.2007

  • Специфика и уровни научного познания. Творческая деятельность и развитие человека. Методы научного познания: эмпирические и теоретические. Формы научного познания: проблемы, гипотезы, теории. Важность наличия философских знаний.

    реферат [42,4 K], добавлен 29.11.2006

  • Общая характеристика эвристических методов научного познания, исследование исторических примеров их применения и анализ значения данных методов в теоретической деятельности. Оценка роли аналогии, редукции, индукции в теории и практике научного познания.

    курсовая работа [49,4 K], добавлен 13.09.2011

  • Понятие, сущность и предмет методологии. Понятие "метода", основные типы методов и их взаимосвязь. Методы научного познания. Основные методы эмпирического и теоретического познания. Проблемы методологии и пути их решения. Важнейшие задачи методологии.

    контрольная работа [29,6 K], добавлен 11.11.2010

  • Понятие и содержание научного познания, его специфика и строение, элементы. Методы и методология познания. Общенаучные методы эмпирического и теоретического познания. Этапы познавательного цикла и формы научного познания. Научная теория и ее структура.

    контрольная работа [18,7 K], добавлен 30.12.2010

  • Особенности эмпирического и теоретического уровней научного исследования. Операции, необходимые для перехода от наблюдения к эмпирическому факту. Формы мышления, функционирующие на теоретическом уровне. Общелогические методы и общенаучные подходы.

    лекция [2,7 M], добавлен 15.04.2014

  • Три уровня структуры научного познания: эмпирический, теоретический, философских оснований. Две части теоретического уровня. Индуктивный и дедуктивный методы и их основные принципы. Революционный гносеологический вклад Фрэнсиса Бэкона и Галилео Галилея.

    реферат [21,4 K], добавлен 12.04.2009

  • Формы и задачи научного познания. Процесс получения объективного, истинного знания. Методы, применяемые на теоретическом и эмпирическом уровне. Сущность и область применения формализации, аксиоматизации, гипотетико-дедуктивного метода и идеализации.

    презентация [615,4 K], добавлен 13.04.2014

  • Общая характеристика теории познания. Виды, субъекты, объекты и уровни познания. Сравнительный анализ чувственного, эмпирического и теоретического познания. Понятие, сущность и формы мышления. Описание основных философских методов и приемов исследования.

    контрольная работа [34,3 K], добавлен 12.11.2010

  • Виды познаний, их определение и различия. Сущность и классификация методов научного познания по степени общности и сфере действия. Некоторые приемы и средства эмпирического и теоретического исследования, применяемые на разных его этапах и уровнях.

    презентация [2,0 M], добавлен 18.12.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.